Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 13: 851620, 2022.
Article in English | MEDLINE | ID: covidwho-1731787

ABSTRACT

Myocarditis and myopericarditis may occur after COVID-19 vaccination with an incidence of two to twenty cases per 100,000 individuals, but underlying mechanisms related to disease onset and progression remain unclear. Here, we report a case of myopericarditis following the first dose of the mRNA-1273 COVID-19 vaccine in a young man who had a history of mild COVID-19 three months before vaccination. The patient presented with chest pain, elevated troponin I level, and electrocardiogram abnormality. His endomyocardial biopsy revealed diffuse CD68+ cell infiltration. We characterized the immune profile of the patient using multiplex cytokine assay and flow cytometry analysis. Sex-matched vaccinated individuals and healthy individuals were used as controls. IL-18 and IL-27, Th1-type cytokines, were highly increased in the patient with COVID-19 vaccine-related myopericarditis compared with vaccinated controls who experienced no cardiac complications. In the patient, circulating NK cells and T cells showed an activated phenotype and mRNA profile, and monocytes expressed increased levels of IL-18 and its upstream NLRP3 inflammasome. We found that recombinant IL-18 administration into mice caused mild cardiac dysfunction and activation of NK cells and T cells in the hearts, similar to the findings in the patient with myopericarditis after COVID-19 mRNA vaccination. Collectively, myopericarditis following COVID-19 mRNA vaccination may be associated with increased IL-18-mediated immune responses and cardiotoxicity.


Subject(s)
/adverse effects , COVID-19/immunology , Immunity/immunology , Interleukin-18/immunology , Myocarditis/chemically induced , Vaccination/adverse effects , Adult , Animals , Humans , Killer Cells, Natural/immunology , Male , Mice , SARS-CoV-2/immunology , Young Adult
2.
J Immunol Res ; 2021: 8214656, 2021.
Article in English | MEDLINE | ID: covidwho-1546598

ABSTRACT

Dengue fever is an infection by the dengue virus (DENV) transmitted by vector mosquitoes. It causes many infections in tropical and subtropical countries every year, thus posing a severe disease threat. Cytokine storms, one condition where many proinflammatory cytokines are mass-produced, might lead to cellular dysfunction in tissue/organ failures and often facilitate severe dengue disease in patients. Interleukin- (IL-) 18, similar to IL-1ß, is a proinflammatory cytokine produced during inflammation following inflammasome activation. Inflammatory stimuli, including microbial infections, damage signals, and cytokines, all induce the production of IL-18. High serum IL-18 is remarkably correlated with severely ill dengue patients; however, its possible roles have been less explored. Based on the clinical and basic findings, this review discusses the potential immunopathogenic role of IL-18 when it participates in DENV infection and dengue disease progression based on existing findings and related past studies.


Subject(s)
Dengue Virus/physiology , Dengue/immunology , Inflammasomes/metabolism , Inflammation/immunology , Interleukin-18/immunology , Aedes , Animals , Disease Vectors , Humans , Interleukin-1beta/immunology
3.
Front Immunol ; 12: 719544, 2021.
Article in English | MEDLINE | ID: covidwho-1348491

ABSTRACT

Background: Hyperinflammation with dysregulated production of galectins and cytokines may develop in COVID-19 or adult-onset Still's disease (AOSD). Given the similar clinical features in both diseases, it is necessary to identify biomarkers that can differentiate COVID-19 from AOSD. However, the related data remain scarce currently. Methods: In this cross-sectional study, plasma levels of galectin-3, galectin-9, and soluble TIM-3 (sTIM-3) were determined by ELISA in 55 COVID-19 patients (31 non-severe and 24 severe), 23 active AOSD patients, and 31 healthy controls (HC). The seropositivity for SARS-CoV-2 was examined using an immunochromatographic assay, and cytokine profiles were determined with the MULTIPLEX platform. Results: Significantly higher levels of galectin-3, galectin-9, IL-1ß, IL-1Ra, IL-10, IFN-α2, IL-6, IL-18, and TNF-α were observed in severe COVID-19 and active AOSD patients compared with HC (all p<0.001). AOSD, but not COVID-19, showed significantly higher IFN-γ and IL-17A compared with HC (both p<0.01). Moreover, active AOSD patients had 68-fold higher IL-18 levels and 5-fold higher ferritin levels than severe COVID-19 patients (both p<0.001). IL-18 levels at the cut-off value 190.5pg/mL had the highest discriminative power for active AOSD and severe COVID-19, with AUC 0.948, sensitivity 91.3%, specificity 95.8%, and accuracy of 91.5% (p<0.005). Multivariate regression analysis revealed IL-18 as a significant predictor of active AOSD (p<0.05). Conclusion: Active AOSD patients share features of hyperinflammation and cytokine storm with severe COVID-19 patients but possess a distinct cytokine profile, including elevated IL-18, IL-6, IFN-γ, and IL-17A. IL-18 is a potential discriminator between AOSD and COVID-19 and may significantly predict active AOSD.


