Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 923
Filter
1.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: covidwho-1874076

ABSTRACT

Introduction. Coronavirus disease 2019 (COVID-19) has caused a serious threat to public health worldwide, and there is currently no effective therapeutic strategy for treating COVID-19.Hypothesis/Gap Statement. We propose that sophocarpine (SOP) might have potential therapeutic effects on COVID-19 through inhibiting the cytokine storm and the nuclear factor NF-κB signalling pathway.Aim. The objective was to elucidate the potential mechanism of SOP against COVID-19 through a network pharmacology analysis and its experimental validation.Methodology. The BATMAN-TCM database was used to identify the therapeutic targets of SOP, while the GeneCards and DisGeNET databases were used to identify the targets related to COVID-19. A protein-protein interaction (PPI) network was constructed from the STRING and analysed using Cytoscape software. Gene ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and disease ontology (DO) enrichment analyses of the co-targets were performed using Metascape. Autodock 4.2.6 and Pymol software were applied for molecular docking. Levels of the proinflammatory cytokines IL-6, TNFα and IL-1ß were measured by ELISA, while mRNA expression levels of intercellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor A (VEGFA) and IFN gamma (IFNG) were detected by real-time quantitative reverse transcription PCR. The protein levels of the molecules involved in the NF-κB signalling pathway were validated by western blot analysis.Results. A total of 65 co-targets of SOP and COVID-19 were determined. GO and KEGG enrichment analyses suggested that SOP affected COVID-19 by regulating the IL-17 signalling pathway, TNF signalling pathway and other signalling pathways. The PPI network and molecular docking showed that p65, ICAM-1 and VEGFA were key targets of SOP against COVID-19 and the underlying mechanism was validated in A549 cells in vitro. SOP attenuated the LPS-induced production of TNF-α and IL-6 and downregulated the LPS-induced mRNA expression of ICAM-1, VEGFA and IFNG. Mechanistically, SOP pretreatment inhibited the phosphorylation of p65 and facilitated the activation of Nrf2.Conclusions. SOP has a potential therapeutic effect on COVID-19 through multiple pathways and targets, and inhibits the production of pro-inflammatory cytokines and molecules involved in the NF-κB signalling pathway.


Subject(s)
COVID-19 , Intercellular Adhesion Molecule-1 , Alkaloids , COVID-19/drug therapy , Cytokines/metabolism , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6 , Lipopolysaccharides , Molecular Docking Simulation , NF-kappa B/metabolism , RNA, Messenger , Tumor Necrosis Factor-alpha , Vascular Endothelial Growth Factor A
2.
PLoS One ; 17(5): e0269005, 2022.
Article in English | MEDLINE | ID: covidwho-1869206

ABSTRACT

BACKGROUND: Inflammatory biomarkers are associated with severity of coronavirus disease 2019 (COVID-19). However, direct comparisons of their utility in COVID-19 versus other respiratory infections are largely missing. OBJECTIVE: We aimed to investigate the prognostic utility of various inflammatory biomarkers in COVID-19 compared to patients with other respiratory infections. MATERIALS AND METHODS: Patients presenting to the emergency department with symptoms suggestive of COVID-19 were prospectively enrolled. Levels of Interleukin-6 (IL-6), c-reactive protein (CRP), procalcitonin, ferritin, and leukocytes were compared between COVID-19, other viral respiratory infections, and bacterial pneumonia. Primary outcome was the need for hospitalisation, secondary outcome was the composite of intensive care unit (ICU) admission or death at 30 days. RESULTS: Among 514 patients with confirmed respiratory infections, 191 (37%) were diagnosed with COVID-19, 227 (44%) with another viral respiratory infection (viral controls), and 96 (19%) with bacterial pneumonia (bacterial controls). All inflammatory biomarkers differed significantly between diagnoses and were numerically higher in hospitalized patients, regardless of diagnoses. Discriminative accuracy for hospitalisation was highest for IL-6 and CRP in all three diagnoses (in COVID-19, area under the curve (AUC) for IL-6 0.899 [95%CI 0.850-0.948]; AUC for CRP 0.922 [95%CI 0.879-0.964]). Similarly, IL-6 and CRP ranged among the strongest predictors for ICU admission or death at 30 days in COVID-19 (AUC for IL-6 0.794 [95%CI 0.694-0.894]; AUC for CRP 0.807 [95%CI 0.721-0.893]) and both controls. Predictive values of inflammatory biomarkers were generally higher in COVID-19 than in controls. CONCLUSION: In patients with COVID-19 and other respiratory infections, inflammatory biomarkers harbour strong prognostic information, particularly IL-6 and CRP. Their routine use may support early management decisions.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Respiratory Tract Infections , Biomarkers , C-Reactive Protein/metabolism , COVID-19/diagnosis , Humans , Interleukin-6 , Pneumonia, Bacterial/diagnosis , Prospective Studies
3.
JCI Insight ; 7(9)2022 May 09.
Article in English | MEDLINE | ID: covidwho-1868830

ABSTRACT

BackgroundThe value of the soluble receptor for advanced glycation end-products (sRAGE) as a biomarker in COVID-19 is not well understood. We tested the association between plasma sRAGE and illness severity, viral burden, and clinical outcomes in hospitalized patients with COVID-19 who were not mechanically ventilated.MethodsBaseline sRAGE was measured among participants enrolled in the ACTIV-3/TICO trial of bamlanivimab for hospitalized patients with COVID-19. Spearman's rank correlation was used to assess the relationship between sRAGE and other plasma biomarkers, including viral nucleocapsid antigen. Fine-Gray models adjusted for baseline supplemental oxygen requirement, antigen level, positive endogenous anti-nucleocapsid antibody response, sex, age, BMI, diabetes mellitus, renal impairment, corticosteroid treatment, and log2-transformed IL-6 level were used to assess the association between baseline sRAGE and time to sustained recovery. Cox regression adjusted for the same factors was used to assess the association between sRAGE and mortality.ResultsAmong 277 participants, baseline sRAGE was strongly correlated with viral plasma antigen concentration (ρ = 0.57). There was a weaker correlation between sRAGE and biomarkers of systemic inflammation, such as IL-6 (ρ = 0.36) and CRP (ρ = 0.20). Participants with plasma sRAGE in the highest quartile had a significantly lower rate of sustained recovery (adjusted recovery rate ratio, 0.64 [95% CI, 0.43-0.90]) and a higher unadjusted risk of death (HR, 4.70 [95% CI, 2.01-10.99]) compared with participants in the lower quartiles.ConclusionElevated plasma sRAGE in hospitalized, nonventilated patients with COVID-19 was an indicator of both clinical illness severity and plasma viral load. Plasma sRAGE in the highest quartile was associated with a lower likelihood of sustained recovery and higher unadjusted risk of death. These findings, which we believe to be novel, indicate that plasma sRAGE may be a promising biomarker for COVID-19 prognostication and clinical trial enrichment.Trial RegistrationClinicalTrials.gov NCT04501978.FundingNIH (5T32GM008440-24, 18X107CF6, HHSN261201500003I, R35HL140026, and OT2HL156812).


Subject(s)
COVID-19 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Biomarkers , Humans , Interleukin-6 , Prognosis , Receptor for Advanced Glycation End Products
4.
Aging Cell ; 21(6): e13646, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1868567

ABSTRACT

Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID-19 infection. The pathogenesis of COVID-19-related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS-CoV-2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF-α + IFN-γ or a cocktail of TNF-α + IFN-γ + IL-6, increased expression of ACE2/DPP4, accentuated the pro-inflammatory senescence-associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence-like state. IL-6 by itself failed to induce substantial effects on viral entry receptors or SASP-related genes, while synergy between TNF-α and IFN-γ initiated a positive feedback loop via hyper-activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper-inflammation, normalized SARS-CoV-2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine-mediated viral entry receptor activation and links with senescence and hyper-inflammation.


Subject(s)
COVID-19 , SARS-CoV-2 , Cytokines/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Receptors, Virus/metabolism , STAT1 Transcription Factor/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
5.
PLoS Pathog ; 18(5): e1010359, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865350

ABSTRACT

As of January 2022, at least 60 million individuals are estimated to develop post-acute sequelae of SARS-CoV-2 (PASC) after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While elevated levels of SARS-CoV-2-specific T cells have been observed in non-specific PASC, little is known about their impact on pulmonary function which is compromised in the majority of these individuals. This study compares frequencies of SARS-CoV-2-specific T cells and inflammatory markers with lung function in participants with pulmonary PASC and resolved COVID-19 (RC). Compared to RC, participants with respiratory PASC had between 6- and 105-fold higher frequencies of IFN-γ- and TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood, and elevated levels of plasma CRP and IL-6. Importantly, in PASC participants the frequency of TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells, which exhibited the highest levels of Ki67 indicating they were activity dividing, correlated positively with plasma IL-6 and negatively with measures of lung function, including forced expiratory volume in one second (FEV1), while increased frequencies of IFN-γ-producing SARS-CoV-2-specific T cells associated with prolonged dyspnea. Statistical analyses stratified by age, number of comorbidities and hospitalization status demonstrated that none of these factors affect differences in the frequency of SARS-CoV-2 T cells and plasma IL-6 levels measured between PASC and RC cohorts. Taken together, these findings demonstrate elevated frequencies of SARS-CoV-2-specific T cells in individuals with pulmonary PASC are associated with increased systemic inflammation and decreased lung function, suggesting that SARS-CoV-2-specific T cells contribute to lingering pulmonary symptoms. These findings also provide mechanistic insight on the pathophysiology of PASC that can inform development of potential treatments to reduce symptom burden.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation , Interleukin-6 , Lung , Tumor Necrosis Factor-alpha
6.
Virol J ; 19(1): 92, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1865306

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. This virus affects the respiratory tract and usually leads to pneumonia in most patients and acute respiratory distress syndrome (ARDS) in 15% of cases. ARDS is one of the leading causes of death in patients with COVID-19 and is mainly triggered by elevated levels of pro-inflammatory cytokines, referred to as cytokine storm. Interleukins, such as interleukin-6 (1L-6), interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play a very significant role in lung damage in ARDS patients through the impairments of the respiratory epithelium. Cytokine storm is defined as acute overproduction and uncontrolled release of pro-inflammatory markers, both locally and systemically. The eradication of COVID-19 is currently practically impossible, and there is no specific treatment for critically ill patients with COVID-19; however, suppressing the inflammatory response may be a possible strategy. In light of this, we review the efficacy of specific inhibitors of IL6, IL1, IL-17, and TNF-α for treating COVID-19-related infections to manage COVID-19 and improve the survival rate for patients suffering from severe conditions.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Cytokine Release Syndrome , Humans , Interleukin-17 , Interleukin-6 , Lung/pathology , SARS-CoV-2 , Tumor Necrosis Factor-alpha
7.
J Assoc Physicians India ; 70(5): 11-12, 2022 May.
Article in English | MEDLINE | ID: covidwho-1856980

ABSTRACT

Inflammatory response in COVID-19 responsible for acute respiratory distress syndrome (ARDS) and multiorgan failure and play a major role in morbidity and mortality of patients. The present study was undertaken to assess serum level of cytokines and its association with other inflammatory markers and disease severity in COVID-19 and hence their prognostic significance. METHODS: This was a retrospective observational study of 175 admitted COVID-19 patients. The patient's clinical data, laboratory investigations, inflammatory markers and serum level of cytokines [interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-10 (IL-10) and tumour necrosis factor α (TNFα)] were extracted from their medical records. All patients were divided into three groups viz. group A had asymptomatic patients, group B had mild to moderate ill patients and group C had severe or critical ill patients. Above parameters were analysed and comparative evaluation with severity of disease was done. RESULTS: & In present study 55% patients were asymptomatic, 24% patients were mild to moderate illness and remaining 21% patients had severe or critical illness. Fever, cough, dyspnoea and co-morbidities including hypertension and diabetes were more common in group C. Absolute lymphocyte count (ALC), lymphocyte monocyte ratio (LMR) showed decreasing trend whereas absolute neutrophil count (ANC), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and eosinophil-lymphocyte (ELR) showed increasing trend with increase in disease severity. Serum IL-6 was found to be significantly higher in group C (64.98±111.18pg/mL) as compared to group B (15.51±20.66pg/mL) and group A (5.04±56.1pg/mL) (P<0.001). Receiver operating characteristic (ROC) curve for IL-6 to differentiate the patients with severe disease from asymptomatic and mild symptomatic disease showed a cut-off of 6.75pg/ml. CONCLUSION: Elevated IL-6 levels lead to adverse clinical events so IL-6 level might serve as a potential prognostic marker for severity of disease in COVID-19. Inhibition of IL-6 might be helpful to prevent serious adverse events in COVID-19 infection.


Subject(s)
COVID-19 , Biomarkers , Cytokines , Humans , India/epidemiology , Interleukin-6 , Neutrophils , Prognosis , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
8.
J Biol Chem ; 298(3): 101695, 2022 03.
Article in English | MEDLINE | ID: covidwho-1851422

ABSTRACT

Vascular endothelial cells (ECs) form a critical interface between blood and tissues that maintains whole-body homeostasis. In COVID-19, disruption of the EC barrier results in edema, vascular inflammation, and coagulation, hallmarks of this severe disease. However, the mechanisms by which ECs are dysregulated in COVID-19 are unclear. Here, we show that the spike protein of SARS-CoV-2 alone activates the EC inflammatory phenotype in a manner dependent on integrin ⍺5ß1 signaling. Incubation of human umbilical vein ECs with whole spike protein, its receptor-binding domain, or the integrin-binding tripeptide RGD induced the nuclear translocation of NF-κB and subsequent expression of leukocyte adhesion molecules (VCAM1 and ICAM1), coagulation factors (TF and FVIII), proinflammatory cytokines (TNFα, IL-1ß, and IL-6), and ACE2, as well as the adhesion of peripheral blood leukocytes and hyperpermeability of the EC monolayer. In addition, inhibitors of integrin ⍺5ß1 activation prevented these effects. Furthermore, these vascular effects occur in vivo, as revealed by the intravenous administration of spike, which increased expression of ICAM1, VCAM1, CD45, TNFα, IL-1ß, and IL-6 in the lung, liver, kidney, and eye, and the intravitreal injection of spike, which disrupted the barrier function of retinal capillaries. We suggest that the spike protein, through its RGD motif in the receptor-binding domain, binds to integrin ⍺5ß1 in ECs to activate the NF-κB target gene expression programs responsible for vascular leakage and leukocyte adhesion. These findings uncover a new direct action of SARS-CoV-2 on EC dysfunction and introduce integrin ⍺5ß1 as a promising target for treating vascular inflammation in COVID-19.


Subject(s)
COVID-19 , Inflammation , Integrin alpha5beta1 , NF-kappa B , Spike Glycoprotein, Coronavirus , Tumor Necrosis Factor-alpha , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Integrin alpha5beta1/metabolism , Interleukin-6/metabolism , NF-kappa B/metabolism , Oligopeptides , SARS-CoV-2 , Signal Transduction , Spike Glycoprotein, Coronavirus/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article in English | MEDLINE | ID: covidwho-1847342

ABSTRACT

Elucidating transcriptome in the peripheral edge of the lesional (PE) skin could provide a better understanding of the molecules or signalings that intensify inflammation in the PE skin. Full-thickness biopsies of PE skin and uninvolved (UN) skin were obtained from psoriasis patients for RNA-seq. Several potential differentially expressed genes (DEGs) in the PE skin compared to those in the UN skin were identified. These DEGs enhanced functions such as angiogenesis, growth of epithelial tissue, chemotaxis and homing of cells, growth of connective tissues, and degranulation of myeloid cells beneath the PE skin. Moreover, the canonical pathways of IL-17A, IL-6, and IL-22 signaling were enriched by the DEGs. Finally, we proposed that inflammation in the PE skin might be driven by the IL-36/TLR9 axis or IL-6/Th17 axis and potentiated by IL-36α, IL-36γ, IL-17C, IL-8, S100A7, S100A8, S100A9, S100A15, SERPINB4, and hBD-2. Along with IL-36α, IL-17C, and IκBζ, ROCK2 could be an equally important factor in the pathogenesis of psoriasis, which may involve self-sustaining circuits between innate and adaptive immune responses via regulation of IL-36α and IL-36γ expression. Our finding provides new insight into signaling pathways in PE skin, which could lead to the discovery of new psoriasis targets.


Subject(s)
Gene Expression Profiling , Psoriasis , Humans , Inflammation/pathology , Interleukin-17/metabolism , Interleukin-6/metabolism , Keratinocytes/metabolism , Psoriasis/genetics , Psoriasis/metabolism , Skin/metabolism , Transcriptome
11.
PLoS Pathog ; 18(5): e1010471, 2022 05.
Article in English | MEDLINE | ID: covidwho-1833668

ABSTRACT

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.


Subject(s)
COVID-19 , Interferon Type I , Orthomyxoviridae Infections , Humans , Interleukin-6/metabolism , Macrophages/metabolism , Proteolysis
12.
BMJ Case Rep ; 15(5)2022 May 10.
Article in English | MEDLINE | ID: covidwho-1832381

ABSTRACT

Multisystem inflammatory syndrome in adults (MIS-A) has been reported as a rare but severe consequence of COVID-19 infection. Adult patients were more likely to present with hypotension and cardiac illness when compared with multisystem inflammatory syndrome in children. Although the exact prevalence of MIS-A is unknown, more cases have been observed in men and younger adults. The pathophysiology of MIS-A is also unclear, but is thought to be caused by a delayed, dysregulated immune response. Given no established guideline for treatment of MIS-A, treatment has been based on case reports. We present a case of MIS-A in a woman in her 60s who had severe hypotension, progressive dyspnoea, massive pleural effusion, hypoxaemia, thyroiditis and multiple organ failure, which dramatically improved after treatment with corticosteroid and interleukin 6 inhibitor.


Subject(s)
COVID-19 , Hypotension , Thyroiditis , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/complications , COVID-19/drug therapy , Child , Female , Humans , Hypoxia/drug therapy , Hypoxia/etiology , Interleukin-6 , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy
13.
Arch Virol ; 166(8): 2285-2289, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1826502

ABSTRACT

Mesenchymal stromal cells (MSCs) are considered multipotent progenitors with the capacity to differentiate into mesoderm-like cells in many species. The immunosuppressive properties of MSCs are important for downregulating inflammatory responses. Turkey coronavirus (TCoV) is the etiological agent of a poult mortality syndrome that affects intestinal epithelial cells. In this study, poult MSCs were isolated, characterized, and infected with TCoV after in vitro culture. The poult-derived MSCs showed fibroblast-like morphology and the ability to undergo differentiation into mesodermal-derived cells and to support virus replication. Infection with TCoV resulted in cytopathic effects and the loss of cell viability. TCoV antigens and new viral progeny were detected at high levels, as were transcripts of the pro-inflammatory factors INFγ, IL-6, and IL-8. These findings suggest that the cytokine storm phenomenon is not restricted to one genus of the family Coronaviridae and that MSCs cannot always balance the process.


Subject(s)
Coronavirus, Turkey/physiology , Cytokines/metabolism , Virus Replication , Animals , Cell Differentiation , Cell Survival , Cytopathogenic Effect, Viral , Interferon-gamma/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/virology , Turkeys , Up-Regulation
14.
PLoS One ; 17(5): e0266652, 2022.
Article in English | MEDLINE | ID: covidwho-1822268

ABSTRACT

OBJECTIVES: Procalcitonin (PCT) is an acute-phase reactant with concentrations ≥0.5 µg/L indicative of possible bacterial infection in patients with SARS-CoV-2 infection (COVID-19). Some with severe COVID-19 develop cytokine storm secondary to virally driven hyper-inflammation. However, increased pro-inflammatory cytokines are also seen in bacterial sepsis. This study aimed to assess the clinical utility of a cytokine panel in the assessment of COVID-19 with bacterial superinfections along with PCT and C-reactive protein (CRP). METHODS: The retrospective analysis included serum cytokines (interleukins; IL-1ß, IL-6, IL-8 and tumour necrosis factor (TNFα)) measured using Ella™ (Bio-Techne, Oxford, UK) and PCT measured by Roche Cobas (Burgess Hill, UK) in patients admitted with COVID-19 between March 2020 and January 2021. Patients enrolled into COVID-19 clinical trials, treated with Remdesivir/IL-6 inhibitors were excluded. The cytokine data was compared between intensive care unit (ICU) patients, age matched non-ICU patients and healthy volunteers as well as ICU patients with high and normal PCT (≥0.5 vs. <0.5 µg/L). RESULTS: Cytokine concentrations and CRP were higher in COVID-19 patients (76; ICU & non-ICU) vs. healthy controls (n = 24), all p<0.0001. IL-6, IL-8, TNFα and were higher in ICU patients (n = 46) vs. non-ICU patients (n = 30) despite similar CRP. Among 46 ICU patients, the high PCT group (n = 26) had higher TNFα (p<0.01) and longer ICU stay (mean 47 vs. 25 days, p<0.05). There was no difference in CRP and blood/respiratory culture results between the groups. CONCLUSIONS: Pro-inflammatory cytokines and PCT were higher in COVID-19 patients requiring ICU admission vs. non-ICU admissions despite no difference in CRP. Furthermore, TNFα was higher in those with high PCT and requiring longer ICU admission despite no difference in CRP or rate of bacterial superinfection.


Subject(s)
COVID-19 , Procalcitonin , C-Reactive Protein/metabolism , Calcitonin , Calcitonin Gene-Related Peptide , Critical Care , Cytokines , Humans , Intensive Care Units , Interleukin-6 , Interleukin-8 , Retrospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha
15.
Sci Rep ; 12(1): 7237, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1821609

ABSTRACT

Since neutrophil extracellular traps formation (NET-osis) can be assessed indirectly by treating healthy neutrophils with blood-derived fluids from patients and then measuring the NETs response, we designed a pilot study to convey high-dimensional cytometry of peripheral blood immune cells and cytokines, combined with clinical features, to understand if NET-osis assessment could be included in the immune risk profiling to early prediction of clinical patterns, disease severity, and viral clearance at 28 days in COVID-19 patients. Immune cells composition of peripheral blood, cytokines concentration and in-vitro NETosis were detected in peripheral blood of 41 consecutive COVID-19 inpatients, including 21 mild breakthrough infections compared to 20 healthy donors, matched for sex and age. Major immune dysregulation in peripheral blood in not-vaccinated COVID-19 patients compared to healthy subjects included: a significant reduction of percentage of unswitched memory B-cells and transitional B-cells; loss of naïve CD3+CD4+CD45RA+ and CD3+CD8+CD45RA+ cells, increase of IL-1ß, IL-17A and IFN-γ. Myeloid compartment was affected as well, due to the increase of classical (CD14++CD16-) and intermediate (CD14++CD16+) monocytes, overexpressing the activation marker CD64, negatively associated to the absolute counts of CD8+ CD45R0+ cells, IFN-γ and IL-6, and expansion of monocytic-like myeloid derived suppressor cells. In not-vaccinated patients who achieved viral clearance by 28 days we found at hospital admission lower absolute counts of effector cells, namely CD8+T cells, CD4+ T-cells and CD4+CD45RO+ T cells. Percentage of in-vitro NET-osis induced by patients' sera and NET-osis density were progressively higher in moderate and severe COVID-19 patients than in mild disease and controls. The percentage of in-vitro induced NET-osis was positively associated to circulating cytokines IL-1ß, IFN-γ and IL-6. In breakthrough COVID-19 infections, characterized by mild clinical course, we observed increased percentage of in-vitro NET-osis, higher CD4+ CD45RO+ and CD8+ CD45RO+ T cells healthy or mild-COVID-19 not-vaccinated patients, reduced by 24 h of treatment with ACE inhibitor ramipril. Taken together our data highlight the role of NETs in orchestrating the complex immune response to SARS-COV-2, that should be considered in a multi-target approach for COVID-19 treatment.


Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/drug therapy , COVID-19 Vaccines , Cytokines , Humans , Interleukin-6 , Leukocyte Common Antigens , Pilot Projects , SARS-CoV-2
16.
Inflammopharmacology ; 30(3): 789-798, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1820953

ABSTRACT

Studies have shown that SARS-CoV-2 has the ability to activate and mature proinflammatory cytokines in the body. Cytokine markers are a group of polypeptide signalling molecules that can induce and regulate many cellular biological processes by stimulating cell receptors at the surface. SARS-CoV-2 has been shown to be associated with activation of innate immunity, and an increase in neutrophils, mononuclear phagocytes, and natural killer cells has been observed, as well as a decrease in T cells including CD4+ and CD8. It is noteworthy that during the SARS-CoV-2 infection, an increase in the secretion or production of IL-6 and IL-8 is seen in COVID-19 patients along with a decrease in CD4+ and CD8+ and T cells in general. SARS-CoV-2 has been shown to significantly increase Th2, Th1/Th17 cells and antibody production in the body of patients with COVID-19. Specific immune profiles of SARS-CoV-2 infection can lead to secondary infections and dysfunction of various organs in the body. It has been shown that Interleukins (such as IL-1, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17, and IL-18), IFN-γ, TNF-α,TGF-ß and NF-κB play major roles in the body's inflammatory response to SARS-CoV-2 infection. The most important goal of this review is to study the role of inflammatory cytokines in COVID-19.


Subject(s)
COVID-19 , Cytokines , Humans , Interleukin-6 , SARS-CoV-2 , Th1 Cells
17.
Int J Mol Sci ; 23(9)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1809944

ABSTRACT

The main aim of this study was to identify the most relevant cytokines which, when assessed in the earliest stages from hospital admission, may help to select COVID-19 patients with worse prognosis. A retrospective observational study was conducted in 415 COVID-19 patients (272 males; mean age 68 ± 14 years) hospitalized between May 2020 and March 2021. Within the first 72 h from hospital admission, patients were tested for a large panel of biomarkers, including C-reactive protein (CRP), Mid-regional proadrenomedullin (MR-proADM), Interferon-γ, interleukin 6 (IL-6), IL-1ß, IL-8, IL-10, soluble IL2-receptor-α (sIL2Rα), IP10 and TNFα. Extensive statistical analyses were performed (correlations, t-tests, ranking tests and tree modeling). The mortality rate was 65/415 (15.7%) and a negative outcome (death and/or orotracheal intubation) affected 98/415 (23.6%) of cases. Univariate tests showed the majority of biomarkers increased in severe patients, but ranking tests helped to select the best variables to put on decisional tree modeling which identified IL-6 as the first dichotomic marker with a cut-off of 114 pg/mL. Then, a good synergy was found between IL-10, MR-proADM, sIL2Rα, IP10 and CRP in increasing the predictive value in classifying patients at risk or not for a negative outcome. In conclusion, beside IL-6, a panel of other cytokines representing the degree of immunoparalysis and the anti-inflammatory response (IP10, sIL2Rα and IL-10) showed synergic role when combined to biomarkers of systemic inflammation and endothelial dysfunction (CRP, MR-proADM) and may also better explain disease pathogenesis and suggests targeted intervention.


Subject(s)
COVID-19 , Adrenomedullin , Aged , Aged, 80 and over , Biomarkers , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Cytokines , Humans , Interleukin-10 , Interleukin-6 , Male , Middle Aged , Retrospective Studies
18.
Oxid Med Cell Longev ; 2022: 8997709, 2022.
Article in English | MEDLINE | ID: covidwho-1807711

ABSTRACT

INTRODUCTION: Health care workers have had a challenging task since the COVID-19 outbreak. Prompt and effective predictors of clinical outcomes are crucial to recognize potentially critically ill patients and improve the management of COVID-19 patients. The aim of this study was to identify potential predictors of clinical outcomes in critically ill COVID-19 patients. METHODS: The study was designed as a retrospective cohort study, which included 318 patients treated from June 2020 to January 2021 in the Intensive Care Unit (ICU) of the Clinical Hospital Center "Bezanijska Kosa" in Belgrade, Serbia. The verified diagnosis of COVID-19 disease, patients over 18 years of age, and the hospitalization in ICU were the criteria for inclusion in the study. The optimal cutoff value of D-dimer, CRP, IL-6, and PCT for predicting hospital mortality was determined using the ROC curve, while the Kaplan-Meier method and log-rank test were used to assess survival. RESULTS: The study included 318 patients: 219 (68.9%) were male and 99 (31.1%) female. The median age of patients was 69 (60-77) years. During the treatment, 195 (61.3%) patients died, thereof 130 male (66.7%) and 65 female (33.3%). 123 (38.7%) patients were discharged from hospital treatment. The cutoff value of IL-6 for in-hospital death prediction was 74.98 pg/mL (Sn 69.7%, Sp 62.7%); cutoff value of CRP was 81 mg/L (Sn 60.7%, Sp 60%); cutoff value of procalcitonin was 0.56 ng/mL (Sn 81.1%, Sp 76%); and cutoff value of D-dimer was 760 ng/mL FEU (Sn 63.4%, Sp 57.1%). IL-6 ≥ 74.98 pg/mL, CRP ≥ 81 mg/L, PCT ≥ 0.56 ng/mL, and D-dimer ≥ 760 ng/mL were statistically significant predictors of in-hospital mortality. CONCLUSION: IL-6 ≥ 74.98 pg/mL, CRP values ≥ 81 mg/L, procalcitonin ≥ 0.56 ng/mL, and D-dimer ≥ 760 ng/mL could effectively predict in-hospital mortality in COVID-19 patients.


Subject(s)
C-Reactive Protein/metabolism , COVID-19 , Fibrin Fibrinogen Degradation Products/metabolism , Hospital Mortality , Intensive Care Units , Interleukin-6/blood , Patient Admission , SARS-CoV-2/metabolism , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies
19.
Sci Rep ; 12(1): 6738, 2022 04 25.
Article in English | MEDLINE | ID: covidwho-1805657

ABSTRACT

The severity of lung involvement is the main prognostic factor in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Carbohydrate antigen 15-3 (CA 15-3), a marker of lung damage and fibrosis, could help predict the prognosis of SARS-CoV-2 pneumonia. This was a retrospective and observational study. CA 15-3 was analyzed in the blood samples of patients consecutively admitted for SARS-CoV-2 pneumonia and whose blood samples were available in the biobank. Other prognostic markers were also measured (interleukin 6 [IL6], C-reactive protein [CRP], D-dimer, troponin T, and NT-ProBNP). The occurrence of in-hospital complications was registered, including death, the need for medical intensive care, and oxygen therapy at discharge. In this study, 539 patients were recruited (54.9% men, mean age: 59.6 ± 16.4 years). At admission, the mean concentrations of CA 15-3 was 20.5 ± 15.8 U/mL, and the concentration was correlated with male sex, older age, and other severity markers of coronavirus disease of 2019 (COVID-19) (IL6, CRP, D-dimer, troponine T, and NT-ProBNP). CA 15-3 levels were higher in patients who died (n = 56, 10.4%) (35.33 ± 30.45 vs. 18.8 ± 12.11, p < 0.001), who required intensive medical support (n = 78, 14.4%; 31.17 ± 27.83 vs. 18.68 ± 11.83; p < 0.001), and who were discharged with supplemental oxygen (n = 64, 13.3%; 22.65 ± 14.41 vs. 18.2 ± 11.7; p = 0.011). Elevated CA 15-3 levels (above 34.5 U/mL) were a strong predictor of a complicated in-hospital course, in terms of a higher risk of death (adjusted odds ratio [OR] 3.74, 95% confidence interval [CI]: 1.22-11.9, p = 0.022) and need for intensive care (adjusted OR 4.56, 95% CI: 1.37-15.8) after adjusting for all other risk factors. The degree of lung damage and fibrosis evaluated in terms of CA 15-3 concentrations may allow early identification of the increased risk of complications in patients with SARS-CoV-2 pneumonia.


Subject(s)
COVID-19 , Pneumonia , Adult , Aged , Biomarkers , C-Reactive Protein , COVID-19/diagnosis , Female , Fibrosis , Humans , Interleukin-6 , Male , Middle Aged , Mucin-1 , Oxygen , Prognosis , Retrospective Studies , SARS-CoV-2
20.
J Assoc Physicians India ; 70(4): 11-12, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1801567

ABSTRACT

The coronavirus disease 2019 (COVID-19) virus has spread all over the world. Scientists are trying to discover drugs as effective treatment for patients with COVID-19. So far about 30 drugs have been introduced that one of them is Tocilizumab. Some reports showed a positive effect of Tocilizumab on Saturation of Peripheral Oxygen (SPO2) but results of CT scan in patients in different. In some patients, CT scan showed reduced infiltration, however in other no change was observed. Unfortunately, until now there has been no definitive and effective treatment for patients with COVID-19. Based on evidence of the Tocilizumab's effect on the SARS COV 2, researchers hope this drug will make effective and promising treatment to improve lung tissue inflammation in patients with the fatal COVID-19 virus. The present study provides an overview of respiratory inflammation with COVID-19 and probable effect of Tocilizumab on SARS-COV 2. MATERIAL: A Case Series was conducted on 30 patients, RT-PCR confirmed COVID-19 cases; admitted and kept under observation in medicine ward, ICU or dedicated COVID-19 wards of RNT Medical College and associated group of Hospitals for a duration of 30 days after getting approval from institutional ethics committee if they met inclusion and exclusion criteria. Data was collected from records at the time of admission of these cases. OBSERVATION: In our study on day 1 mean of IL6 was 248.3 and on day 3 after giving injection Tocilizumab mean of IL6 was 138.7 and p value was 0.205 and on day1 mean of serum ferritin was 474.2 and on day 3 after giving injection Tocilizumab mean of serum ferritin was 415.2 and p value was 0.649 and on day 1 mean of LDH was 652 and on day 3 after giving injection Tocilizumab mean of LDH was 389.6 and p value was 0.006 and on day 1 mean of CRP was 100 and on day 3 after giving injection Tocilizumab mean of CRP was 35.95 and p value was 0.006 and out of 30 patient 22 patients were discharged and 8 patients declared death. CONCLUSION: In present study it was interpreted that injection Tocilizumab play an important role in reducing inflammation in COVID 19disease. Tocilizumab have significant role in reducing mortality from COVID 19.


Subject(s)
COVID-19 , Antibodies, Monoclonal, Humanized , Biomarkers , COVID-19/drug therapy , Ferritins , Humans , Inflammation , Interleukin-6 , RNA, Viral , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL