ABSTRACT
INTRODUCTION: A subset of individuals with COVID-19 can suffer from a severe form of the disease requiring breathing support for respiratory failure and even death due to disease complications. COVID-19 disease severity can be attributed to numerous factors, where several studies have associated changes in the expression of serum pro-inflammatory cytokines with disease severity. However, very few studies have associated the changes in expression of pro-inflammatory changes in the nasopharyngeal milieu with disease severity. Therefore, in the current study, we performed differential gene expression analysis of various pro-inflammatory cytokines in the nasopharyngeal milieu of mild & severe COVID-19 cases. MATERIAL AND METHOD: For this retrospective, cross-sectional study, a total of 118 nasopharyngeal swab samples, previously collected from mild and severe (based on the WHO criteria) COVID-19 patients were used. A real-time qPCR was performed to determine the viral loads and also evaluate the mRNA expression of eight cytokines (IL-1, IL-2, IL-4, IL-6, IL-10, IFN-γ, TGF-ß1, and TNF-α). Subsequently, an unpaired T-test was applied to compare the statistical difference in mean expression of viral loads and each cytokine between the mild and severe groups, while the Pearson correlation test was applied to establish a correlation between disease severity, viral load, and cytokines expression. Similarly, a multivariable logistic regression analysis was performed to assess the relationship between different variables from the data and disease severity. RESULTS: Out of 118 samples, 71 were mild, while 47 were severe. The mean viral load between the mild and severe groups was comparable (mild group: 27.07± 5.22; severe group: 26.37 ±7.89). The mRNA expression of cytokines IL-2, IL-6, IFN- γ, and TNF-α was significantly different in the two groups (p<0.05), where the Log2 normalized expression of IL-2, IL-6, IFN- γ, and TNF-α was found to be 2.2-, 16-, 2.3-, and 1.73-fold less in the severe group as compared to the mild group. Furthermore, we also observed a significant positive correlation between all the cytokines in the severe group. The multivariate analysis showed a significant relationship between age, IL-6, and disease severity. CONCLUSION: This decreased expression of certain cytokines (IL-2, IL-6, TNF-α, and IFN-γ) in the nasopharyngeal milieu may be considered early biomarkers for disease severity in COVID-19 patients.
Subject(s)
COVID-19 , Cytokines , Humans , Cytokines/metabolism , Tumor Necrosis Factor-alpha/genetics , Interleukin-6 , Interleukin-2/genetics , Retrospective Studies , Cross-Sectional Studies , COVID-19/genetics , Gene Expression , Nasopharynx/metabolism , RNA, Messenger/geneticsABSTRACT
Several studies have demonstrated that the SARS-CoV-2 variant-of-concern B.1.1.529 (Omicron) exhibits a high degree of escape from Ab neutralization. Therefore, it is critical to determine how well the second line of adaptive immunity, T cell memory, performs against Omicron. To this purpose, we analyzed a human cohort (n = 327 subjects) of two- or three-dose mRNA vaccine recipients and COVID-19 postinfection subjects. We report that T cell responses against Omicron were largely preserved. IFN-γ-producing T cell responses remained equivalent to the response against the ancestral strain (WA1/2020), with some (â¼20%) loss in IL-2 single or IL-2+IFN-γ+ polyfunctional responses. Three-dose vaccinated participants had similar responses to Omicron relative to post-COVID-19 participants and exhibited responses significantly higher than those receiving two mRNA vaccine doses. These results provide further evidence that a three-dose vaccine regimen benefits the induction of optimal functional T cell immune memory.
Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , T-Lymphocytes , mRNA Vaccines , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Interleukin-2/genetics , T-Lymphocytes/immunology , Vaccination , Vaccines, Synthetic , mRNA Vaccines/immunologyABSTRACT
Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.
Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal TransductionABSTRACT
Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.