ABSTRACT
Porcine epidemic diarrhea virus (PEDV) infection results in severe epidemic diarrhea and the death of suckling pigs. Although new knowledge about the pathogenesis of PEDV has been improved, alterations in metabolic processes and the functional regulators involved in PEDV infection with host cells remain largely unknow. To identify cellular metabolites and proteins related to PEDV pathogenesis, we synergistically investigated the metabolome and proteome profiles of PEDV-infected porcine intestinal epithelial cells by liquid chromatography tandem mass spectrometry and isobaric tags for relative and absolute quantification techniques. We identified 522 differential metabolites in positive and negative ion modes and 295 differentially expressed proteins after PEDV infection. Pathways of cysteine and methionine metabolism, glycine, serine and threonine metabolism, and mineral absorption were significantly enriched by differential metabolites and differentially expressed proteins. The betaine-homocysteine S-methyltransferase (BHMT) was indicated as a potential regulator involved in these metabolic processes. We then knocked down the BHMT gene and observed that down-expression of BHMT obviously decreased copy numbers of PEDV and virus titers (p < 0.01). Our findings provide new insights into the metabolic and proteomic profiles in PEDV-infected host cells and contribute to our further understanding of PEDV pathogenesis.
Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/metabolism , Proteomics/methods , Epithelial Cells/pathology , Intestines/pathology , Proteins/metabolismABSTRACT
Swine coronavirus-porcine epidemic diarrhea virus (PEDV) with specific susceptibility to pigs has existed for decades, and recurrent epidemics caused by mutant strains have swept the world again since 2010. In this study, single-cell RNA sequencing was used to perform for the first time, to our knowledge, a systematic analysis of pig jejunum infected with PEDV. Pig intestinal cell types were identified by representative markers and identified a new tuft cell marker, DNAH11. Excepting enterocyte cells, the goblet and tuft cells confirmed susceptibility to PEDV. Enrichment analyses showed that PEDV infection resulted in upregulation of cell apoptosis, junctions, and the MAPK signaling pathway and downregulation of oxidative phosphorylation in intestinal epithelial cell types. The T cell differentiation and IgA production were decreased in T and B cells, respectively. Cytokine gene analyses revealed that PEDV infection downregulated CXCL8, CXCL16, and IL34 in tuft cells and upregulated IL22 in Th17 cells. Further studies found that infection of goblet cells with PEDV decreased the expression of MUC2, as well as other mucin components. Moreover, the antimicrobial peptide REG3G was obviously upregulated through the IL33-STAT3 signaling pathway in enterocyte cells in the PEDV-infected group, and REG3G inhibited the PEDV replication. Finally, enterocyte cells expressed almost all coronavirus entry factors, and PEDV infection caused significant upregulation of the coronavirus receptor ACE2 in enterocyte cells. In summary, this study systematically investigated the responses of different cell types in the jejunum of piglets after PEDV infection, which deepened the understanding of viral pathogenesis.
Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine , Animals , Porcine epidemic diarrhea virus/genetics , Transcriptome , Intestine, Small/pathology , Intestines/pathology , Sequence Analysis, RNAABSTRACT
COVID-19 infection may present with gastrointestinal lesions in up to 25% of patients. One of the target organs of the SARS-CoV-2 virus is the intestine. The pathogenesis of intestinal damage in a new coronavirus infection remains unclear and requires further in-depth study. Possible mechanisms include a direct cytotoxic effect of the virus, a persistent reduction in butyrate-producing bacteria, side effects of drugs, Clostridioides difficile infection, microvascular thrombosis, and the immune-mediated inflammatory reactions in the intestine. The most common symptom of intestinal damage during coronavirus infection, both in the acute phase and in the post-COVID period, is diarrhea. The impact of many aggressive factors on the intestines can form both long-term functional disorders and be the cause of the onset of organic diseases. Treatment should be aimed at possible causes of intestinal damage (Clostridioides difficile), as well as reducing inflammation, restoring intestinal permeability, cytoprotection of mucosal cells, replenishing butyric acid deficiency. When choosing a therapy for intestinal disorders, preference should be given to drugs with a pleiotropic effect in order to influence various possible pathogenetic mechanisms.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Butyric Acid , Diarrhea , Intestines/pathology , InflammationABSTRACT
The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.
Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus ReplicationABSTRACT
The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.
Subject(s)
Inflammation/physiopathology , Receptors, Interleukin-1/physiology , Animals , COVID-19/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/physiology , Host-Pathogen Interactions , Humans , Interleukin-1/physiology , Interleukins/classification , Intestines/metabolism , Intestines/pathology , Ligands , Lung/metabolism , Lung/pathology , MAP Kinase Signaling System , Mice , NF-kappa B/metabolism , Protein Domains , Receptors, Interleukin/classification , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/chemistry , SARS-CoV-2 , Signal Transduction , Skin/metabolism , Skin/pathologyABSTRACT
BACKGROUND: As the COVID-19 pandemic spread worldwide, case reports and small series identified its association with an increasing number of medical conditions including a propensity for thrombotic complications. And since the nephrotic syndrome is also a thrombophilic state, its co-occurrence with the SARS-CoV-2 infection is likely to be associated with an even higher risk of thrombosis, particularly in the presence of known or unknown additional risk factors. Lower extremity deep vein thrombosis (DVT) and pulmonary embolism (PE) are the most common manifestations of COVID-19-associated hypercoagulable state with other venous or arterial sites being much less frequently involved. Although splanchnic vein thrombosis (SVT) has been reported to be 25 times less common than usual site venous thromboembolism (VTE) and rarely occurs in nephrotic patients, it can have catastrophic consequences. A small number of SVT cases have been reported in COVID-19 infected patients in spite of their number exceeding 180 million worldwide. CASE PRESENTATION: An unvaccinated young adult male with steroid-dependent nephrotic syndrome (SDNS) who was in a complete nephrotic remission relapsed following contracting SARS-CoV-2 infection and developed abdominal pain and diarrhea. Abdominal US revealed portal vein thrombosis. The patient was anticoagulated, yet the SVT rapidly propagated to involve the spleno-mesenteric, intrahepatic and the right hepatic veins. In spite of mechanical thrombectomy, thrombolytics and anticoagulation, he developed mesenteric ischemia which progressed to gangrene leading to bowel resection and a complicated hospital course. CONCLUSION: Our case highlights the potential for a catastrophic outcome when COVID-19 infection occurs in those with a concomitant hypercoagulable state and reminds us of the need for a careful assessment of abdominal symptoms in SARS-CoV-2 infected patients.
Subject(s)
COVID-19/complications , Mesenteric Ischemia/etiology , Nephrotic Syndrome/complications , Portal System , Splanchnic Circulation , Venous Thrombosis/etiology , Gangrene/etiology , Humans , Intestines/pathology , Male , Mesenteric Ischemia/therapy , Nephrotic Syndrome/drug therapy , SARS-CoV-2 , Venous Thrombosis/therapy , Young AdultABSTRACT
Human noroviruses (HuNoVs) are acute viral gastroenteritis pathogens that affect all age groups, yet no approved vaccines and drugs to treat HuNoV infection are available. In this study, we screened an antiviral compound library to identify compound(s) showing anti-HuNoV activity using a human intestinal enteroid (HIE) culture system in which HuNoVs are able to replicate reproducibly. Dasabuvir (DSB), which has been developed as an anti-hepatitis C virus agent, was found to inhibit HuNoV infection in HIEs at micromolar concentrations. Dasabuvir also inhibited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human rotavirus A (RVA) infection in HIEs. To our knowledge, this is the first study to screen an antiviral compound library for HuNoV using HIEs, and we successfully identified dasabuvir as a novel anti-HuNoV inhibitor that warrants further investigation. IMPORTANCE Although there is an urgent need to develop effective antiviral therapy directed against HuNoV infection, compound screening to identify anti-HuNoV drug candidates has not been reported so far. Using a human HIE culture system, our compound screening successfully identified dasabuvir as a novel anti-HuNoV inhibitor. Dasabuvir's inhibitory effect was also demonstrated in the cases of SARS-CoV-2 and RVA infection, highlighting the usefulness of the HIE platform for screening antiviral agents against various viruses that target the intestines.
Subject(s)
2-Naphthylamine/pharmacology , Antiviral Agents/pharmacology , Intestines/virology , Organoids/virology , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Uracil/analogs & derivatives , Biopsy , Caliciviridae Infections/drug therapy , Cell Line , Humans , Intestines/drug effects , Intestines/pathology , Organoids/drug effects , Rotavirus/drug effects , Rotavirus Infections/drug therapy , SARS-CoV-2/drug effects , Uracil/pharmacology , COVID-19 Drug TreatmentABSTRACT
Approximately 20% of patients with symptomatic syndrome-associated coronavirus-2 (SARS-CoV-2) infection have gastrointestinal bleeding and/or diarrhea. Most are managed without endoscopic evaluation because the risk of practitioner infection outweighs the value of biopsy analysis unless symptoms are life-threatening. As a result, much of what is known about the gastrointestinal manifestations of coronavirus disease-2019 (COVID-19) has been gleaned from surgical and autopsy cases that suffer from extensive ischemic injury and/or poor preservation. There are no detailed reports describing any other gastrointestinal effects of SARS-CoV-2 even though >3,000,000 people have died from COVID-19 worldwide. The purpose of this study is to report the intestinal findings related to SARS-CoV-2 infection by way of a small case series including one with evidence of direct viral cytopathic effect and 2 with secondary injury attributed to viral infection. Infection can be confirmed by immunohistochemical stains directed against SARS-CoV-2 spike protein, in situ hybridization for spike protein-encoding RNA, and ultrastructural visualization of viruses within the epithelium. It induces cytoplasmic blebs and tufted epithelial cells without inflammation and may not cause symptoms. In contrast, SARS-CoV-2 infection can cause gastrointestinal symptoms after the virus is no longer detected, reflecting systemic activation of cytokine and complement cascades rather than direct viral injury. Reversible mucosal ischemia features microvascular injury with hemorrhage, small vessel thrombosis, and platelet-rich thrombi. Systemic cytokine elaboration and dysbiosis likely explain epithelial cell injury that accompanies diarrheal symptoms. These observations are consistent with clinical and in vitro data and contribute to our understanding of the protean manifestations of COVID-19.
Subject(s)
COVID-19/pathology , Intestinal Diseases/pathology , Intestinal Diseases/virology , Intestines/pathology , Intestines/virology , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Biopsy , COVID-19/diagnosis , COVID-19/immunology , Cytokines/metabolism , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/immunology , Gastrointestinal Hemorrhage/pathology , Gastrointestinal Hemorrhage/virology , Humans , Intestinal Diseases/diagnosis , Intestinal Diseases/immunology , Intestines/immunology , Ischemia/diagnosis , Ischemia/immunology , Ischemia/pathology , Ischemia/virology , Male , Thrombosis/diagnosis , Thrombosis/immunology , Thrombosis/pathology , Thrombosis/virologyABSTRACT
BACKGROUND: The whole world was hit hard by the coronavirus disease-19 (COVID-19). Given that angiotensin I converting enzyme 2 (ACE2) is the viral entry molecule, understanding ACE2 has become a major focus of current COVID-19 research. ACE2 is highly expressed in the gut, but its role has not been fully understood and thus COVID-19 treatments intending to downregulate ACE2 level may cause untoward side effects. Gaining insight into the functions of ACE2 in gut homeostasis therefore merits closer examination, and is beneficial to find potential therapeutic alternatives for COVID-19. METHODS: We took advantage of Ace2 knockout out mice and isolated intestinal organoids to examine the role of ACE2 in intestinal stemness. Inflammatory bowel disease (IBD) mouse model was established by 4% dextran sodium sulfate. LGR5 and KI67 levels were quantitated to reflect the virtue of intestinal stem cells (ISCs). FITC-dextran 4 (FD-4) assay was used to assess intestinal barrier function. RESULTS: Western blotting identified the expression of ACE2 in colon, which was consistent with the results of immunofluorescence and RT-PCR. Moreover, Ace2-/- organoids showed decreased LRG5 and KI67 levels, and elevated calcium concentration. Furthermore, the permeability of ace2-/- organoids was markedly increased compared with ace2+/+ organoids. Collectively, ace2-/- mice were more susceptible than ace2+/+ mice to IBD, including earlier bloody stool, undermined intestinal architecture and more pronounced weight loss. CONCLUSIONS: Our data reveal that ACE2 contributes to the proliferation of intestinal stem cells and hence orchestrates the mucosal homeostasis.
Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Epithelium/metabolism , Angiotensin-Converting Enzyme 2/deficiency , Animals , Calcium/metabolism , Cell Membrane Permeability , Inflammatory Bowel Diseases/enzymology , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Mice, Inbred C57BL , Mice, Knockout , Organoids/metabolism , Stem Cells/cytology , Stem Cells/metabolismSubject(s)
COVID-19/genetics , Intestines/virology , RNA, Ribosomal, 16S/genetics , SARS-CoV-2/genetics , Adult , Antibodies, Viral/genetics , Antibodies, Viral/isolation & purification , COVID-19/pathology , COVID-19/virology , Feces/chemistry , Female , Humans , Intestines/pathology , Male , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicityABSTRACT
We present the case of a critically ill 47-year-old man diagnosed with SARS-CoV-2 (COVID-19) who developed extensive pneumatosis intestinalis and portal venous gas in conjunction with an acute abdomen during the recovery phase of his acute lung injury. A non-surgical conservative approach was taken as the definitive surgical procedure; a complete small-bowel resection was deemed to be associated with an unacceptably high long-term morbidity. However, repeat computed tomography four days later showed complete resolution of the original computed tomography findings. Pneumatosis intestinalis from non-ischaemic origins has been described in association with norovirus and cytomegalovirus. To our knowledge, this is the first time that this has been described in COVID-19.
Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Embolism, Air/diagnosis , Mesenteric Ischemia/diagnosis , Pneumatosis Cystoides Intestinalis/diagnosis , Pneumonia, Viral/complications , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/virology , Diagnosis, Differential , Embolism, Air/complications , Humans , Intestines/diagnostic imaging , Intestines/pathology , Lung/diagnostic imaging , Male , Middle Aged , Pandemics , Pneumatosis Cystoides Intestinalis/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Portal Vein/diagnostic imaging , Radiography, Thoracic , Remission, Spontaneous , Respiration, Artificial , SARS-CoV-2 , Tomography, X-Ray ComputedABSTRACT
A novel coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-emerged in humans in Wuhan, China, in December 2019 and has since disseminated globally1,2. As of April 16, 2020, the confirmed case count of coronavirus disease 2019 (COVID-19) had surpassed 2 million. Based on full-genome sequence analysis, SARS-CoV-2 shows high homology to SARS-related coronaviruses identified in horseshoe bats1,2. Here we show the establishment and characterization of expandable intestinal organoids derived from horseshoe bats of the Rhinolophus sinicus species that can recapitulate bat intestinal epithelium. These bat enteroids are fully susceptible to SARS-CoV-2 infection and sustain robust viral replication. Development of gastrointestinal symptoms in some patients with COVID-19 and detection of viral RNA in fecal specimens suggest that SARS-CoV-2 might cause enteric, in addition to respiratory, infection3,4. Here we demonstrate active replication of SARS-CoV-2 in human intestinal organoids and isolation of infectious virus from the stool specimen of a patient with diarrheal COVID-19. Collectively, we established the first expandable organoid culture system of bat intestinal epithelium and present evidence that SARS-CoV-2 can infect bat intestinal cells. The robust SARS-CoV-2 replication in human intestinal organoids suggests that the human intestinal tract might be a transmission route of SARS-CoV-2.
Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Intestines/virology , Organoids/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/transmission , Animals , COVID-19 , Cell Differentiation , Cells, Cultured , Child, Preschool , Chiroptera/virology , Chlorocebus aethiops , Coronavirus Infections/virology , Enterocytes/pathology , Enterocytes/physiology , Enterocytes/virology , Female , Humans , Infant , Intestinal Mucosa/pathology , Intestinal Mucosa/virology , Intestines/pathology , Male , Organoids/pathology , Pandemics , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Vero Cells , Viral Load/genetics , Viral Load/methods , Viral Tropism/physiologyABSTRACT
Bovine rotavirus (BRoV) and bovine coronavirus (BCoV) are major enteric viral pathogens responsible for calve diarrhoea. They are widespread both in dairy and beef cattle throughout the world and causing huge economic losses. The diagnosis of these agents is very difficult due to non-specific nature of lesions and the involvement of some intrinsic and extrinsic risk factors. We performed postmortem of 45 calves, which was below three months of age. Out of 45 necropscid calves, three (6.66%) cases were positive for BRoV and four (8.88%) cases were found positive for BCoV, screened by reverse transcriptase polymerase chain reaction (RT-PCR). Further RT-PCR positive cases were confirmed by immunohistochemistry (IHC) in paraffin-embedded intestinal tissue sections. Three cases of enteritis caused by BRoV showed the hallmark lesions of the shortening and fusion of villi, denudation and infiltration of mononuclear cells in the lamina propria. The BRoV antigen distribution was prominent within the lining epithelium of the villi, peyer's patches in the ileum and strong immunoreactions in the lymphocytes and some macrophages of the mesenteric lymph nodes. Four cases in which BCoV was detected, grossly lesions characterized by colonic mucosa covered with thick, fibrinous and diphtheritic membrane. Histopathologically, jejunum showed skipping lesion of micro-abscesses in crypts. The BCoV antigen distribution was prominent within the necrotic crypts in the jejunum and cryptic micro-abscesses in the colon and ileum. It is the first report of BRoV and BCoV antigen demonstration in the jejunum, colon, ileum, Peyer's patches and mesenteric lymph nodes of naturally infected calves from India by using IHC.