Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Pediatr Rheumatol Online J ; 20(1): 64, 2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-1993366

ABSTRACT

BACKGROUND: Data about safety and efficacy of the mRNA SARS-CoV-2 vaccine in adolescents with rheumatic diseases (RD) is scarce and whether these patients generate a sufficient immune response to the vaccine remains an outstanding question. OBJECTIVE: To evaluate safety and humoral and cellular immunity of the BNT162b2 vaccine in adolescents 12 to 18 years with RD and immunosuppressive treatment compared with a healthy control group. METHODS: Adolescents from 12 to 18 years with RD followed at Hospital La Paz in Madrid (n = 40) receiving the BNT162b2 mRNA vaccination were assessed 3 weeks after complete vaccination. Healthy adolescents served as controls (n = 24). Humoral response was measured by IgG antiSpike antibodies, and cellular response by the quantity of IFN-γ and IL-2 present in whole blood stimulated with SARS-CoV-2 Spike and M proteins. RESULTS: There were no differences in spike-specific humoral or cellular response between groups (median IFN-γ response to S specific protein; 528.80 pg/ml in controls vs. 398.44 in RD patients, p 0.78, and median IL-2 response in controls: 635.68 pg/ml vs. 497.30 in RD patients, p 0.22. The most frequent diagnosis was juvenile idiopathic arthritis (26/40, 65%) followed by Lupus (6/40, 15%). 60% of cases (23/40) received TNF inhibitors and 35% (14/40) methotrexate. 40% of patients (26/64) had previous SARS-CoV-2 infection, 9 in the control group and 17 in the RD patients without differences. Of note, 70% of infections were asymptomatic. A higher IFN-γ production was found in COVID-19 recovered individuals than in naive subjects in both groups (controls: median 859 pg/ml in recovered patients vs. 450 in naïve p 0.017, and RD patients: 850 in recovered vs. 278 in naïve p 0.024). No serious adverse events or flares were reported following vaccination. CONCLUSIONS: We conclude that standard of care treatment for adolescents with RD including TNF inhibitors and methotrexate did not affect the humoral and the cellular immunity to BNT162b2 mRNA vaccination compared to a healthy control group. The previous contact with SARS-CoV-2 was the most relevant factor in the immune response.


Subject(s)
COVID-19 , Rheumatic Diseases , Viral Vaccines , Adolescent , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Cellular , Interleukin-2 , Methotrexate , RNA, Messenger , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors , Viral Vaccines/genetics
2.
Front Immunol ; 13: 902140, 2022.
Article in English | MEDLINE | ID: covidwho-1963475

ABSTRACT

Background: Information on the clinical characteristics and pathophysiological mechanisms underlying post-COVID-19 fatigue are scarce. The main objective of this study was to evaluate sex-specific humoral and T-cell responses associated with post-COVID-19 fatigue in a sample of individuals treated as outpatients. Methods: At a median time of 279 (179;325) days after the acute infection, a total of 281 individuals (45.9% men) aged 18-87 years old were included in the analysis. The participants were examined at the University Hospital of Augsburg, Southern Germany. Fatigue was assessed using the Fatigue Assessment Scale (FAS). Levels of anti-SARS-CoV2-spike IgG antibodies were measured by an enzyme-linked immunosorbent assay (ELISA), and for exploration of the SARS-CoV2-specific T-cell response, ex vivo ELISpot/FLUOROspot assays were conducted using an interferon-γ (IFN-γ) and interleukin-2 (IL-2) SARS-CoV-iSpot kit. Results: Women more significantly suffered from post-COVID-19 fatigue in comparison to men (47.4% versus 25.6%, p=0.0002). Females but not males with fatigue showed a significantly lower number of T-cells producing IFN-γ, IL-2 or both IL-2 and IFNγ in comparison with females without fatigue. In both sexes, serum levels of anti-SARS-CoV2-spike IgG antibodies did not differ significantly between participants with or without fatigue. Conclusions: Development of fatigue after acute COVID-19 disease might be associated with SARS-CoV-2-specific T-cell responses in women, but not men after a mild infection course treated outpatient.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , Fatigue/etiology , Female , Humans , Immunoglobulin G , Interleukin-2 , Male , Middle Aged , Outpatients , RNA, Viral , T-Lymphocytes , Young Adult
3.
AIDS ; 36(10): 1373-1382, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1961258

ABSTRACT

OBJECTIVE: While the course of natural immunization specific to SARS-CoV-2 has been described among convalescent coronavirus disease 2019 (COVID-19) people without HIV (PWOH), a thorough evaluation of long-term serological and functional T- and B-cell immune memory among people with HIV (PWH) has not been reported. METHODS: Eleven stable PWH developing mild ( n  = 5) and severe ( n  = 6) COVID-19 and 39 matched PWOH individuals with mild (MILD) ( n  = 20) and severe (SEV) ( n  = 19) COVID-19 infection were assessed and compared at 3 and 6 months after infection for SARS-CoV-2-specific serology, polyfunctional cytokine (interferon-γ [IFN-γ], interleukin 2 [IL-2], IFN-γ/IL-2, IL-21) producing T-cell frequencies against four main immunogenic antigens and for circulating SARS-CoV-2-specific immunoglobulin G (IgG)-producing memory B-cell (mBc). RESULTS: In all time points, all SARS-COV-2-specific adaptive immune responses were highly driven by the clinical severity of COVID-19 infection, irrespective of HIV disease. Notably, while a higher proportion of mild PWH showed a higher decay on serological detection between the two time points as compared to PWOH, persistently detectable IgG-producing mBc were still detectable in most patients (4/4 (100%) for SEV PWH, 4/5 (80%) for MILD PWH, 10/13 (76.92%) for SEV PWOH and 15/18 (83.33%) for MILD PWOH). Likewise, SARS-CoV-2-specific IFN-γ-producing T-cell frequencies were detected in both PWH and PWOH, although significantly more pronounced among severe COVID-19 (6/6 (100%) for SEV PWH, 3/5 (60%) for MILD PWH, 18/19 (94.74%) for SEV PWOH and 14/19 (73.68%) for MILD PWOH). CONCLUSIONS: PWH develop a comparable short and long-term natural functional cellular and humoral immune response than PWOH convalescent patients, which are highly influenced by the clinical severity of the COVID-19 infection.


Subject(s)
Adaptive Immunity , COVID-19 , HIV Infections , Immunologic Memory , Antibodies, Viral , COVID-19/immunology , HIV Infections/complications , Humans , Immunoglobulin G , Interleukin-2 , SARS-CoV-2
4.
Cytokine ; 157: 155974, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1956119

ABSTRACT

BACKGROUND: Severe cases of coronavirus disease 2019 (COVID-19) have increased risk for acute kidney injury (AKI). The exacerbation of the immune response seems to contribute to AKI development, but the immunopathological process is not completely understood. OBJECTIVES: To analyze levels of circulant immune mediators in COVID-19 patients evolving with or without AKI. We have also investigated possible associations of these mediators with viral load and clinical outcomes. METHODS: This is a longitudinal study performed with hospitalized patients with moderate to severe COVID-19. Serum levels of 27 immune mediators were measured by a multiplex immunoassay. Data were analyzed at two timepoints during the follow-up: within the first 13 days of the disease onset (early sample) and from the 14th day to death or hospital discharge (follow-up sample). RESULTS: We studied 82 COVID-19 patients (59.5 ± 17.5 years, 54.9% male). Of these, 34 (41.5%) developed AKI. These patients presented higher SARS-CoV-2 viral load (P = 0.03), higher frequency of diabetes (P = 0.01) and death (P = 0.0004). Overall, AKI patients presented significantly higher and sustained levels (P < 0.05) of CCL-2, CCL-3, CCL-4, CXCL-8, CXCL-10, IFN-γ, IL-2, IL-6, TNF-α, IL-1Ra, IL-10 and VEGF. Importantly, higher levels of CCL-2, CXCL-10, IL-2, TNF-α, IL-10, FGFb, and VEGF were observed in AKI patients independently of death. ROC curves demonstrated that early alterations in CCL-2, CXCL-8, CXCL-10, IFN-γ, IL-6, IL-1Ra and IL-10 show a good predictive value regarding AKI development. Lastly, immune mediators were significantly associated with each other and with SARS-CoV-2 viral load in AKI patients. CONCLUSIONS: COVID-19 associated AKI is accompanied by substantial alterations in circulant levels of immune mediators, which could significantly contribute to the establishment of kidney injury.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/pathology , COVID-19/complications , Female , Humans , Immunologic Factors , Interleukin 1 Receptor Antagonist Protein , Interleukin-10 , Interleukin-2 , Interleukin-6 , Longitudinal Studies , Male , Retrospective Studies , Risk Factors , SARS-CoV-2 , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
5.
Front Immunol ; 13: 911859, 2022.
Article in English | MEDLINE | ID: covidwho-1952334

ABSTRACT

Safe and effective vaccines and therapeutics based on the understanding of antiviral immunity are urgently needed to end the COVID-19 pandemic. However, the understanding of these immune responses, especially cellular immune responses to SARS-CoV-2 infection, is limited. Here, we conducted a cohort study of COVID-19 patients who were followed and had blood collected to characterize the longitudinal dynamics of their cellular immune responses. Compared with healthy controls, the percentage of activation of SARS-CoV-2 S/N-specific T cells in recovered patients was significantly higher. And the activation percentage of S/N-specific CD8+ T cells in recovered patients was significantly higher than that of CD4+ T cells. Notably, SARS-CoV-2 specific T-cell responses were strongly biased toward the expression of Th1 cytokines, included the cytokines IFNγ, TNFα and IL2. Moreover, the secreted IFNγ and IL2 level in severe patients was higher than that in mild patients. Additionally, the number of IFNγ-secreting S-specific T cells in recovered patients were higher than that of N-specific T cells. Overall, the SARS-CoV-2 S/N-specific T-cell responses in recovered patients were strong, and virus-specific immunity was present until 14-16 weeks after symptom onset. Our work provides a basis for understanding the immune responses and pathogenesis of COVID-19. It also has implications for vaccine development and optimization and speeding up the licensing of the next generation of COVID-19 vaccines.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Cohort Studies , Humans , Immunity, Cellular , Interleukin-2 , Pandemics , SARS-CoV-2
6.
Immunotherapy ; 14(13): 1015-1020, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1952098

ABSTRACT

The exact impact of immune checkpoint inhibitors in the course and outcome of COVID-19 in cancer patients is currently unclear. Herein, we present the first description of an elderly melanoma patient who developed COVID-19 pneumonia while under treatment with nivolumab and bempegaldesleukin in combination with an investigational PEGylated interleukin (IL-2). We present the clinical characteristics and the laboratory and imaging findings of our patient during the course of COVID-19 pneumonia. Moreover, we discuss the currently available data regarding the mechanism of action of immune checkpoint inhibitors and IL-2 analogs in the treatment of COVID-19. The administration of these agents did not have a negative effect on the outcome of COVID-19 pneumonia in an elderly melanoma patient.


Immune checkpoint inhibitors represent a major advance in the treatment of several solid malignancies, including melanoma. Bempegaldesleukin is an investigational PEGylated IL-2 that is being evaluated, in combination with nivolumab, in the management of a variety of cancers. The immunomodulation caused by these agents may also modify the immune response in COVID-19. Currently available data regarding the impact of immune checkpoint inhibitors in reducing the severity of COVID-19 in patients with cancer are mixed, whereas no clinical data are available for bempegaldesleukin. Herein, we report the case of an elderly female melanoma patient who developed COVID-19 pneumonia while under treatment with nivolumab and bempegaldesleukin. The administration of these agents did not have a negative effect on the outcome of COVID-19 pneumonia in our patient.


Subject(s)
COVID-19 , Melanoma , Aged , COVID-19/drug therapy , Humans , Immune Checkpoint Inhibitors , Interleukin-2/therapeutic use , Melanoma/complications , Melanoma/drug therapy , Nivolumab/therapeutic use
7.
Immunohorizons ; 6(6): 398-407, 2022 06 24.
Article in English | MEDLINE | ID: covidwho-1911833

ABSTRACT

T cell immunity to natural SARS-CoV-2 infection may be more robust and longer lived than Ab responses. Accurate assessment of T cell responses is critical for understanding the magnitude and longevity of immunity across patient cohorts, and against emerging variants. By establishing a simple, accurate, and rapid whole blood test, natural and vaccine-induced SARS-CoV-2 immunity was determined. Cytokine release in whole blood stimulated with peptides specific for SARS-CoV-2 was measured in donors with previous PCR-confirmed infection, suspected infection, or with no exposure history (n = 128), as well as in donors before and after vaccination (n = 32). Longitudinal assessment of T cell responses following initial vaccination and booster vaccination was also conducted (n = 50 and n = 62, respectively). Cytokines were measured by ELISA and multiplex array. IL-2 and IFN-γ were highly elevated in PCR-confirmed donors compared with history-negative controls, with median levels ∼33-fold and ∼48-fold higher, respectively. Receiver operating curves showed IL-2 as the superior biomarker (area under the curve = 0.9950). Following vaccination, all donors demonstrated a positive IL-2 response. Median IL-2 levels increased ∼32-fold from prevaccination to postvaccination in uninfected individuals. Longitudinal assessment revealed that T cell responses were stable up to 6 mo postvaccination. No significant differences in cytokine production were observed between stimulations with Wuhan, Delta, or Omicron peptides. This rapid, whole blood-based test can be used to make comparable longitudinal assessments of vaccine-induced T cell immunity across multiple cohorts and against variants of concern, thus aiding decisions on public health policies.


Subject(s)
COVID-19 , T-Lymphocytes , Cytokines , Humans , Interleukin-2 , SARS-CoV-2
8.
EBioMedicine ; 81: 104129, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1906949

ABSTRACT

BACKGROUND: There is currently no consensus on the diagnosis, definition, symptoms, or duration of COVID-19 illness. The diagnostic complexity of Long COVID is compounded in many patients who were or might have been infected with SARS-CoV-2 but not tested during the acute illness and/or are SARS-CoV-2 antibody negative. METHODS: Given the diagnostic conundrum of Long COVID, we set out to investigate SARS-CoV-2-specific T cell responses in patients with confirmed SARS-CoV-2 infection and/or Long COVID from a cohort of mostly non-hospitalised patients. FINDINGS: We discovered that IL-2 release (but not IFN-γ release) from T cells in response to SARS-CoV-2 peptides is both sensitive (75% +/-13%) and specific (88%+/-7%) for previous SARS-CoV-2 infection >6 months after a positive PCR test. We identified that 42-53% of patients with Long COVID, but without detectable SARS-CoV-2 antibodies, nonetheless have detectable SARS-CoV-2 specific T cell responses. INTERPRETATION: Our study reveals evidence (detectable T cell mediated IL-2 release) of previous SARS-CoV-2 infection in seronegative patients with Long COVID. FUNDING: This work was funded by the Addenbrooke's Charitable Trust (900276 to NS), NIHR award (G112259 to NS) and supported by the NIHR Cambridge Biomedical Research Centre. NJM is supported by the MRC (TSF MR/T032413/1) and NHSBT (WPA15-02). PJL is supported by the Wellcome Trust (PRF 210688/Z/18/Z, 084957/Z/08/Z), a Medical Research Council research grant MR/V011561/1 and the United Kingdom Research and a Innovation COVID Immunology Consortium grant (MR/V028448/1).


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/complications , Humans , Interleukin-2 , SARS-CoV-2
9.
J Virol ; 96(13): e0050922, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1891737

ABSTRACT

Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Cytokines , Immunity , SARS-CoV-2 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/immunology , COVID-19 Vaccines , Cytokines/immunology , Female , Humans , Immunologic Memory , Interferon-gamma/metabolism , Interleukin-2/immunology , Male , Severity of Illness Index , Time Factors
10.
J Infect Chemother ; 28(7): 948-954, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1851524

ABSTRACT

INTRODUCTION: Macrolide antibiotics have immunomodulatory properties which may be beneficial in viral infections. However, the precise effects of macrolides on T cell responses to COVID, differences between different macrolides, and synergistic effects with other antibiotics have not been explored. METHODS: We investigated the effect of antibiotics (amoxicillin, azithromycin, clarithromycin, and combined amoxicillin with clarithromycin) on lymphocyte intracellular cytokine levels and monocyte phagocytosis in healthy volunteer PBMCs stimulated ex vivo with SARS-CoV-2 S1+2 spike protein. A retrospective cohort study was performed on intensive care COVID-19 patients. RESULTS: Co-incubation of clarithromycin with spike protein-stimulated healthy volunteer PBMCs ex vivo resulted in an increase in CD8+ (p = 0.004) and CD4+ (p = 0.007) IL-2, with a decrease in CD8+ (p = 0.032) and CD4+ (p = 0.007) IL-10. The addition of amoxicillin to clarithromycin resulted in an increase in CD8+ IL-6 (p = 0.010), decrease in CD8+ (p = 0.014) and CD4+ (p = 0.022) TNF-alpha, and decrease in CD8+ IFN-alpha (p = 0.038). Amoxicillin alone had no effect on CD4+ or CD8+ cytokines. Co-incubation of azithromycin resulted in increased CD8+ (p = 0.007) and CD4+ (p = 0.011) IL-2. There were no effects on monocyte phagocytosis. 102 COVID-19 ICU patients received antibiotics on hospital admission; 62 (61%) received clarithromycin. Clarithromycin use was associated with reduction in mortality on univariate analysis (p = 0.023), but not following adjustment for confounders (HR = 0.540; p = 0.076). CONCLUSIONS: Clarithromycin has immunomodulatory properties over and above azithromycin. Amoxicillin in addition to clarithromycin is associated with synergistic ex vivo immunomodulatory properties. The potential benefit of clarithromycin in critically ill patients with COVID-19 and other viral pneumonitis merits further exploration.


Subject(s)
COVID-19 , Clarithromycin , Amoxicillin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , COVID-19/drug therapy , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , Cytokines , Humans , Interleukin-2 , Macrolides/pharmacology , Retrospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
11.
J Immunol ; 208(11): 2461-2465, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1847475

ABSTRACT

Several studies have demonstrated that the SARS-CoV-2 variant-of-concern B.1.1.529 (Omicron) exhibits a high degree of escape from Ab neutralization. Therefore, it is critical to determine how well the second line of adaptive immunity, T cell memory, performs against Omicron. To this purpose, we analyzed a human cohort (n = 327 subjects) of two- or three-dose mRNA vaccine recipients and COVID-19 postinfection subjects. We report that T cell responses against Omicron were largely preserved. IFN-γ-producing T cell responses remained equivalent to the response against the ancestral strain (WA1/2020), with some (∼20%) loss in IL-2 single or IL-2+IFN-γ+ polyfunctional responses. Three-dose vaccinated participants had similar responses to Omicron relative to post-COVID-19 participants and exhibited responses significantly higher than those receiving two mRNA vaccine doses. These results provide further evidence that a three-dose vaccine regimen benefits the induction of optimal functional T cell immune memory.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , T-Lymphocytes , mRNA Vaccines , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Interleukin-2/genetics , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic , mRNA Vaccines/immunology
12.
J Leukoc Biol ; 112(1): 201-212, 2022 07.
Article in English | MEDLINE | ID: covidwho-1844079

ABSTRACT

T cells are thought to be an important correlates of protection against SARS-CoV2 infection. However, the composition of T cell subsets in convalescent individuals of SARS-CoV2 infection has not been well studied. The authors determined the lymphocyte absolute counts, the frequency of memory T cell subsets, and the plasma levels of common γ-chain in 7 groups of COVID-19 individuals, based on days since RT-PCR confirmation of SARS-CoV-2 infection. The data show that both absolute counts and frequencies of lymphocytes as well as, the frequencies of CD4+ central and effector memory cells increased, and the frequencies of CD4+ naïve T cells, transitional memory, stem cell memory T cells, and regulatory cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. In addition, the frequencies of CD8+ central memory, effector, and terminal effector memory T cells increased, and the frequencies of CD8+ naïve cells, transitional memory, and stem cell memory T cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. The plasma levels of IL-2, IL-7, IL-15, and IL-21-common γc cytokines started decreasing from Days 15-30 till Days 151-180. Severe COVID-19 patients exhibit decreased levels of lymphocyte counts and frequencies, higher frequencies of naïve cells, regulatory T cells, lower frequencies of central memory, effector memory, and stem cell memory, and elevated plasma levels of IL-2, IL-7, IL-15, and IL-21. Finally, there was a significant correlation between memory T cell subsets and common γc cytokines. Thus, the study provides evidence of alterations in lymphocyte counts, memory T cell subset frequencies, and common γ-chain cytokines in convalescent COVID-19 individuals.


Subject(s)
COVID-19 , Cytokines , Memory T Cells , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/blood , COVID-19/immunology , Convalescence , Cytokines/blood , Humans , Immunologic Memory/immunology , Interleukin-15/blood , Interleukin-2/blood , Interleukin-7/blood , Memory T Cells/immunology , RNA, Viral , SARS-CoV-2 , T-Lymphocyte Subsets/immunology
13.
Front Immunol ; 13: 875236, 2022.
Article in English | MEDLINE | ID: covidwho-1834410

ABSTRACT

A variety of methods have been explored to increase delivery efficiencies for DNA vaccine. However, the immunogenicity of DNA vaccines has not been satisfactorily improved. Unlike most of the previous attempts, we provided evidence suggesting that changing the injection site successively (successively site-translocated inoculation, SSTI) could significantly enhance the immunogenicity of DNA vaccines in a previous study. To simplify the strategy and to evaluate its impact on candidate SARS-CoV-2 vaccines, we immunized mice with either a SARS-CoV-2 spike-based DNA vaccine or a spike protein subunit vaccine via three different inoculation strategies. Our data demonstrated that S protein specific antibody responses elicited by the DNA vaccine or the protein subunit vaccine showed no significant difference among different inoculation strategies. Of interest, compared with the conventional site fixed inoculation (SFI), both successive site-translocating inoculation (SSTI) and the simplified translocating inoculation (STI) strategy improved specific T cell responses elicited by the DNA vaccine. More specifically, the SSTI strategy significantly improved both the monofunctional (IFN-γ+IL-2-TNF-α-CD8+) and the multifunctional (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses, while the simplified translocating inoculation (STI) strategy significantly improved the multifunctional CD8+ (IFN-γ+IL-2-TNF-α+CD8+, IFN-γ+IL-2+TNF-α+CD8+) and CD4+ (IFN-γ+IL-2-TNF-α+CD4+, IFN-γ+IL-2+TNF-α+CD4+) T cell responses. The current study confirmed that changing the site of intra muscular injection can significantly improve the immunogenicity of DNA vaccines.


Subject(s)
COVID-19 , Sexually Transmitted Diseases , Vaccines, DNA , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Interleukin-2 , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha
14.
mBio ; 13(3): e0018122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1816698

ABSTRACT

Understanding immune memory to COVID-19 vaccines is critical for the design and optimal vaccination schedule for curbing the COVID-19 pandemic. Here, we assessed the status of humoral and cellular immune responses at 1, 3, 6, and 12 months after two-dose CoronaVac vaccination. A total of 150 participants were enrolled, and 136 of them completed the study through the 12-month endpoint. Our results show that, at 1 month after vaccination, both binding and neutralizing antibodies could be detected; the seropositive rate of binding antibodies and seroconversion rate of neutralizing antibodies were 99% and 50%, respectively. From 3 to 12 months, the binding and neutralizing antibodies declined over time. At 12 months, the binding and neutralizing antibodies were still detectable and significantly higher than the baseline. Gamma interferon (IFN-γ) and interleukin 2 (IL-2) secretion specifically induced by the receptor-binding domain (RBD) persisted at high levels until 6 months and could be observed at 12 months, while the levels of IL-5 and granzyme B (GzmB) were hardly detected, demonstrating a Th1-biased response. In addition, specific CD4+ T central memory (TCM), CD4+ effector memory (TEM), CD8+ TEM, and CD8+ terminal effector (TE) cells were all detectable and functional up to 12 months after the second dose, as the cells produced IFN-γ, IL-2, and GzmB in response to stimulation of SARS-CoV-2 RBD. Our work provides evidence that CoronaVac induced not only detectable binding and neutralizing antibody responses, but also functional SARS-CoV-2-specific CD4+ and CD8+ memory T cells for up to 12 months. IMPORTANCE CoronaVac is an inactivated vaccine containing whole-virion SARS-CoV-2, which has been approved in 43 countries for emergency use as of 26 November 2021. However, the long-term immune persistence of the CoronaVac vaccine is still unknown. Here, we reported the status of the persistence of antibodies and cellular responses within 12 months after two doses of CoronaVac. Such data are crucial to inform ongoing and future vaccination strategies to combat COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Immunity, Humoral , Vaccines, Inactivated , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Interleukin-2 , Pandemics , SARS-CoV-2 , Vaccination , Vaccines, Inactivated/immunology
15.
Front Immunol ; 13: 812126, 2022.
Article in English | MEDLINE | ID: covidwho-1809385

ABSTRACT

CoronaVac is an inactivated SARS-CoV-2 vaccine that has been rolled out in several low and middle-income countries including Brazil, where it was the mainstay of the first wave of immunization of healthcare workers and the elderly population. We aimed to assess the T cell and antibody responses of vaccinated individuals as compared to convalescent patients. We detected IgG against SARS-CoV-2 antigens, neutralizing antibodies against the reference Wuhan SARS-CoV-2 strain and used SARS-CoV-2 peptides to detect IFN-g and IL-2 specific T cell responses in a group of CoronaVac vaccinated individuals (N = 101) and convalescent (N = 72) individuals. The frequency among vaccinated individuals, of whom 96% displayed T cell and/or antibody responses to SARS-CoV-2, is comparable to 98.5% responses of convalescent individuals. We observed that among vaccinated individuals, men and individuals 55 years or older developed significantly lower anti-RBD, anti-NP and neutralization titers against the Wuhan strain and antigen-induced IL-2 production by T cells. Neutralizing antibody responses for Gamma variant were even lower than for the Wuhan strain. Even though some studies indicated CoronaVac helped reduce mortality among elderly people, considering the appearance of novel variants of concern, CoronaVac vaccinated individuals above 55 years old are likely to benefit from a heterologous third dose/booster vaccine to increase immune response and likely protection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , COVID-19/prevention & control , Humans , Immunization, Secondary , Interleukin-2 , Male , Middle Aged , SARS-CoV-2 , T-Lymphocytes
16.
Allergy ; 77(8): 2459-2467, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1794764

ABSTRACT

BACKGROUND: It is essential to know about immune response levels after booster doses of the two different types of vaccines, mRNA, and the inactivated, currently used against COVID-19. For this purpose, we aimed to determine the effects of BNT162b2 (BNT) and CoronaVac (CV) boosters on the humoral and cellular immunity of individuals who had two doses of CV vaccination. METHODS: The study was conducted in three centers (Koc University Hospital, Istanbul University Cerrahpasa Hospital, and Istanbul University, Istanbul Medical School Hospital) in Istanbul, Turkey. Individuals who had been previously immunized with two doses of CV and no history of COVID-19 were included. The baseline blood samples were collected 3-5 months after the second dose of CV. Follow-up blood samples were taken 1 and 3 months after administration of third doses of CV, or one dose of BNT boosters. Neutralizing antibody titers were measured by plaque reduction assay. The CD4+ T cell, CD8+ T cell, effector CD4+CD38+CD69+ T cell, and effector CD8+CD38+CD69+ T cell ratios were determined by flow cytometry. The intracellular IFN-γ and IL-2 responses were measured by ELISpot assay. RESULTS: We found a 3.38-fold increase in neutralizing antibody geometric mean titers (NA GMT, 78.69) 1 month after BNT booster and maintained at the third month (NA GMT, 80). Nevertheless, in the CV booster group, significantly lower NA GMT than BNT after 1 month and 3 months were observed (21.44 and 28.44, respectively) (p < .001). In the ELISpot assay, IL-2 levels after BNT were higher than baseline and CV booster (p < .001) while IFN-γ levels were significantly higher than baseline (p < .001). The CD8+CD38+CD69+ and CD4+CD38+CD69+ T cells were stimulated predominantly in the third month of the BNT boosters. CONCLUSION: The neutralizing antibody levels after 3 months of the BNT booster were higher than the antibody levels after CV in fully vaccinated individuals. On the contrary, ratio of the effector T cells increased along with greater IFN-γ activation after BNT booster. By considering the waning immunity, we suggest a new booster dose with BNT for the countries that already had two doses of primary CV regimens.


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunity, Cellular , Immunity, Humoral , Vaccines, Inactivated , Antibodies, Neutralizing , BNT162 Vaccine/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , Interleukin-2 , Longitudinal Studies , SARS-CoV-2 , Turkey , Vaccines, Inactivated/immunology
17.
Clin Transl Med ; 12(4): e802, 2022 04.
Article in English | MEDLINE | ID: covidwho-1791212

ABSTRACT

SARS-CoV-2 specific T-cell response has been associated with disease severity, immune memory and heterologous response to endemic coronaviruses. However, an integrative approach combining a comprehensive analysis of the quality of SARS-CoV-2 specific T-cell response with antibody levels in these three scenarios is needed. In the present study, we found that, in acute infection, while mild disease was associated with high T-cell polyfunctionality biased to IL-2 production and inversely correlated with anti-S IgG levels, combinations only including IFN-γ with the absence of perforin production predominated in severe disease. Seven months after infection, both non-hospitalised and previously hospitalised patients presented robust anti-S IgG levels and SARS-CoV-2 specific T-cell response. In addition, only previously hospitalised patients showed a T-cell exhaustion profile. Finally, combinations including IL-2 in response to S protein of endemic coronaviruses were the ones associated with SARS-CoV-2 S-specific T-cell response in pre-COVID-19 healthy donors' samples. These results could have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19 and may help for the design of new prototypes and boosting vaccine strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin G , Immunologic Memory , Interleukin-2 , Severity of Illness Index , T-Lymphocytes
18.
PLoS One ; 17(4): e0266691, 2022.
Article in English | MEDLINE | ID: covidwho-1779779

ABSTRACT

SARS-CoV-2 T cell responses are associated with COVID-19 recovery, and Class I- and Class II-restricted epitopes have been identified in the spike (S), nucleocapsid (N) and membrane (M) proteins and others. This prospective COVID-19 Health Action Response for Marines (CHARM) study enabled assessment of T cell responses against S, N and M proteins in symptomatic and asymptomatic SARS-CoV-2 infected participants. At enrollment all participants were negative by qPCR; follow-up occurred biweekly and bimonthly for the next 6 weeks. Study participants who tested positive by qPCR SARS-CoV-2 test were enrolled in an immune response sub-study. FluoroSpot interferon-gamma (IFN-γ) and IL2 responses following qPCR-confirmed infection at enrollment (day 0), day 7 and 14 and more than 28 days later were measured using pools of 17mer peptides covering S, N, and M proteins, or CD4+CD8 peptide pools containing predicted epitopes from multiple SARS-CoV-2 antigens. Among 124 asymptomatic and 105 symptomatic participants, SARS-CoV-2 infection generated IFN-γ responses to the S, N and M proteins that persisted longer in asymptomatic cases. IFN-γ responses were significantly (p = 0.001) more frequent to the N pool (51.4%) than the M pool (18.9%) among asymptomatic but not symptomatic subjects. Asymptomatic IFN-γ responders to the CD4+CD8 pool responded more frequently to the S pool (55.6%) and N pool (57.1%), than the M pool (7.1%), but not symptomatic participants. The frequencies of IFN-γ responses to the S and N+M pools peaked 7 days after the positive qPCR test among asymptomatic (S pool: 22.2%; N+M pool: 28.7%) and symptomatic (S pool: 15.3%; N+M pool 21.9%) participants and dropped by >28 days. Magnitudes of post-infection IFN-γ and IL2 responses to the N+M pool were significantly correlated with IFN-γ and IL2 responses to the N and M pools. These data further support the central role of Th1-biased cell mediated immunity IFN-γ and IL2 responses, particularly to the N protein, in controlling COVID-19 symptoms, and justify T cell-based COVID-19 vaccines that include the N and S proteins.


Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Antibodies, Viral , Asymptomatic Infections , CD8-Positive T-Lymphocytes , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Vaccines , Epitopes , Humans , Interferon-gamma/immunology , Interleukin-2/immunology , Military Personnel , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
19.
Cell ; 185(8): 1414-1430.e19, 2022 04 14.
Article in English | MEDLINE | ID: covidwho-1757193

ABSTRACT

Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin-2/pharmacology , Killer Cells, Natural , Ligands , Receptors, Interleukin-10 , SARS-CoV-2
20.
JCI Insight ; 7(7)2022 04 08.
Article in English | MEDLINE | ID: covidwho-1714503

ABSTRACT

SARS-CoV-2 vaccines pose as the most effective approach for mitigating the COVID-19 pandemic. High-degree efficacy of SARS-CoV-2 vaccines in clinical trials indicates that vaccination invariably induces an adaptive immune response. However, the emergence of breakthrough infections in vaccinated individuals suggests that the breadth and magnitude of vaccine-induced adaptive immune response may vary. We assessed vaccine-induced SARS-CoV-2 T cell response in 21 vaccinated individuals and found that SARS-CoV-2-specific T cells, which were mainly CD4+ T cells, were invariably detected in all individuals but the response was varied. We then investigated differentiation states and cytokine profiles to identify immune features associated with superior recall function and longevity. We identified SARS-CoV-2-specific CD4+ T cells were polyfunctional and produced high levels of IL-2, which could be associated with superior longevity. Based on the breadth and magnitude of vaccine-induced SARS-CoV-2 response, we identified 2 distinct response groups: individuals with high abundance versus low abundance of SARS-CoV-2-specific T cells. The fractions of TNF-α- and IL-2-producing SARS-CoV-2 T cells were the main determinants distinguishing high versus low responders. Last, we identified that the majority of vaccine-induced SARS-CoV-2 T cells were reactive against non-mutated regions of mutant S-protein, suggesting that vaccine-induced SARS-CoV-2 T cells could provide continued protection against emerging variants of concern.


Subject(s)
COVID-19 Vaccines , COVID-19 , T-Lymphocytes , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Interleukin-2 , Pandemics , SARS-CoV-2 , T-Lymphocytes/virology
SELECTION OF CITATIONS
SEARCH DETAIL