Subject(s)
COVID-19 , Interleukin-18 , SARS-CoV-2 , Still's Disease, Adult-Onset , Adult , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , Cross-Sectional Studies , Female , Humans , Interleukin-18/blood , Interleukin-18/immunology , Male , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Still's Disease, Adult-Onset/blood , Still's Disease, Adult-Onset/immunology
4.
J Biol Chem ; 296: 100630, 2021.
Article in English | MEDLINE | ID: covidwho-1333548

ABSTRACT

Unchecked inflammation can result in severe diseases with high mortality, such as macrophage activation syndrome (MAS). MAS and associated cytokine storms have been observed in COVID-19 patients exhibiting systemic hyperinflammation. Interleukin-18 (IL-18), a proinflammatory cytokine belonging to the IL-1 family, is elevated in both MAS and COVID-19 patients, and its level is known to correlate with the severity of COVID-19 symptoms. IL-18 binds its specific receptor IL-1 receptor 5 (IL-1R5, also known as IL-18 receptor alpha chain), leading to the recruitment of the coreceptor, IL-1 receptor 7 (IL-1R7, also known as IL-18 receptor beta chain). This heterotrimeric complex then initiates downstream signaling, resulting in systemic and local inflammation. Here, we developed a novel humanized monoclonal anti-IL-1R7 antibody to specifically block the activity of IL-18 and its inflammatory signaling. We characterized the function of this antibody in human cell lines, in freshly obtained peripheral blood mononuclear cells (PBMCs) and in human whole blood cultures. We found that the anti-IL-1R7 antibody significantly suppressed IL-18-mediated NFκB activation, reduced IL-18-stimulated IFNγ and IL-6 production in human cell lines, and reduced IL-18-induced IFNγ, IL-6, and TNFα production in PBMCs. Moreover, the anti-IL-1R7 antibody significantly inhibited LPS- and Candida albicans-induced IFNγ production in PBMCs, as well as LPS-induced IFNγ production in whole blood cultures. Our data suggest that blocking IL-1R7 could represent a potential therapeutic strategy to specifically modulate IL-18 signaling and may warrant further investigation into its clinical potential for treating IL-18-mediated diseases, including MAS and COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Immunologic Factors/pharmacology , Interleukin-18/genetics , Receptors, Interleukin-18/genetics , Anti-Inflammatory Agents/metabolism , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/biosynthesis , COVID-19/drug therapy , Candida albicans/growth & development , Candida albicans/pathogenicity , Gene Expression Regulation , HEK293 Cells , Humans , Immunologic Factors/biosynthesis , Inflammation , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-18/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Macrophage Activation Syndrome/drug therapy , NF-kappa B/genetics , NF-kappa B/immunology , Primary Cell Culture , Receptors, Interleukin-18/antagonists & inhibitors , Receptors, Interleukin-18/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
5.
Nat Immunol ; 22(3): 322-335, 2021 03.
Article in English | MEDLINE | ID: covidwho-1060966

ABSTRACT

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Interleukin-18/immunology , Macrophages/immunology , Monocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Animals , Bronchoalveolar Lavage , Case-Control Studies , Chlorocebus aethiops , Cohort Studies , Female , France , Humans , Immunophenotyping , Interleukin-10/immunology , Interleukin-15/immunology , Interleukin-1beta/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Male , Middle Aged , RNA-Seq , SARS-CoV-2 , Severity of Illness Index , Single-Cell Analysis , Vero Cells , Young Adult
6.
J Cell Physiol ; 236(3): 1638-1657, 2021 03.
Article in English | MEDLINE | ID: covidwho-720323

ABSTRACT

Interleukin (IL)-18 is a pro-inflammatory cytokine belonging to the IL-1 family, first identified for its interferon-γ-inducing properties. IL-18 regulates both T helper (Th) 1 and Th2 responses. It acts synergistically with IL-12 in the Th1 paradigm, whereas with IL-2 and without IL-12 it can induce Th2 cytokine production from cluster of differentation (CD)4+ T cells, natural killer (NK cells, NKT cells, as well as from Th1 cells. IL-18 also plays a role in the hemophagocytic lymphohistiocytosis, a life-threatening condition characterized by a cytokine storm that can be secondary to infections. IL-18-mediated inflammation was largely studied in animal models of bacterial, viral, parasitic, and fungal infections. These studies highlight the contribution of either IL-18 overproduction by the host or overresponsiveness of the host to IL-18 causing an exaggerated inflammatory burden and leading to tissue injury. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19). The damage in the later phase of the disease appears to be driven by a cytokine storm, including interleukin IL-1 family members and secondary cytokines like IL-6. IL-18 may participate in this hyperinflammation, as it was previously found to be able to cause injury in the lung tissue of infected animals. IL-18 blockade has become an appealing therapeutic target and has been tested in some IL-18-mediated rheumatic diseases and infantile-onset macrophage activation syndrome. Given its role in regulating the immune response to infections, IL-18 blockade might represent a therapeutic option for COVID-19, although further studies are warranted to investigate more in detail the exact role of IL-18 in SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Interleukin-18/immunology , Animals , Humans , Inflammation/immunology , Inflammation/virology , Interleukin-18/antagonists & inhibitors , SARS-CoV-2/immunology
7.
JCI Insight ; 5(17)2020 09 03.
Article in English | MEDLINE | ID: covidwho-676865

ABSTRACT

BACKGROUNDElevated levels of inflammatory cytokines have been associated with poor outcomes among COVID-19 patients. It is unknown, however, how these levels compare with those observed in critically ill patients with acute respiratory distress syndrome (ARDS) or sepsis due to other causes.METHODSWe used a Luminex assay to determine expression of 76 cytokines from plasma of hospitalized COVID-19 patients and banked plasma samples from ARDS and sepsis patients. Our analysis focused on detecting statistical differences in levels of 6 cytokines associated with cytokine storm (IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α) between patients with moderate COVID-19, severe COVID-19, and ARDS or sepsis.RESULTSFifteen hospitalized COVID-19 patients, 9 of whom were critically ill, were compared with critically ill patients with ARDS (n = 12) or sepsis (n = 16). There were no statistically significant differences in baseline levels of IL-1ß, IL-1RA, IL-6, IL-8, IL-18, and TNF-α between patients with COVID-19 and critically ill controls with ARDS or sepsis.CONCLUSIONLevels of inflammatory cytokines were not higher in severe COVID-19 patients than in moderate COVID-19 or critically ill patients with ARDS or sepsis in this small cohort. Broad use of immunosuppressive therapies in ARDS has failed in numerous Phase 3 studies; use of these therapies in unselected patients with COVID-19 may be unwarranted.FUNDINGFunding was received from NHLBI K23 HL125663 (AJR); The Bill and Melinda Gates Foundation OPP1113682 (AJR and CAB); Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 NIH/NIAID U19AI057229-16; Stanford Maternal Child Health Research Institute; and Chan Zuckerberg Biohub (CAB).


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Respiratory Distress Syndrome/immunology , Sepsis/immunology , Adult , Aged , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Female , Humans , Interleukin 1 Receptor Antagonist Protein/blood , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin-18/blood , Interleukin-18/immunology , Interleukin-1beta/blood , Interleukin-1beta/immunology , Interleukin-6/blood , Interleukin-6/immunology , Interleukin-8/blood , Interleukin-8/immunology , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Respiratory Distress Syndrome/blood , Sepsis/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
8.
Physiol Genomics ; 52(5): 217-221, 2020 05 01.
Article in English | MEDLINE | ID: covidwho-47305
SELECTION OF CITATIONS
SEARCH DETAIL