Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cochrane Database Syst Rev ; 1: CD015308, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1653145

ABSTRACT

BACKGROUND: Interleukin-1 (IL-1) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19), on the premise that their immunomodulatory effect might be beneficial in people with COVID-19. OBJECTIVES: To assess the effects of IL-1 blocking agents compared with standard care alone or with placebo on effectiveness and safety outcomes in people with COVID-19. We will update this assessment regularly. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register and the COVID-19 L-OVE Platform (search date 5 November 2021). These sources are maintained through regular searches of MEDLINE, Embase, CENTRAL, trial registers and other sources. We also checked the World Health Organization International Clinical Trials Registry Platform, regulatory agency websites, Retraction Watch (search date 3 November 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) evaluating IL-1 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity. DATA COLLECTION AND ANALYSIS: We followed Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two researchers independently screened and extracted data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence using the GRADE approach for the critical outcomes of clinical improvement (Day 28; ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28; ≥ D60); all-cause mortality (D28; ≥ D60); incidence of any adverse events; and incidence of serious adverse events. MAIN RESULTS: We identified four RCTs of anakinra (three published in peer-reviewed journals, one reported as a preprint) and two RCTs of canakinumab (published in peer-reviewed journals). All trials were multicentre (2 to 133 centres). Two trials stopped early (one due to futility and one as the trigger for inferiority was met). The median/mean age range varied from 58 to 68 years; the proportion of men varied from 58% to 77%. All participants were hospitalised; 67% to 100% were on oxygen at baseline but not intubated; between 0% and 33% were intubated at baseline. We identified a further 16 registered trials with no results available, of which 15 assessed anakinra (four completed, four terminated, five ongoing, three not recruiting) and one (completed) trial assessed canakinumab. Effectiveness of anakinra for people with COVID-19 Anakinra probably results in little or no increase in clinical improvement at D28 (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.97 to 1.20; 3 RCTs, 837 participants; absolute effect: 59 more per 1000 (from 22 fewer to 147 more); moderate-certainty evidence. The evidence is uncertain about an effect of anakinra on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.67, 95% CI 0.36 to 1.22; 2 RCTs, 722 participants; absolute effect: 55 fewer per 1000 (from 107 fewer to 37 more); low-certainty evidence) and ≥ D60 (RR 0.54, 95% CI 0.30 to 0.96; 1 RCT, 606 participants; absolute effect: 47 fewer per 1000 (from 72 fewer to 4 fewer) low-certainty evidence); and 2) all-cause mortality at D28 (RR 0.69, 95% CI 0.34 to 1.39; 2 RCTs, 722 participants; absolute effect: 32 fewer per 1000 (from 68 fewer to 40 more); low-certainty evidence).  The evidence is very uncertain about an effect of anakinra on 1) the proportion of participants with clinical improvement at ≥ D60 (RR 0.93, 95% CI 0.78 to 1.12; 1 RCT, 115 participants; absolute effect: 59 fewer per 1000 (from 186 fewer to 102 more); very low-certainty evidence); and 2) all-cause mortality at ≥ D60 (RR 1.03, 95% CI 0.68 to 1.56; 4 RCTs, 1633 participants; absolute effect: 8 more per 1000 (from 84 fewer to 147 more); very low-certainty evidence). Safety of anakinra for people with COVID-19 Anakinra probably results in little or no increase in adverse events (RR 1.02, 95% CI 0.94 to 1.11; 2 RCTs, 722 participants; absolute effect: 14 more per 1000 (from 43 fewer to 78 more); moderate-certainty evidence).  The evidence is uncertain regarding an effect of anakinra on serious adverse events (RR 0.95, 95% CI 0.58 to 1.56; 2 RCTs, 722 participants; absolute effect: 12 fewer per 1000 (from 104 fewer to 138 more); low-certainty evidence). Effectiveness of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in clinical improvement at D28 (RR 1.05, 95% CI 0.96 to 1.14; 2 RCTs, 499 participants; absolute effect: 42 more per 1000 (from 33 fewer to 116 more); moderate-certainty evidence).  The evidence of an effect of canakinumab is uncertain on 1) the proportion of participants with a WHO Clinical Progression Score of level 7 or above at D28 (RR 0.72, 95% CI 0.44 to 1.20; 2 RCTs, 499 participants; absolute effect: 35 fewer per 1000 (from 69 fewer to 25 more); low-certainty evidence); and 2) all-cause mortality at D28 (RR:0.75; 95% CI 0.39 to 1.42); 2 RCTs, 499 participants; absolute effect: 20 fewer per 1000 (from 48 fewer to 33 more); low-certainty evidence).  The evidence is very uncertain about an effect of canakinumab on all-cause mortality at ≥ D60 (RR 0.55, 95% CI 0.16 to 1.91; 1 RCT, 45 participants; absolute effect: 112 fewer per 1000 (from 210 fewer to 227 more); very low-certainty evidence). Safety of canakinumab for people with COVID-19 Canakinumab probably results in little or no increase in adverse events (RR 1.02; 95% CI 0.86 to 1.21; 1 RCT, 454 participants; absolute effect: 11 more per 1000 (from 74 fewer to 111 more); moderate-certainty evidence). The evidence of an effect of canakinumab on serious adverse events is uncertain (RR 0.80, 95% CI 0.57 to 1.13; 2 RCTs, 499 participants; absolute effect: 44 fewer per 1000 (from 94 fewer to 28 more); low-certainty evidence). AUTHORS' CONCLUSIONS: Overall, we did not find evidence for an important beneficial effect of IL-1 blocking agents. The evidence is uncertain or very uncertain for several outcomes. Sixteen trials of anakinra and canakinumab with no results are currently registered, of which four are completed, and four terminated. The findings of this review are updated on the COVID-NMA platform (covid-nma.com).


Subject(s)
COVID-19 , Interleukin-1/antagonists & inhibitors , Aged , COVID-19/drug therapy , Female , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Respiration, Artificial
2.
Lancet Respir Med ; 9(12): 1427-1438, 2021 12.
Article in English | MEDLINE | ID: covidwho-1621131

ABSTRACT

BACKGROUND: Infections with SARS-CoV-2 continue to cause significant morbidity and mortality. Interleukin (IL)-1 and IL-6 blockade have been proposed as therapeutic strategies in COVID-19, but study outcomes have been conflicting. We sought to study whether blockade of the IL-6 or IL-1 pathway shortened the time to clinical improvement in patients with COVID-19, hypoxic respiratory failure, and signs of systemic cytokine release syndrome. METHODS: We did a prospective, multicentre, open-label, randomised, controlled trial, in hospitalised patients with COVID-19, hypoxia, and signs of a cytokine release syndrome across 16 hospitals in Belgium. Eligible patients had a proven diagnosis of COVID-19 with symptoms between 6 and 16 days, a ratio of the partial pressure of oxygen to the fraction of inspired oxygen (PaO2:FiO2) of less than 350 mm Hg on room air or less than 280 mm Hg on supplemental oxygen, and signs of a cytokine release syndrome in their serum (either a single ferritin measurement of more than 2000 µg/L and immediately requiring high flow oxygen or mechanical ventilation, or a ferritin concentration of more than 1000 µg/L, which had been increasing over the previous 24 h, or lymphopenia below 800/mL with two of the following criteria: an increasing ferritin concentration of more than 700 µg/L, an increasing lactate dehydrogenase concentration of more than 300 international units per L, an increasing C-reactive protein concentration of more than 70 mg/L, or an increasing D-dimers concentration of more than 1000 ng/mL). The COV-AID trial has a 2 × 2 factorial design to evaluate IL-1 blockade versus no IL-1 blockade and IL-6 blockade versus no IL-6 blockade. Patients were randomly assigned by means of permuted block randomisation with varying block size and stratification by centre. In a first randomisation, patients were assigned to receive subcutaneous anakinra once daily (100 mg) for 28 days or until discharge, or to receive no IL-1 blockade (1:2). In a second randomisation step, patients were allocated to receive a single dose of siltuximab (11 mg/kg) intravenously, or a single dose of tocilizumab (8 mg/kg) intravenously, or to receive no IL-6 blockade (1:1:1). The primary outcome was the time to clinical improvement, defined as time from randomisation to an increase of at least two points on a 6-category ordinal scale or to discharge from hospital alive. The primary and supportive efficacy endpoints were assessed in the intention-to-treat population. Safety was assessed in the safety population. This study is registered online with ClinicalTrials.gov (NCT04330638) and EudraCT (2020-001500-41) and is complete. FINDINGS: Between April 4, and Dec 6, 2020, 342 patients were randomly assigned to IL-1 blockade (n=112) or no IL-1 blockade (n=230) and simultaneously randomly assigned to IL-6 blockade (n=227; 114 for tocilizumab and 113 for siltuximab) or no IL-6 blockade (n=115). Most patients were male (265 [77%] of 342), median age was 65 years (IQR 54-73), and median Systematic Organ Failure Assessment (SOFA) score at randomisation was 3 (2-4). All 342 patients were included in the primary intention-to-treat analysis. The estimated median time to clinical improvement was 12 days (95% CI 10-16) in the IL-1 blockade group versus 12 days (10-15) in the no IL-1 blockade group (hazard ratio [HR] 0·94 [95% CI 0·73-1·21]). For the IL-6 blockade group, the estimated median time to clinical improvement was 11 days (95% CI 10-16) versus 12 days (11-16) in the no IL-6 blockade group (HR 1·00 [0·78-1·29]). 55 patients died during the study, but no evidence for differences in mortality between treatment groups was found. The incidence of serious adverse events and serious infections was similar across study groups. INTERPRETATION: Drugs targeting IL-1 or IL-6 did not shorten the time to clinical improvement in this sample of patients with COVID-19, hypoxic respiratory failure, low SOFA score, and low baseline mortality risk. FUNDING: Belgian Health Care Knowledge Center and VIB Grand Challenges program.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , COVID-19 , Cytokine Release Syndrome , Respiratory Insufficiency , Aged , Belgium , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Female , Ferritins , Humans , Hypoxia , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Oxygen , Prospective Studies , Respiratory Insufficiency/drug therapy , Respiratory Insufficiency/virology , SARS-CoV-2 , Treatment Outcome
3.
Viral Immunol ; 34(10): 679-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1560640

ABSTRACT

The newfound coronavirus disease 2019 (COVID-19), initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health concern, threatening the lives of millions of people worldwide. The virus seems to have a propensity to infect older males, especially those with underlying diseases. The cytokine storm following hyperactivated immune responses due to SARS-CoV-2 infection is probably the crucial source of severe pneumonia that leads to acute lung injury, systemic inflammatory response syndrome, or acute respiratory distress syndrome, and finally multiple organ dysfunction syndromes, as well as death in many cases. Several studies revealed that interleukin (IL)-1ß levels were elevated during COVID-19 infection. In addition, the IL-1 cytokine family has a pivotal role in the induction of cytokine storm due to uncontrolled immune responses in COVID-19 infection. This article reviews the role of IL-1 in inflammation and utilization of IL-1 inhibitor agents in controlling the inflammatory outcomes initiated by SARS-CoV-2 infection.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Interleukin-1/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/immunology , Acute Lung Injury/pathology , COVID-19/mortality , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Humans , Interleukin-1/antagonists & inhibitors , Multiple Organ Failure/drug therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
4.
Eur J Clin Pharmacol ; 76(11): 1615-1618, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1384377

ABSTRACT

AIM: SARS-CoV-2 infection has been divided by scientific opinion into three phases: the first as asymptomatic or slightly symptomatic and the second and the third with greater severity, characterized by a hyperinflammatory and fibrotic state, responsible for lung lesions, in some cases fatal. The development of antiviral drugs directed against SARS-CoV-2 and effective vaccines is progressing; meanwhile, the best pharmacological objective is related to the management of all the complications caused by this viral infection, mainly controlling the inflammatory and fibrotic state and preventing the infection from moving into the most serious phases. SUBJECT AND METHOD: Describe the scientific rationale related to the use of an antifibrotic therapy with pirfenidone, as monotherapy and/or in combination with anti-inflammatory drugs to manage and control complications of SARS-CoV-2 infection. RESULTS: Based on the scientific literature and epidemiological results and considering the pathophysiological, biological, and molecular characteristics of SARS-CoV-2, an antifibrotic drug such as pirfenidone as monotherapy or in combination with anti-inflammatory drugs can be (acting early, at the right doses and at the right time) therapeutically effective to avoid serious complications during viral infection. The same approach can also be effective as postinfection therapy in patients with residual pulmonary fibrotic damage. Management of inflammation and fibrotic status with a combination therapy of pirfenidone and IL-6 or IL-1 inhibitors could represent a pharmacological synergy with added value. CONCLUSION: In this article, we consider the role of antifibrotic therapy with pirfenidone in patients with SARS-CoV-2 infection on going or in the stage of postinfection with pulmonary fibrotic consequences. The scientific rationale for its use is also described.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Pyridones/therapeutic use , Betacoronavirus , COVID-19 , Drug Therapy, Combination , Humans , Inflammation/drug therapy , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Pandemics , SARS-CoV-2
5.
Front Immunol ; 12: 675678, 2021.
Article in English | MEDLINE | ID: covidwho-1231339

ABSTRACT

BACKGROUND: Restraining maladaptive inflammation is considered a rationale strategy to treat severe coronavirus disease-19 (COVID-19) but available studies with selective inhibitors of pro-inflammatory cytokines have not provided unequivocal evidence of survival advantage. Late administration is commonly regarded as a major cause of treatment failure but the optimal timing for anti-cytokine therapy initiation in COVID-19 patients has never been clearly established. OBJECTIVES: To identify a window of therapeutic opportunity for maximizing the efficacy of interleukin (IL)-1 and IL-6 blockade in COVID-19. METHODS: Survival at the longest available follow-up was assessed in severe hyper-inflamed COVID-19 patients treated with anakinra, tocilizumab, sarilumab, or standard of care, stratified according to respiratory impairment at the time of treatment initiation. RESULTS: 107 patients treated with biologics and 103 contemporary patients treated with standard of care were studied. After a median of 106 days of follow-up (range 3-186), treatment with biologics was associated with a significantly higher survival rate compared to standard therapy when initiated in patients with a PaO2/FiO2 ≥ 100 mmHg (p < 0.001). Anakinra reduced mortality also in patients with PaO2/FiO2 < 100 mmHg (p = 0.04). CONCLUSIONS: IL-1 and IL-6 blocking therapies are more likely to provide survival advantage in hyper-inflamed COVID-19 patients when initiated before the establishment of severe respiratory failure.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19 , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , SARS-CoV-2/immunology , Aged , COVID-19/drug therapy , COVID-19/immunology , COVID-19/mortality , Disease-Free Survival , Female , Follow-Up Studies , Humans , Interleukin-1/immunology , Interleukin-6/immunology , Male , Middle Aged , Severity of Illness Index , Survival Rate
6.
Inflamm Res ; 70(4): 389-405, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1092089

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is a world-wide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, treatment of severe COVID-19 is far from clear. Therefore, it is urgent to develop an effective option for the treatment of patients with COVID-19. Most patients with severe COVID-19 exhibit markedly increased serum levels of pro-inflammatory cytokines, including interferon (IFN)-α, IFN-γ, and interleukin (IL)-1ß. Immunotherapeutic strategies have an important role in the suppression of cytokine storm and respiratory failure in patients with COVID-19. METHODS: A systematic search in the literature was performed in PubMed, Scopus, Embase, Cochrane Library, Web of Science, as well as Google Scholar preprint database using all available MeSH terms for Coronavirus, SARS-CoV-2, anti-rheumatoid agents, COVID-19, cytokine storm, immunotherapeutic drugs, IFN, interleukin, JAK/STAT inhibitors, MCP, MIP, TNF. RESULTS: Here, we first review common complications of COVID-19 patients, particularly neurological symptoms. We next explain host immune responses against COVID-19 particles. Finally, we summarize the existing experimental and clinical immunotherapeutic strategies, particularly anti-rheumatoid agents and also plasma (with a high level of gamma globulin) therapy for severe COVID-19 patients. We discuss both their therapeutic effects and side effects that should be taken into consideration for their clinical application. CONCLUSION: It is suggested that immunosuppressants, such as anti-rheumatoid drugs, could be considered as a potential approach for the treatment of cytokine storm in severe cases of COVID-19. One possible limitation of immunosuppressant therapy is their inhibitory effects on host anti-viral immune response. So, the appropriate timing of administration should be carefully considered.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Cytokine Release Syndrome/drug therapy , Immunologic Factors/therapeutic use , Animals , Antirheumatic Agents/therapeutic use , COVID-19/immunology , Cytokines/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Immunization, Passive , Immunosuppressive Agents/therapeutic use , Immunotherapy , Inflammation/drug therapy , Interferons/therapeutic use , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Janus Kinase 1/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Respiratory Insufficiency/therapy , STAT1 Transcription Factor/antagonists & inhibitors , Signal Transduction
7.
Rheumatol Int ; 41(4): 811-817, 2021 04.
Article in English | MEDLINE | ID: covidwho-1092075

ABSTRACT

Coronavirus disease 2019 (COVID-19) refers to the clinical picture of an important and severe infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Considering the current knowledge on the pathophysiology and clinical manifestations of COVID-19, it is safe to state that both COVID-19 and inflammatory rheumatic disorders cause a cytokine storm and merit treatment with anti-rheumatic drugs. Three patients, who were on regular follow-up due to the diagnosis of familial Mediterranean fever (FMF), contracted COVID-19 infection; and their pre-clinical and post-clinical data as well as laboratory, prognosis and treatment data were investigated. Effects of colchicine in FMF patients who contracted COVID-19 infection were presented in this study. All the cases recovered from COVID-19 without complications. The present study suggests that colchicine can positively affect the prognosis of COVID-19 in FMF patients; therefore, experience of rheumatologists in the use of anti-inflammatory drugs can be highly instrumental in management of COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Colchicine/therapeutic use , Familial Mediterranean Fever/drug therapy , SARS-CoV-2 , Adult , Aged , COVID-19/immunology , Female , Humans , Interleukin-1/antagonists & inhibitors , Male , Middle Aged , Prognosis
8.
Rheumatol Int ; 41(4): 715-719, 2021 04.
Article in English | MEDLINE | ID: covidwho-1092074

ABSTRACT

Aim of this study is to investigate the course of coronavirus disease 2019 (COVID-19), in our cohort of familial Mediterranean fever (FMF) patients in means of mortality, admission to hospital and/or intensive care unit and length of hospital stay.A retrospective cohort was formed from patients who have previously been followed with a diagnosis of FMF. Patients of this cohort were retrospectively evaluated for a positive severe acute respiratory syndrome-coronavirus 2 (SARS-CoV 2) polymerized chain reaction (PCR) test result and information regarding hospitalisation, intensive care unit admission and mortality were collected from medical records.Out of a total 496 FMF patients, 34 were detected to have a positive SARS-CoV 2 PCR test. Eighty-five point three percent of these patients were under colchicine treatment and 17.6% were under interleukin (IL)-1 inhibitor treatment. Eight of the 34 patients (23.9%) were found to be hospitalized, one of them was admitted to the intensive care unit and died thereafter (2.9%). An increasing trend in the frequency of comorbid diseases (presence of at least one comorbidity 64.7% in all patients vs 75.0% in hospitalized patients) and IL-1 inhibitor usage (17.6% in all patients vs 50.0% in hospitalized patients) was observed in hospitalized patients.Rates of comorbid diseases and IL-1 inhibitor use for FMF were observed to be increased in FMF patients hospitalized for COVID-19.


Subject(s)
COVID-19/complications , Familial Mediterranean Fever/complications , SARS-CoV-2 , Adult , COVID-19/mortality , Comorbidity , Cross-Sectional Studies , Familial Mediterranean Fever/drug therapy , Female , Hospitalization , Humans , Intensive Care Units , Interleukin-1/antagonists & inhibitors , Length of Stay , Male , Middle Aged , Retrospective Studies , Young Adult
9.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1079663

ABSTRACT

Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Discovery , Lysosomes/drug effects , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Chlorpromazine/pharmacokinetics , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Cytokine Release Syndrome/drug therapy , Drug Discovery/methods , Drug Repositioning/methods , Fluvoxamine/pharmacokinetics , Fluvoxamine/pharmacology , Fluvoxamine/therapeutic use , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Interleukin-1/antagonists & inhibitors , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/virology , Lysosomes/immunology , Lysosomes/metabolism , Lysosomes/virology , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/therapeutic use , Virus Replication/drug effects
10.
Blood Rev ; 45: 100707, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064893

ABSTRACT

A subset of patients with severe COVID-19 develop profound inflammation and multi-organ dysfunction consistent with a "Cytokine Storm Syndrome" (CSS). In this review we compare the clinical features, diagnosis, and pathogenesis of COVID-CSS with other hematological CSS, namely secondary hemophagocytic lymphohistiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), and CAR-T cell therapy associated Cytokine Release Syndrome (CRS). Novel therapeutics targeting cytokines or inhibiting cell signaling pathways have now become the mainstay of treatment in these CSS. We review the evidence for cytokine blockade and attenuation in these known CSS as well as the emerging literature and clinical trials pertaining to COVID-CSS. Established markers of inflammation as well as cytokine levels are compared and contrasted between these four entities in order to establish a foundation for future diagnostic criteria of COVID-CSS.


Subject(s)
COVID-19/immunology , Castleman Disease/immunology , Cytokine Release Syndrome/immunology , Immunologic Factors/therapeutic use , Lymphohistiocytosis, Hemophagocytic/immunology , SARS-CoV-2/pathogenicity , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal/therapeutic use , Biomarkers/blood , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Castleman Disease/drug therapy , Castleman Disease/pathology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Ferritins/blood , Ferritins/immunology , Gene Expression Regulation , Humans , Immunotherapy, Adoptive/adverse effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/blood , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/pathology , Signal Transduction
11.
J Autoimmun ; 115: 102537, 2020 12.
Article in English | MEDLINE | ID: covidwho-722639

ABSTRACT

OBJECTIVE: Severely ill COVID-19 patients may end in acute respiratory distress syndrome (ARDS) and multi-organ failure. Some of them develop a systemic hyperinflammatory state produced by the massive release of inflammatory agents, known as cytokine storm syndrome (CSS). Inhibition of IL-1 by Anakinra (ANK) is a potential life-saving therapy for severe CSS cases. We propose a rationale for the use of subcutaneous ANK and review our initial experience in a small cohort of severe COVID-19 CSS patients. METHODS: Retrospective cohort study of COVID-19 patients developing ARDS (PaO2/FiO2 <300) and exhibiting signs of hyperinflammation (ferritin >1000 ng/mL and/or d-dimers > 1.5 µg/mL, plus IL-6 < 40 mg/mL) that received ANK. For comparison, a propensity score matched historical cohort of patients treated with IL-6 inhibitor Tocilizumab (TCZ) was used. Patients had previously received combinations of azithromycin, hydroxy-chloroquine, and methyl-prednisolone. Laboratory findings, respiratory function and adverse effects were monitored. Resolution of ARDS within the first 7 days of treatment was considered a favorable outcome. RESULTS: Subcutaneous ANK (100 mg every 6 h) was given to 9 COVID-19 ARDS CSS patients (77.8% males). Median age was 62 years (range, 42 to 87). A TCZ cohort of 18 patients was selected by propensity score matching and treated with intravenous single dose of 600 mg for patients weighing >75 Kg, or 400 mg if < 75 Kg. Prior to treatment, median PaO2/FiO2 ratio of the ANK and TCZ cohorts were 193 and 249, respectively (p = 0.131). After 7 days of treatment, PaO2/FiO2 ratio improved in both groups to 279 (104-335) and 331 (140-476, p = 0.099) respectively. On day 7, there was significant reduction of ferritin (p = 0.046), CRP (p = 0.043), and IL-6 (p = 0.043) levels in the ANK cohort but only of CRP (p = 0.001) in the TCZ group. Favorable outcome was achieved in 55.6% and 88.9% of the ANK and TCZ cohorts, respectively (p = 0.281). Two patients that failed to respond to TCZ improved after ANK treatment. Aminotransferase levels significantly increased between day 1 and day 7 (p = 0.004) in the TCZ group. Mortality was the same in both groups (11%). There were not any opportunistic infection in the groups nor other adverse effects attributable to treatment. CONCLUSION: Overall, 55.6% of COVID-19 ARDS CSS patients treated with ANK exhibited favorable outcome, not inferior to a TCZ treated matched cohort. ANK may be a potential alternative to TCZ for patients with elevated aminotransferases, and may be useful in non-responders to TCZ.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2/physiology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Cohort Studies , Disease Progression , Female , Humans , Injections, Subcutaneous , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Male , Middle Aged , Spain
12.
Crit Care ; 24(1): 445, 2020 07 18.
Article in English | MEDLINE | ID: covidwho-655347

ABSTRACT

COVID-19 is an emerging disease that can manifest itself as asymptomatic or mild respiratory tract infection in the majority of individuals, but in some, it can progress into severe pneumonia and acute respiratory distress syndrome (ARDS). Inflammation is known to play a crucial role in the pathogenesis of severe infections and ARDS and evidence is emerging that the IL-1/IL-6 pathway is highly upregulated in patients with severe disease. These findings open new avenues for host-directed therapies in patients with symptomatic SARS-CoV-2 infection and might in addition to antiviral treatment be enough to curb the currently unacceptably high morbidity and mortality associated with COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Interleukin-1/antagonists & inhibitors , Pneumonia, Viral/drug therapy , Respiratory Insufficiency/prevention & control , COVID-19 , Coronavirus Infections/complications , Humans , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/virology
13.
Front Immunol ; 11: 1439, 2020.
Article in English | MEDLINE | ID: covidwho-644233

ABSTRACT

In December 2019, following a cluster of pneumonia cases in China caused by a novel coronavirus (CoV), named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the infection disseminated worldwide and, on March 11th, 2020, the World Health Organization officially declared the pandemic of the relevant disease named coronavirus disease 2019 (COVID-19). In Europe, Italy was the first country facing a true health policy emergency, and, as at 6.00 p.m. on May 2nd, 2020, there have been more than 209,300 confirmed cases of COVID-19. Due to the increasing number of patients experiencing a severe outcome, global scientific efforts are ongoing to find the most appropriate treatment. The usefulness of specific anti-rheumatic drugs came out as a promising treatment option together with antiviral drugs, anticoagulants, and symptomatic and respiratory support. For this reason, we feel a duty to share our experience and our knowledge on the use of these drugs in the immune-rheumatologic field, providing in this review the rationale for their use in the COVID-19 pandemic.


Subject(s)
Betacoronavirus/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/etiology , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Adaptive Immunity/drug effects , Adult , Anticoagulants/therapeutic use , Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Hydroxychloroquine/therapeutic use , Immunity, Innate/drug effects , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Janus Kinase Inhibitors/therapeutic use , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , SARS-CoV-2
16.
Trials ; 21(1): 468, 2020 Jun 03.
Article in English | MEDLINE | ID: covidwho-506033

ABSTRACT

OBJECTIVES: The purpose of this study is to test the safety and effectiveness of individually or simultaneously blocking IL-6, IL-6 receptor and IL-1 versus standard of care on blood oxygenation and systemic cytokine release syndrome in patients with COVID-19 coronavirus infection and acute hypoxic respiratory failure and systemic cytokine release syndrome. TRIAL DESIGN: A phase 3 prospective, multi-center, interventional, open label, 6-arm 2x2 factorial design study. PARTICIPANTS: Subjects will be recruited at the specialized COVID-19 wards and/or ICUs at 16 Belgian participating hospitals. Only adult (≥18y old) patients will be recruited with recent (≤16 days) COVID-19 infection and acute hypoxia (defined as PaO2/FiO2 below 350mmHg or PaO2/FiO2 below 280 on supplemental oxygen and immediately requiring high flow oxygen device or mechanical ventilation) and signs of systemic cytokine release syndrome characterized by high serum ferritin, or high D-dimers, or high LDH or deep lymphopenia or a combination of those, who have not been on mechanical ventilation for more than 24 hours before randomisation. Patients should have had a chest X-ray and/or CT scan showing bilateral infiltrates within the last 2 days before randomisation. Patients with active bacterial or fungal infection will be excluded. INTERVENTION AND COMPARATOR: Patients will be randomized to 1 of 5 experimental arms versus usual care. The experimental arms consist of Anakinra alone (anti-IL-1 binding the IL-1 receptor), Siltuximab alone (anti-IL-6 chimeric antibody), a combination of Siltuximab and Anakinra, Tocilizumab alone (humanised anti-IL-6 receptor antibody) or a combination of Anakinra with Tocilizumab in addition to standard care. Patients treated with Anakinra will receive a daily subcutaneous injection of 100mg for a maximum of 28 days or until hospital discharge, whichever comes first. Siltuximab (11mg/kg) or Tocilizumab (8mg/kg, with a maximum dose of 800mg) are administered as a single intravenous injection immediately after randomization. MAIN OUTCOMES: The primary end point is the time to clinical improvement defined as the time from randomization to either an improvement of two points on a six-category ordinal scale measured daily till day 28 or discharge from the hospital or death. This ordinal scale is composed of (1) Death; (2) Hospitalized, on invasive mechanical ventilation or ECMO; (3) Hospitalized, on non-invasive ventilation or high flow oxygen devices; (4) Hospitalized, requiring supplemental oxygen; (5) Hospitalized, not requiring supplemental oxygen; (6) Not hospitalized. RANDOMISATION: Patients will be randomized using an Interactive Web Response System (REDCap). A 2x2 factorial design was selected with a 2:1 randomization regarding the IL-1 blockade (Anakinra) and a 1:2 randomization regarding the IL-6 blockade (Siltuximab and Tocilizumab). BLINDING (MASKING): In this open-label trial neither participants, caregivers, nor those assessing the outcomes are blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): A total of 342 participants will be enrolled: 76 patients will receive usual care, 76 patients will receive Siltuximab alone, 76 patients will receive Tocilizumab alone, 38 will receive Anakinra alone, 38 patients will receive Anakinra and Siltuximab and 38 patients will receive Anakinra and Tocilizumab. TRIAL STATUS: COV-AID protocol version 3.0 (15 Apr 2020). Participant recruitment is ongoing and started on April 4th 2020. Given the current decline of the COVID-19 pandemic in Belgium, it is difficult to anticipate the rate of participant recruitment. TRIAL REGISTRATION: The trial was registered on Clinical Trials.gov on April 1st, 2020 (ClinicalTrials.gov Identifier: NCT04330638) and on EudraCT on April 3rd 2020 (Identifier: 2020-001500-41). FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal/therapeutic use , Betacoronavirus/drug effects , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Anti-Inflammatory Agents/adverse effects , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Belgium , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Clinical Trials, Phase III as Topic , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Drug Therapy, Combination , Host-Pathogen Interactions , Humans , Interleukin 1 Receptor Antagonist Protein/adverse effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/blood , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Prospective Studies , Randomized Controlled Trials as Topic , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/immunology , SARS-CoV-2 , Severity of Illness Index , Time Factors , Treatment Outcome
17.
Clin Immunol ; 217: 108490, 2020 08.
Article in English | MEDLINE | ID: covidwho-437011
18.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: covidwho-220167

ABSTRACT

The pandemic caused by the novel coronavirus SARS-CoV-2 has placed an unprecedented burden on healthcare systems around the world. In patients who experience severe disease, acute respiratory distress is often accompanied by a pathological immune reaction, sometimes referred to as 'cytokine storm'. One hallmark feature of the profound inflammatory state seen in patients with COVID-19 who succumb to pneumonia and hypoxia is marked elevation of serum cytokines, especially interferon gamma, tumor necrosis factor alpha, interleukin 17 (IL-17), interleukin 8 (IL-8) and interleukin 6 (IL-6). Initial experience from the outbreaks in Italy, China and the USA has anecdotally demonstrated improved outcomes for critically ill patients with COVID-19 with the administration of cytokine-modulatory therapies, especially anti-IL-6 agents. Although ongoing trials are investigating anti-IL-6 therapies, access to these therapies is a concern, especially as the numbers of cases worldwide continue to climb. An immunology-informed approach may help identify alternative agents to modulate the pathological inflammation seen in patients with COVID-19. Drawing on extensive experience administering these and other immune-modulating therapies, the Society for Immunotherapy of Cancer offers this perspective on potential alternatives to anti-IL-6 that may also warrant consideration for management of the systemic inflammatory response and pulmonary compromise that can be seen in patients with severe COVID-19.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Immunotherapy , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , Societies, Medical , Adoptive Transfer , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Humans , Inflammation/complications , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Interferon-gamma/antagonists & inhibitors , Interleukin-1/antagonists & inhibitors , Interleukin-17/antagonists & inhibitors , Interleukin-23/antagonists & inhibitors , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinases/antagonists & inhibitors , Neoplasms/immunology , Neoplasms/therapy , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/pathology , STAT Transcription Factors/antagonists & inhibitors , Severe Acute Respiratory Syndrome/pathology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors
19.
Cytotherapy ; 22(9): 474-481, 2020 09.
Article in English | MEDLINE | ID: covidwho-197744

ABSTRACT

Coronavirus disease 2019 (SARS-CoV2) is an active global health threat for which treatments are desperately being sought. Even though most people infected experience mild to moderate respiratory symptoms and recover with supportive care, certain vulnerable hosts develop severe clinical deterioration. While several drugs are currently being investigated in clinical trials, there are currently no approved treatments or vaccines for COVID-19 and hence there is an unmet need to explore additional therapeutic options. At least three inflammatory disorders or syndromes associated with immune dysfunction have been described in the context of cellular therapy. Specifically, Cytokine Release Syndrome (CRS), Immune Reconstitution Inflammatory Syndrome (IRIS), and Secondary Hemophagocytic Lymphohistiocytosis (sHLH) all have clinical and laboratory characteristics in common with COVID19 and associated therapies that could be worth testing in the context of clinical trials. Here we discuss these diseases, their management, and potential applications of these treatment in the context of COVID-19. We also discuss current cellular therapies that are being evaluated for the treatment of COVID-19 and/or its associated symptoms.


Subject(s)
Coronavirus Infections/etiology , Pneumonia, Viral/etiology , Adrenal Cortex Hormones/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Humans , Immune Reconstitution Inflammatory Syndrome/etiology , Immune Reconstitution Inflammatory Syndrome/therapy , Immunization, Passive , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Killer Cells, Natural/immunology , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/therapy , Pandemics , Plasmapheresis , Pneumonia, Viral/physiopathology , STAT Transcription Factors/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL