Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Immunol ; 23(4): 532-542, 2022 04.
Article in English | MEDLINE | ID: covidwho-1764192

ABSTRACT

The use of lipid-formulated RNA vaccines for cancer or COVID-19 is associated with dose-limiting systemic inflammatory responses in humans that were not predicted from preclinical studies. Here, we show that the 'interleukin 1 (IL-1)-interleukin 1 receptor antagonist (IL-1ra)' axis regulates vaccine-mediated systemic inflammation in a host-specific manner. In human immune cells, RNA vaccines induce production of IL-1 cytokines, predominantly IL-1ß, which is dependent on both the RNA and lipid formulation. IL-1 in turn triggers the induction of the broad spectrum of pro-inflammatory cytokines (including IL-6). Unlike humans, murine leukocytes respond to RNA vaccines by upregulating anti-inflammatory IL-1ra relative to IL-1 (predominantly IL-1α), protecting mice from cytokine-mediated toxicities at >1,000-fold higher vaccine doses. Thus, the IL-1 pathway plays a key role in triggering RNA vaccine-associated innate signaling, an effect that was unexpectedly amplified by certain lipids used in vaccine formulations incorporating N1-methyl-pseudouridine-modified RNA to reduce activation of Toll-like receptor signaling.


Subject(s)
Inflammation , Interleukin 1 Receptor Antagonist Protein , Interleukin-1 , Animals , COVID-19 , Inflammation/immunology , Inflammation/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1/genetics , Interleukin-1/immunology , Lipids , Mice , RNA , Vaccines, Synthetic , /metabolism
2.
Mol Cell Biochem ; 477(3): 711-726, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616202

ABSTRACT

The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.


Subject(s)
Antiviral Agents/immunology , COVID-19/drug therapy , /pharmacology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antiviral Agents/pharmacology , Azetidines/immunology , Azetidines/pharmacology , COVID-19/etiology , Dexamethasone/immunology , Dexamethasone/pharmacology , Famotidine/immunology , Famotidine/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Infliximab/immunology , Infliximab/pharmacology , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Melatonin/immunology , Melatonin/pharmacology , Purines/immunology , Purines/pharmacology , Pyrazoles/immunology , Pyrazoles/pharmacology , Sulfonamides/immunology , Sulfonamides/pharmacology
3.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518198

ABSTRACT

A substantial proportion of patients who have recovered from coronavirus disease-2019 (COVID-19) experience COVID-19-related symptoms even months after hospital discharge. We extensively immunologically characterized patients who recovered from COVID-19. In these patients, T cells were exhausted, with increased PD-1+ T cells, as compared with healthy controls. Plasma levels of IL-1ß, IL-1RA, and IL-8, among others, were also increased in patients who recovered from COVID-19. This altered immunophenotype was mirrored by a reduced ex vivo T cell response to both nonspecific and specific stimulation, revealing a dysfunctional status of T cells, including a poor response to SARS-CoV-2 antigens. Altered levels of plasma soluble PD-L1, as well as of PD1 promoter methylation and PD1-targeting miR-15-5p, in CD8+ T cells were also observed, suggesting abnormal function of the PD-1/PD-L1 immune checkpoint axis. Notably, ex vivo blockade of PD-1 nearly normalized the aforementioned immunophenotype and restored T cell function, reverting the observed post-COVID-19 immune abnormalities; indeed, we also noted an increased T cell-mediated response to SARS-CoV-2 peptides. Finally, in a neutralization assay, PD-1 blockade did not alter the ability of T cells to neutralize SARS-CoV-2 spike pseudotyped lentivirus infection. Immune checkpoint blockade ameliorates post-COVID-19 immune abnormalities and stimulates an anti-SARS-CoV-2 immune response.


Subject(s)
COVID-19/complications , Cytokines/immunology , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Case-Control Studies , Cytokines/drug effects , DNA Methylation , Female , Humans , Immunophenotyping , In Vitro Techniques , Interleukin 1 Receptor Antagonist Protein/drug effects , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-1beta/drug effects , Interleukin-1beta/immunology , Interleukin-8/drug effects , Interleukin-8/immunology , Male , MicroRNAs/metabolism , Middle Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Promoter Regions, Genetic
4.
J Immunol ; 206(7): 1569-1575, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1067833

ABSTRACT

The IL-1 receptor antagonist, anakinra, may represent a therapeutic option for acute respiratory distress syndrome (ARDS) associated with coronavirus disease 2019 (COVID-19). In this study, COVID-19 ARDS patients admitted to the Azienda Socio Sanitaria Territoriale of Lecco, Italy, between March 5th to April 15th, 2020, and who had received anakinra off-label were retrospectively evaluated and compared with a cohort of matched controls who did not receive immunomodulatory treatment. The primary end point was survival at day 28. The population consisted of 112 patients (56 treated with anakinra and 56 controls). Survival at day 28 was obtained in 69 patients (61.6%) and was significantly higher in anakinra-treated patients than in the controls (75.0 versus 48.2%, p = 0.007). When stratified by continuous positive airway pressure support at baseline, anakinra-treated patients' survival was also significant compared with the controls (p = 0.008). Univariate analysis identified anakinra usage (odds ratio, 3.2; 95% confidence interval, 1.47-7.17) as a significant survival predictor. This was not supported by multivariate modeling. The rate of infectious-related adverse events was similar between groups. In conclusion, anakinra improved overall survival and invasive ventilation-free survival and was well tolerated in patients with ARDS associated with COVID-19.


Subject(s)
COVID-19 , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Respiration, Artificial , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome , Aged , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Disease-Free Survival , Female , Humans , Interleukin 1 Receptor Antagonist Protein/antagonists & inhibitors , Interleukin 1 Receptor Antagonist Protein/immunology , Male , Middle Aged , Retrospective Studies , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/therapy , Severe Acute Respiratory Syndrome/virology , Survival Rate
5.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-676865

ABSTRACT

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Adult , Aged , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Sepsis/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
6.
JCI Insight ; 5(13)2020 07 09.
Article in English | MEDLINE | ID: covidwho-541270

ABSTRACT

BACKGROUND: Identifying immune correlates of COVID-19 disease severity is an urgent need for clinical management, vaccine evaluation, and drug development. Here, we present a temporal analysis of key immune mediators, cytokines, and chemokines in blood of hospitalized COVID-19 patients from serial sampling and follow-up over 4 weeks. METHODS: A total of 71 patients with laboratory-confirmed COVID-19 admitted to Beijing You'an Hospital in China with either mild (53 patients) or severe (18 patients) disease were enrolled with 18 healthy volunteers. We measured 34 immune mediators, cytokines, and chemokines in peripheral blood every 4-7 days over 1 month per patient using a bioplex multiplex immunoassay. RESULTS: We found that the chemokine RANTES (CCL5) was significantly elevated, from an early stage of the infection, in patients with mild but not severe disease. We also found that early production of inhibitory mediators including IL-10 and IL-1RA were significantly associated with disease severity, and a combination of CCL5, IL-1 receptor antagonist (IL-1RA), and IL-10 at week 1 may predict patient outcomes. The majority of cytokines that are known to be associated with the cytokine storm in virus infections such as IL-6 and IFN-γ were only significantly elevated in the late stage of severe COVID-19 illness. TNF-α and GM-CSF showed no significant differences between severe and mild cases. CONCLUSION: Together, our data suggest that early intervention to increase expression of CCL5 may prevent patients from developing severe illness. Our data also suggest that measurement of levels of CCL5, as well as IL-1RA and IL-10 in blood individually and in combination, might be useful prognostic biomarkers to guide treatment strategies.


Subject(s)
Chemokine CCL5/immunology , Coronavirus Infections/immunology , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-10/immunology , Pneumonia, Viral/immunology , Adult , Aged , Betacoronavirus , COVID-19 , Case-Control Studies , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/immunology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Hospitalization , Humans , Immunoassay , Interferon-gamma/immunology , Interleukin-6/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Severity of Illness Index , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL