Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add filters

Document Type
Year range
1.
Turk J Med Sci ; 51(4): 1665-1674, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1526879

ABSTRACT

Background/aim: Coronavirus disease 2019 (COVID-19) is a disease with a high rate of progression to critical illness. However, the predictors of mortality in critically ill patients admitted to the intensive care unit (ICU) are not yet well understood. In this study, we aimed to investigate the risk factors associated with ICU mortality in our hospital. Materials and methods: In this single-centered retrospective study, we enrolled 86 critically ill adult patients with COVID-19 admitted to ICU of Dokuz Eylül University Hospital (Izmir, Turkey) between 18 March 2020 and 31 October 2020. Data on demographic information, preexisting comorbidities, treatments, the laboratory findings at ICU admission, and clinical outcomes were collected. The chest computerized tomography (CT) of the patients were evaluated specifically for COVID-19 and CT score was calculated. Data of the survivors and nonsurvivors were compared with survival analysis to identify risk factors of mortality in the ICU. Results: The mean age of the patients was 71.1 ± 14.1 years. The patients were predominantly male. The most common comorbidity in patients was hypertension. ICU mortality was 62.8%. Being over 60 years old, CT score > 15, acute physiology and chronic health evaluation (APACHE) II score ≥ 15, having dementia, treatment without favipiravir, base excess in blood gas analysis ≤ ­2.0, WBC > 10,000/mm3, D-dimer > 1.6 µg/mL, troponin > 24 ng/L, Na ≥ 145 mmol/L were considered to link with ICU mortality according to Kaplan­Meier curves (log-rank test, p < 0.05). The APACHE II score (HR: 1.055, 95% CI: 1.021­1.090) and chest CT score (HR: 2.411, 95% CI:1.193­4.875) were associated with ICU mortality in the cox proportional-hazard regression model adjusted for age, dementia, favipiravir treatment and troponin. Howewer, no difference was found between survivors and nonsurvivors in terms of intubation timing. Conclusions: COVID-19 patients have a high ICU admission and mortality rate. Studies in the ICU are also crucial in this respect. In our study, we investigated the ICU mortality risk factors of COVID-19 patients. We determined a predictive mortality model consisting of APACHE II score and chest CT score. It was thought that this feasible and practical model would assist in making clinical decisions.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/mortality , Critical Care/methods , Hospital Mortality , Intubation, Intratracheal/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Survival Analysis , Time Factors , Turkey/epidemiology , Young Adult
2.
Sci Rep ; 11(1): 21124, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493211

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) can have increased risk of mortality shortly after intubation. The aim of this study is to develop a model using predictors of early mortality after intubation from COVID-19. A retrospective study of 1945 intubated patients with COVID-19 admitted to 12 Northwell hospitals in the greater New York City area was performed. Logistic regression model using backward selection was applied. This study evaluated predictors of 14-day mortality after intubation for COVID-19 patients. The predictors of mortality within 14 days after intubation included older age, history of chronic kidney disease, lower mean arterial pressure or increased dose of required vasopressors, higher urea nitrogen level, higher ferritin, higher oxygen index, and abnormal pH levels. We developed and externally validated an intubated COVID-19 predictive score (ICOP). The area under the receiver operating characteristic curve was 0.75 (95% CI 0.73-0.78) in the derivation cohort and 0.71 (95% CI 0.67-0.75) in the validation cohort; both were significantly greater than corresponding values for sequential organ failure assessment (SOFA) or CURB-65 scores. The externally validated predictive score may help clinicians estimate early mortality risk after intubation and provide guidance for deciding the most effective patient therapies.


Subject(s)
COVID-19/diagnosis , COVID-19/mortality , Intubation, Intratracheal/methods , Severity of Illness Index , Adolescent , Adult , Age Factors , Aged , Arterial Pressure , COVID-19/therapy , Female , Ferritins/blood , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , New York , Nitrogen/metabolism , Oxygen/metabolism , Predictive Value of Tests , ROC Curve , Regression Analysis , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Vasoconstrictor Agents/pharmacology , Young Adult
4.
Anesth Analg ; 133(4): 876-890, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1412364

ABSTRACT

The coronavirus disease 2019 (COVID-19) disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), often results in severe hypoxemia requiring airway management. Because SARS-CoV-2 virus is spread via respiratory droplets, bag-mask ventilation, intubation, and extubation may place health care workers (HCW) at risk. While existing recommendations address airway management in patients with COVID-19, no guidance exists specifically for difficult airway management. Some strategies normally recommended for difficult airway management may not be ideal in the setting of COVID-19 infection. To address this issue, the Society for Airway Management (SAM) created a task force to review existing literature and current practice guidelines for difficult airway management by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. The SAM task force created recommendations for the management of known or suspected difficult airway in the setting of known or suspected COVID-19 infection. The goal of the task force was to optimize successful airway management while minimizing exposure risk. Each member conducted a literature review on specific clinical practice section utilizing standard search engines (PubMed, Ovid, Google Scholar). Existing recommendations and evidence for difficult airway management in the COVID-19 context were developed. Each specific recommendation was discussed among task force members and modified until unanimously approved by all task force members. Elements of Appraisal of Guidelines Research and Evaluation (AGREE) Reporting Checklist for dissemination of clinical practice guidelines were utilized to develop this statement. Airway management in the COVID-19 patient increases HCW exposure risk. Difficult airway management often takes longer and may involve multiple procedures with aerosolization potential, and strict adherence to personal protective equipment (PPE) protocols is mandatory to reduce risk to providers. When a patient's airway risk assessment suggests that awake tracheal intubation is an appropriate choice of technique, and procedures that may cause increased aerosolization of secretions should be avoided. Optimal preoxygenation before induction with a tight seal facemask may be performed to reduce the risk of hypoxemia. Unless the patient is experiencing oxygen desaturation, positive pressure bag-mask ventilation after induction may be avoided to reduce aerosolization. For optimal intubating conditions, patients should be anesthetized with full muscle relaxation. Videolaryngoscopy is recommended as a first-line strategy for airway management. If emergent invasive airway access is indicated, then we recommend a surgical technique such as scalpel-bougie-tube, rather than an aerosolizing generating procedure, such as transtracheal jet ventilation. This statement represents recommendations by the SAM task force for the difficult airway management of adults with COVID-19 with the goal to optimize successful airway management while minimizing the risk of clinician exposure.


Subject(s)
Airway Management/standards , COVID-19/prevention & control , Health Personnel/standards , Infection Control/standards , Personal Protective Equipment/standards , Societies, Medical/standards , Adult , Advisory Committees/standards , Airway Extubation/methods , Airway Extubation/standards , Airway Management/methods , COVID-19/epidemiology , Humans , Infection Control/methods , Intubation, Intratracheal/methods , Intubation, Intratracheal/standards , Practice Guidelines as Topic/standards
5.
Sci Rep ; 11(1): 17730, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1397894

ABSTRACT

The efficacy of non-invasive ventilation (NIV) in acute respiratory failure secondary to SARS-CoV-2 infection remains controversial. Current literature mainly examined efficacy, safety and potential predictors of NIV failure provided out of the intensive care unit (ICU). On the contrary, the outcomes of ICU patients, intubated after NIV failure, remain to be explored. The aims of the present study are: (1) investigating in-hospital mortality in coronavirus disease 2019 (COVID-19) ICU patients receiving endotracheal intubation after NIV failure and (2) assessing whether the length of NIV application affects patient survival. This observational multicenter study included all consecutive COVID-19 adult patients, admitted into the twenty-five ICUs of the COVID-19 VENETO ICU network (February-April 2020), who underwent endotracheal intubation after NIV failure. Among the 704 patients admitted to ICU during the study period, 280 (40%) presented the inclusion criteria and were enrolled. The median age was 69 [60-76] years; 219 patients (78%) were male. In-hospital mortality was 43%. Only the length of NIV application before ICU admission (OR 2.03 (95% CI 1.06-4.98), p = 0.03) and age (OR 1.18 (95% CI 1.04-1.33), p < 0.01) were identified as independent risk factors of in-hospital mortality; whilst the length of NIV after ICU admission did not affect patient outcome. In-hospital mortality of ICU patients intubated after NIV failure was 43%. Days on NIV before ICU admission and age were assessed to be potential risk factors of greater in-hospital mortality.


Subject(s)
COVID-19/therapy , Intensive Care Units/statistics & numerical data , Intubation, Intratracheal/methods , Noninvasive Ventilation/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/complications , COVID-19/virology , Female , Hospital Mortality , Humans , Logistic Models , Male , Middle Aged , Multivariate Analysis , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Respiratory Insufficiency/etiology , Risk Factors , SARS-CoV-2/physiology
6.
BMC Anesthesiol ; 21(1): 28, 2021 01 25.
Article in English | MEDLINE | ID: covidwho-1388729

ABSTRACT

BACKGROUND: Routine preoperative methods to assess airway such as the interincisor distance (IID), Mallampati classification, and upper lip bite test (ULBT) have a certain risk of upper respiratory tract exposure and virus spread. Condyle-tragus maximal distance(C-TMD) can be used to assess the airway, and does not require the patient to expose the upper respiratory tract, but its value in predicting difficult laryngoscopy compared to other indicators (Mallampati classification, IID, and ULBT) remains unknown. The purpose of this study was to observe the value of C-TMD to predict difficult laryngoscopy and the influence on intubation time and intubation attempts, and provide a new idea for preoperative airway assessment during epidemic. METHODS: Adult patients undergoing general anesthesia and tracheal intubation were enrolled. IID, Mallampati classification, ULBT, and C-TMD of each patient were evaluated before the initiation of anesthesia. The primary outcome was intubation time. The secondary outcomes were difficult laryngoscopy defined as the Cormack-Lehane Level > grade 2 and the number of intubation attempts. RESULTS: Three hundred four patients were successfully enrolled and completed the study, 39 patients were identified as difficult laryngoscopy. The intubation time was shorter with the C-TMD>1 finger group 46.8 ± 7.3 s, compared with the C-TMD<1 finger group 50.8 ± 8.6 s (p<0.01). First attempt success rate was higher in the C-TMD>1 finger group 98.9% than in the C-TMD<1 finger group 87.1% (P<0.01). The correlation between the C-TMD and Cormack-Lehane Level was 0.317 (Spearman correlation coefficient, P<0.001), and the area under the ROC curve was 0.699 (P<0.01). The C-TMD < 1 finger width was the most consistent with difficult laryngoscopy (κ = 0.485;95%CI:0.286-0.612) and its OR value was 10.09 (95%CI: 4.19-24.28), sensitivity was 0.469 (95%CI: 0.325-0.617), specificity was 0.929 (95%CI: 0.877-0.964), positive predictive value was 0.676 (95%CI: 0.484-0.745), negative predictive value was 0.847 (95%CI: 0.825-0.865). CONCLUSION: Compared with the IID, Mallampati classification and ULBT, C-TMD has higher value in predicting difficult laryngoscopy and does not require the exposure of upper respiratory tract. TRIAL REGISTRATION: The study was registered on October 21, 2019 in the Chinese Clinical Trial Registry ( ChiCTR1900026775 ).


Subject(s)
Airway Management/methods , Anesthesia, General/methods , Intubation, Intratracheal/methods , Laryngoscopy/methods , Adult , Aged , COVID-19 , Female , Humans , Male , Middle Aged , Pilot Projects , Predictive Value of Tests , Preoperative Care , Prospective Studies , Respiratory System/anatomy & histology , Sensitivity and Specificity
8.
West J Emerg Med ; 21(4): 790-794, 2020 Jun 29.
Article in English | MEDLINE | ID: covidwho-1383995

ABSTRACT

Emergency physicians are on the front lines of treating patients with highly infectious respiratory diseases. Personal protective equipment is one defense against contamination from droplet and aerosol secretions. Intubation is a procedure that greatly can increase provider's risk of exposure. Utilization of an intubation box has been discussed and recommended on social media platforms. There has been scant literature demonstrating the effectiveness of such devices. This study aimed to determine degree of droplet contamination to the intubator utilizing a novel barrier enclosure with a fluorescent simulated respiratory contagion. This model confirmed both added protection to the providers preforming intubation, and reduction of spread of the droplets when such a device is applied to patient care.


Subject(s)
Aerosols , COVID-19/prevention & control , COVID-19/transmission , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intubation, Intratracheal/methods , Personal Protective Equipment , SARS-CoV-2/physiology , Biofouling/prevention & control , COVID-19/virology , Cough/virology , Humans , Simulation Training
11.
Arch Argent Pediatr ; 119(4): 270-272, 2021 08.
Article in English, Spanish | MEDLINE | ID: covidwho-1325945

ABSTRACT

In patients with SARS-CoV-2 infection, endotracheal intubation is a procedure with a high risk for transmission. A videolaryngoscopy is a supplementary level of health care provider protection, but commercial videolaryngoscopes are expensive and not always available in pediatric intensive care units in Argentina. Our objective was to describe intubation practice using an infant head mannequin with a low-cost, handcrafted videolaryngoscope. Fifteen pediatricians with no prior experience using the device participated in an intubation practice in a head mannequin with a handcrafted videolaryngoscope. The average time for the first attempt was 116.4 seconds (95 % confidence interval [CI]: 84.8- 148.0) and, for the second one, 44.2 seconds (95 % CI: 27.7-60.6). Time decreased significantly for the second attempt (p: 0.0001). A successful intubation was achieved with the device in all attempts, and the procedure duration decreased with the second practice.


En pacientes con infección por SARS-CoV-2 la intubación endotraqueal es un procedimiento con riesgo elevado de contagio. La videolaringoscopia complementa la protección del profesional, pero los videolaringoscopios comerciales son caros y no siempre están disponibles en las terapias intensivas pediátricas argentinas. El objetivo fue describir la práctica de intubación en un modelo de cabeza de simulación de lactante con un videolaringoscopio artesanal de bajo costo. Quince pediatras sin experiencia previa con el dispositivo participaron de una práctica de intubación en una cabeza de simulación con un videolaringoscopio artesanal. El tiempo promedio del primer intento fue de 116,4 segundos (intervalo de confianza del 95 % [IC95 %]: 84,8-148,0) y, el del siguiente fue de 44,2 segundos (IC95 %: 27,7­60,6). El tiempo disminuyó de forma significativa en el segundo intento (p : 0,0001). El dispositivo permitió la intubación exitosa en todos los intentos acortando la duración del procedimiento en la segunda práctica.


Subject(s)
COVID-19/prevention & control , Intubation, Intratracheal/instrumentation , Laryngoscopes/economics , Laryngoscopy/education , Pediatrics/education , Simulation Training/methods , Argentina , COVID-19/transmission , Clinical Competence/statistics & numerical data , Education, Medical, Continuing/methods , Health Care Costs , Humans , Infant , Internship and Residency/methods , Intubation, Intratracheal/economics , Intubation, Intratracheal/methods , Laryngoscopy/economics , Laryngoscopy/instrumentation , Laryngoscopy/methods , Learning Curve , Manikins , Pediatrics/economics , Time Factors , Video Recording
12.
Emerg Med Clin North Am ; 39(3): 493-508, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1262904

ABSTRACT

Anatomically, the airway is ever changing in size, anteroposterior alignment, and point of most narrow dimension. Special considerations regarding obesity, chronic and acute illness, underlying developmental abnormalities, and age can all affect preparation and intervention toward securing a definitive airway. Mechanical ventilation strategies should focus on limiting peak inspiratory pressures and optimizing lung protective tidal volumes. Emergency physicians should work toward minimizing risk of peri-intubation hypoxemia and arrest. With review of anatomic and physiologic principles in the setting of a practical approach toward evaluating and managing distress and failure, emergency physicians can successfully manage critical pediatric airway encounters.


Subject(s)
Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Airway Management , COVID-19/therapy , Child , Craniofacial Abnormalities/complications , Critical Care , Equipment Design , Functional Residual Capacity , Heart Arrest/therapy , Humans , Hypnotics and Sedatives/therapeutic use , Intubation, Intratracheal/methods , Laryngoscopes , Laryngoscopy/methods , Larynx/anatomy & histology , Neuromuscular Diseases/therapy , Noninvasive Ventilation , Oxygen Inhalation Therapy , Pediatric Emergency Medicine , Pediatric Obesity/complications , Positive-Pressure Respiration , Video Recording
13.
Anaesthesia ; 76(12): 1577-1584, 2021 12.
Article in English | MEDLINE | ID: covidwho-1318625

ABSTRACT

Many guidelines consider supraglottic airway use to be an aerosol-generating procedure. This status requires increased levels of personal protective equipment, fallow time between cases and results in reduced operating theatre efficiency. Aerosol generation has never been quantitated during supraglottic airway use. To address this evidence gap, we conducted real-time aerosol monitoring (0.3-10-µm diameter) in ultraclean operating theatres during supraglottic airway insertion and removal. This showed very low background particle concentrations (median (IQR [range]) 1.6 (0-3.1 [0-4.0]) particles.l-1 ) against which the patient's tidal breathing produced a higher concentration of aerosol (4.0 (1.3-11.0 [0-44]) particles.l-1 , p = 0.048). The average aerosol concentration detected during supraglottic airway insertion (1.3 (1.0-4.2 [0-6.2]) particles.l-1 , n = 11), and removal (2.1 (0-17.5 [0-26.2]) particles.l-1 , n = 12) was no different to tidal breathing (p = 0.31 and p = 0.84, respectively). Comparison of supraglottic airway insertion and removal with a volitional cough (104 (66-169 [33-326]), n = 27), demonstrated that supraglottic airway insertion/removal sequences produced <4% of the aerosol compared with a single cough (p < 0.001). A transient aerosol increase was recorded during one complicated supraglottic airway insertion (which initially failed to provide a patent airway). Detailed analysis of this event showed an atypical particle size distribution and we subsequently identified multiple sources of non-respiratory aerosols that may be produced during airway management and can be considered as artefacts. These findings demonstrate supraglottic airway insertion/removal generates no more bio-aerosol than breathing and far less than a cough. This should inform the design of infection prevention strategies for anaesthetists and operating theatre staff caring for patients managed with supraglottic airways.


Subject(s)
Airway Extubation/standards , Environmental Monitoring/standards , Intubation, Intratracheal/standards , Operating Rooms/standards , Particle Size , Supraglottitis/therapy , Airway Extubation/methods , Airway Management/methods , Airway Management/standards , Cough/therapy , Environmental Monitoring/methods , Humans , Intubation, Intratracheal/methods , Operating Rooms/methods , Personal Protective Equipment/standards , Prospective Studies
14.
BMJ Case Rep ; 14(1)2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1314115

ABSTRACT

A 31-year-old G3P2002 with history of two prior caesarean sections presented with influenza-like illness, requiring intubation secondary to acute respiratory distress syndrome. Investigations revealed intrauterine fetal demise at 30-week gestation.She soon deteriorated with sepsis and multiple organs impacted. Risks of the gravid uterus impairing cardiopulmonary function appeared greater than risks of delivery, including that of uterine rupture. Vaginal birth after caesarean was achieved with misoprostol and critical care status rapidly improved.Current guidelines for management of fetal demise in patients with prior hysterotomies are mixed: although the American College of Obstetricians and Gynecologists recommends standard obstetric protocols rather than misoprostol administration for labour augmentation, there is limited published data citing severe maternal morbidity associated with misoprostol use. This case report argues misoprostol-augmented induction of labour can be a reasonable option in a medically complex patient with fetal demise and prior hysterotomies.


Subject(s)
Fetal Death/etiology , Labor, Induced/methods , Labor, Obstetric/drug effects , Misoprostol/administration & dosage , Oxytocics/administration & dosage , Administration, Intravaginal , Adult , Delivery, Obstetric/standards , Female , Humans , Hysterotomy/adverse effects , Intubation, Intratracheal/methods , Misoprostol/pharmacology , Multiple Organ Failure/etiology , Oxytocics/pharmacology , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Trimester, Third , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/therapy , Treatment Outcome , Uterine Rupture/prevention & control
15.
Eur J Med Res ; 26(1): 52, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1262517

ABSTRACT

BACKGROUND: We are laryngologists. We observe natural phonatory and swallowing functions in clinical examinations with a trans-nasal laryngeal fiberscope (TNLF). Before each observation, we use epinephrine to enlarge and smooth the common nasal meatus (bottom of nostril) and then insert a wet swab inside the nose, as in taking a swab culture in the nasopharynx. During the current COVID-19 pandemic situation, this careful technique prevents any complications, including nasal bleeding, painfulness, and induced sneezing. Here, we introduce our routine to observe esophageal movement in swallowing in a natural (sitting) position without anesthesia. CASE PRESENTATION: The case was a 70-year-old female who complained that something was stuck in her esophagus; there was a strange sensation below the larynx and pharynx. After enlarging and smoothing the common nasal meatus, we inserted the TNLF (slim type ⌀2.9 mm fiberscope, VNL8-J10, PENTAX Medical, Tokyo, Japan.) in the normal way. We then observed the phonatory and swallowing movements of the vocal folds. As usual, to not interfere with natural movements, we used no anesthesia. We found no pathological condition in the pyriform sinus. We asked the patient to swallow the fiberscope. During the swallow, we pushed the TNLF and inserted the tip a bit deeper, which made the fiberscope easily enter the esophagus, like in the insertion of a nasogastric tube. We then asked the patient to swallow a sip of water or saliva to clear and enlarge the lumen of the esophagus. This made it possible to observe the esophagus easily without any air supply. With tone enhancement scan, the esophagus was found to be completely normal except for glycogenic acanthosis. CONCLUSIONS: The advantage of this examination is that it is easily able to perform without anesthesia and with the patient in sitting position. It is quick and minimally invasive, enabling observation the physiologically natural swallowing. It is also possible to observe without anesthesia down to the level of the esophagogastric junction using with a thin type flexible bronchoscope. In the future, gastric fiberscopes might be thinner, even with narrow band imaging (NBI) function. Before that time, physicians should remember to just insert along the bottom of the nose.


Subject(s)
COVID-19/prevention & control , Esophagus/metabolism , Glycogen/metabolism , Intubation, Intratracheal/methods , Aged , Anesthesia , COVID-19/epidemiology , COVID-19/virology , Epithelium/metabolism , Female , Humans , Intubation, Intratracheal/instrumentation , Mucous Membrane/metabolism , Nasal Cavity , Pandemics , Reproducibility of Results , SARS-CoV-2/physiology , Sneezing
17.
Emerg Med Australas ; 33(4): 728-733, 2021 08.
Article in English | MEDLINE | ID: covidwho-1255059

ABSTRACT

OBJECTIVE: In response to COVID-19, we introduced and examined the effect of a raft of modifications to standard practice on adverse events and first-attempt success (FAS) associated with ED intubation. METHODS: An analysis of prospectively collected registry data of all ED intubations over a 3-year period at an Australian Major Trauma Centre. During the first 6 months of the COVID-19 pandemic in Australia, we introduced modifications to standard practice to reduce the risk to staff including: aerosolisation reduction, comprehensive personal protective equipment for all intubations, regular low fidelity simulation with 'sign-off' for all medical and nursing staff, senior clinician laryngoscopist and the introduction of pre-drawn medications. RESULTS: There were 783 patients, 136 in the COVID-19 era and 647 in the pre-COVID-19 comparator group. The rate of hypoxia was higher during the COVID-19 era compared to pre-COVID-19 (18.4% vs 9.6%, P < 0.005). This occurred despite the FAS rate remaining very high (95.6% vs 93.8%, P = 0.42) and intubation being undertaken by more senior laryngoscopists (consultant 55.9% during COVID-19 vs 22.6% pre-COVID-19, P < 0.001). Other adverse events were similar before and during COVID-19 (hypotension 12.5% vs 7.9%, P = 0.082; bradycardia 1.5% vs 0.5%, P = 0.21). Video laryngoscopy was more likely to be used during COVID-19 (95.6% vs 82.5%, P < 0.001) and induction of anaesthesia more often used ketamine (66.9% vs 42.3%, P < 0.001) and rocuronium (86.8% vs 52.1%, P < 0.001). CONCLUSIONS: This raft of modifications to ED intubation was associated with significant increase in hypoxia despite a very high FAS rate and more senior first laryngoscopist.


Subject(s)
Airway Management/methods , COVID-19/therapy , Emergency Service, Hospital/statistics & numerical data , Intubation, Intratracheal/methods , Intubation, Intratracheal/standards , Adult , Aged , Airway Management/standards , Airway Management/statistics & numerical data , Australia , COVID-19/epidemiology , Female , Humans , Intubation, Intratracheal/adverse effects , Laryngoscopy/adverse effects , Laryngoscopy/methods , Male , Middle Aged , Pandemics , Prospective Studies , Quality Improvement , SARS-CoV-2
18.
Med Intensiva (Engl Ed) ; 44(9): 551-565, 2020 Dec.
Article in Spanish | MEDLINE | ID: covidwho-1243085

ABSTRACT

The clinical picture of SARS-CoV-2 infection (COVID-19) is characterized in its more severe form, by an acute respiratory failure which can worsen to pneumonia and acute respiratory distress syndrome (ARDS) and get complicated with thrombotic events and heart dysfunction. Therefore, admission to the Intensive Care Unit (ICU) is common. Ultrasound, which has become an everyday tool in the ICU, can be very useful during COVID-19 pandemic, since it provides the clinician with information which can be interpreted and integrated within a global assessment during the physical examination. A description of some of the potential applications of ultrasound is depicted in this document, in order to supply the physicians taking care of these patients with an adapted guide to the intensive care setting. Some of its applications since ICU admission include verification of the correct position of the endotracheal tube, contribution to safe cannulation of lines, and identification of complications and thrombotic events. Furthermore, pleural and lung ultrasound can be an alternative diagnostic test to assess the degree of involvement of the lung parenchyma by means of the evaluation of specific ultrasound patterns, identification of pleural effusions and barotrauma. Echocardiography provides information of heart involvement, detects cor pulmonale and shock states.


Subject(s)
COVID-19/diagnostic imaging , SARS-CoV-2 , Ultrasonography, Interventional/methods , Blood Vessels/diagnostic imaging , COVID-19/complications , Critical Care , Critical Illness , Echocardiography , Heart Diseases/diagnostic imaging , Heart Diseases/etiology , Heart Ventricles/diagnostic imaging , Humans , Hypertension, Pulmonary/diagnostic imaging , Intensive Care Units , Intubation, Intratracheal/methods , Lung/diagnostic imaging , Organ Size , Pleura/diagnostic imaging , Pleural Effusion/diagnostic imaging , Pneumothorax/diagnostic imaging , Pulmonary Heart Disease/diagnostic imaging , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Shock/diagnostic imaging , Transducers
20.
Anaesthesia ; 75(8): 1014-1021, 2020 08.
Article in English | MEDLINE | ID: covidwho-1223461

ABSTRACT

The coronavirus disease 2019 pandemic has led to the manufacturing of novel devices to protect clinicians from the risk of transmission, including the aerosol box for use during tracheal intubation. We evaluated the impact of two aerosol boxes (an early-generation box and a latest-generation box) on intubations in patients with severe coronavirus disease 2019 with an in-situ simulation crossover study. The simulated process complied with the Safe Airway Society coronavirus disease 2019 airway management guidelines. The primary outcome was intubation time; secondary outcomes included first-pass success and breaches to personal protective equipment. All intubations were performed by specialist (consultant) anaesthetists and video recorded. Twelve anaesthetists performed 36 intubations. Intubation time with no aerosol box was significantly shorter than with the early-generation box (median (IQR [range]) 42.9 (32.9-46.9 [30.9-57.6])s vs. 82.1 (45.1-98.3 [30.8-180.0])s p = 0.002) and the latest-generation box (52.4 (43.1-70.3 [35.7-169.2])s, p = 0.008). No intubations without a box took more than 1 min, whereas 14 (58%) intubations with a box took over 1 min and 4 (17%) took over 2 min (including one failure). Without an aerosol box, all anaesthetists obtained first-pass success. With the early-generation and latest-generation boxes, 9 (75%) and 10 (83%) participants obtained first-pass success, respectively. One breach of personal protective equipment occurred using the early-generation box and seven breaches occurred using the latest-generation box. Aerosol boxes may increase intubation times and therefore expose patients to the risk of hypoxia. They may cause damage to conventional personal protective equipment and therefore place clinicians at risk of infection. Further research is required before these devices can be considered safe for clinical use.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Intubation, Intratracheal/instrumentation , Pandemics/prevention & control , Personal Protective Equipment , Pneumonia, Viral/prevention & control , Adult , Aerosols , Anesthesiologists , COVID-19 , Coronavirus Infections/transmission , Critical Care/methods , Cross-Over Studies , Equipment Design , Female , Humans , Intubation, Intratracheal/methods , Male , Middle Aged , Patient Simulation , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...