Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
JAMA ; 327(6): 546-558, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1711978

ABSTRACT

Importance: Continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) have been recommended for acute hypoxemic respiratory failure in patients with COVID-19. Uncertainty exists regarding the effectiveness and safety of these noninvasive respiratory strategies. Objective: To determine whether either CPAP or HFNO, compared with conventional oxygen therapy, improves clinical outcomes in hospitalized patients with COVID-19-related acute hypoxemic respiratory failure. Design, Setting, and Participants: A parallel group, adaptive, randomized clinical trial of 1273 hospitalized adults with COVID-19-related acute hypoxemic respiratory failure. The trial was conducted between April 6, 2020, and May 3, 2021, across 48 acute care hospitals in the UK and Jersey. Final follow-up occurred on June 20, 2021. Interventions: Adult patients were randomized to receive CPAP (n = 380), HFNO (n = 418), or conventional oxygen therapy (n = 475). Main Outcomes and Measures: The primary outcome was a composite of tracheal intubation or mortality within 30 days. Results: The trial was stopped prematurely due to declining COVID-19 case numbers in the UK and the end of the funded recruitment period. Of the 1273 randomized patients (mean age, 57.4 [95% CI, 56.7 to 58.1] years; 66% male; 65% White race), primary outcome data were available for 1260. Crossover between interventions occurred in 17.1% of participants (15.3% in the CPAP group, 11.5% in the HFNO group, and 23.6% in the conventional oxygen therapy group). The requirement for tracheal intubation or mortality within 30 days was significantly lower with CPAP (36.3%; 137 of 377 participants) vs conventional oxygen therapy (44.4%; 158 of 356 participants) (absolute difference, -8% [95% CI, -15% to -1%], P = .03), but was not significantly different with HFNO (44.3%; 184 of 415 participants) vs conventional oxygen therapy (45.1%; 166 of 368 participants) (absolute difference, -1% [95% CI, -8% to 6%], P = .83). Adverse events occurred in 34.2% (130/380) of participants in the CPAP group, 20.6% (86/418) in the HFNO group, and 13.9% (66/475) in the conventional oxygen therapy group. Conclusions and Relevance: Among patients with acute hypoxemic respiratory failure due to COVID-19, an initial strategy of CPAP significantly reduced the risk of tracheal intubation or mortality compared with conventional oxygen therapy, but there was no significant difference between an initial strategy of HFNO compared with conventional oxygen therapy. The study may have been underpowered for the comparison of HFNO vs conventional oxygen therapy, and early study termination and crossover among the groups should be considered when interpreting the findings. Trial Registration: isrctn.org Identifier: ISRCTN16912075.


Subject(s)
COVID-19/complications , Continuous Positive Airway Pressure , Intubation, Intratracheal , Noninvasive Ventilation/methods , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/therapy , Adult , COVID-19/mortality , Cannula , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Length of Stay , Male , Middle Aged , Respiratory Insufficiency/etiology
2.
Respir Physiol Neurobiol ; 298: 103842, 2022 04.
Article in English | MEDLINE | ID: covidwho-1655093

ABSTRACT

BACKGROUND: Noninvasive ventilation (NIV) and High-flow nasal cannula (HFNC) are the main forms of treatment for acute respiratory failure. This study aimed to evaluate the effect, safety, and applicability of the NIV and HFNC in patients with acute hypoxemic respiratory failure (AHRF) caused by COVID-19. METHODS: In this retrospective study, we monitored the effect of NIV and HFNC on the SpO2 and respiratory rate before, during, and after treatment, length of stay, rates of endotracheal intubation, and mortality in patients with AHRF caused by COVID-19. Additionally, data regarding RT-PCR from physiotherapists who were directly involved in assisting COVID-19 patients and non-COVID-19. RESULTS: 62.2 % of patients were treated with HFNC. ROX index increased during and after NIV and HFNC treatment (P < 0.05). SpO2 increased during NIV treatment (P < 0.05), but was not maintained after treatment (P = 0.17). In addition, there was no difference in the respiratory rate during or after the NIV (P = 0.95) or HFNC (P = 0.60) treatment. The mortality rate was 35.7 % for NIV vs 21.4 % for HFNC (P = 0.45), while the total endotracheal intubation rate was 57.1 % for NIV vs 69.6 % for HFNC (P = 0.49). Two adverse events occurred during treatment with NIV and eight occurred during treatment with HFNC. There was no difference in the physiotherapists who tested positive for SARS-COV-2 directly involved in assisting COVID-19 patients and non-COVID-19 ones (P = 0.81). CONCLUSION: The application of NIV and HFNC in the critical care unit is feasible and associated with favorable outcomes. In addition, there was no increase in the infection of physiotherapists with SARS-CoV-2.


Subject(s)
COVID-19/therapy , Cannula , Intubation, Intratracheal , Noninvasive Ventilation , Outcome and Process Assessment, Health Care , Oxygen/administration & dosage , Positive-Pressure Respiration , Respiratory Insufficiency/therapy , Respiratory Rate/drug effects , Acute Disease , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Brazil , COVID-19/complications , COVID-19/mortality , Cannula/adverse effects , Cannula/standards , Cannula/statistics & numerical data , Feasibility Studies , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Middle Aged , Noninvasive Ventilation/adverse effects , Noninvasive Ventilation/methods , Noninvasive Ventilation/standards , Noninvasive Ventilation/statistics & numerical data , Outcome and Process Assessment, Health Care/statistics & numerical data , Physical Therapists , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/standards , Positive-Pressure Respiration/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies
3.
Am J Emerg Med ; 53: 122-126, 2022 03.
Article in English | MEDLINE | ID: covidwho-1638161

ABSTRACT

BACKGROUND: Endotracheal intubation (ETI) is still the gold standard of airway management, but in cases of sudden cardiac arrest in patients with suspected SARS-CoV-2 infection, ETI is associated with risks for both the patient and the medical personnel. We hypothesized that the Vie Scope® is more useful for endotracheal intubation of suspected or confirmed COVID-19 cardiac arrest patients than the conventional laryngoscope with Macintosh blade when operators are wearing personal protective equipment (PPE). METHODS: Study was designed as a prospective, multicenter, randomized clinical trial performed by Emergency Medical Services in Poland. Patients with suspected or confirmed COVID-19 diagnosis who needed cardiopulmonary resuscitation in prehospital setting were included. Patients under 18 years old or with criteria predictive of impossible intubation under direct laryngoscopy, were excluded. Patients were randomly allocated 1:1 to Vie Scope® versus direct laryngoscopy with a Macintosh blade. Study groups were compared on success of intubation attempts, time to intubation, glottis visualization and number of optimization maneuvers. RESULTS: We enrolled 90 out-of-hospital cardiac arrest (OHCA) patients, aged 43-92 years. Compared to the VieScope® laryngoscope, use of the Macintosh laryngoscope required longer times for tracheal intubation with an estimated mean difference of -48 s (95%CI confidence interval [CI], -60.23, -35.77; p < 0.001). Moreover VieScope® improved first attempt success rate, 93.3% vs. 51.1% respectively (odds ratio [OR] = 13.39; 95%CI: 3.62, 49.58; p < 0.001). CONCLUSIONS: The use of the Vie Scope® laryngoscope in OHCA patients improved the first attempt success rate, and reduced intubation time compared to Macintosh laryngoscope in paramedics wearing PPE for against aerosol generating procedures. TRIAL REGISTRATION: ClinicalTrials registration number NCT04365608.


Subject(s)
Allied Health Personnel/statistics & numerical data , Intubation, Intratracheal/instrumentation , Laryngoscopes/standards , Adult , Aged , Aged, 80 and over , Airway Management/instrumentation , Airway Management/methods , Airway Management/statistics & numerical data , Allied Health Personnel/standards , Female , Humans , Intubation, Intratracheal/methods , Intubation, Intratracheal/statistics & numerical data , Laryngoscopes/statistics & numerical data , Male , Middle Aged , Personal Protective Equipment/adverse effects , Personal Protective Equipment/standards , Personal Protective Equipment/statistics & numerical data , Prospective Studies , Resuscitation/instrumentation , Resuscitation/methods , Resuscitation/statistics & numerical data
4.
PLoS One ; 17(1): e0262315, 2022.
Article in English | MEDLINE | ID: covidwho-1622359

ABSTRACT

BACKGROUND: The role of non-invasive ventilation (NIV) in severe COVID-19 remains a matter of debate. Therefore, the utilization and outcome of NIV in COVID-19 in an unbiased cohort was determined. AIM: The aim was to provide a detailed account of hospitalized COVID-19 patients requiring non-invasive ventilation during their hospital stay. Furthermore, differences of patients treated with NIV between the first and second wave are explored. METHODS: Confirmed COVID-19 cases of claims data of the Local Health Care Funds with non-invasive and/or invasive mechanical ventilation (MV) in the spring and autumn pandemic period in 2020 were comparable analysed. RESULTS: Nationwide cohort of 17.023 cases (median/IQR age 71/61-80 years, 64% male) 7235 (42.5%) patients primarily received IMV without NIV, 4469 (26.3%) patients received NIV without subsequent intubation, and 3472 (20.4%) patients had NIV failure (NIV-F), defined by subsequent endotracheal intubation. The proportion of patients who received invasive MV decreased from 75% to 37% during the second period. Accordingly, the proportion of patients with NIV exclusively increased from 9% to 30%, and those failing NIV increased from 9% to 23%. Median length of hospital stay decreased from 26 to 21 days, and duration of MV decreased from 11.9 to 7.3 days. The NIV failure rate decreased from 49% to 43%. Overall mortality increased from 51% versus 54%. Mortality was 44% with NIV-only, 54% with IMV and 66% with NIV-F with mortality rates steadily increasing from 62% in early NIV-F (day 1) to 72% in late NIV-F (>4 days). CONCLUSIONS: Utilization of NIV rapidly increased during the autumn period, which was associated with a reduced duration of MV, but not with overall mortality. High NIV-F rates are associated with increased mortality, particularly in late NIV-F.


Subject(s)
COVID-19/therapy , Noninvasive Ventilation , Respiration, Artificial , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/mortality , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Length of Stay , Male , Middle Aged , Noninvasive Ventilation/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Treatment Outcome , Young Adult
5.
JAMA ; 326(21): 2161-2171, 2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1596653

ABSTRACT

IMPORTANCE: The effect of high-flow oxygen therapy vs conventional oxygen therapy has not been established in the setting of severe COVID-19. OBJECTIVE: To determine the effect of high-flow oxygen therapy through a nasal cannula compared with conventional oxygen therapy on need for endotracheal intubation and clinical recovery in severe COVID-19. DESIGN, SETTING, AND PARTICIPANTS: Randomized, open-label clinical trial conducted in emergency and intensive care units in 3 hospitals in Colombia. A total of 220 adults with respiratory distress and a ratio of partial pressure of arterial oxygen to fraction of inspired oxygen of less than 200 due to COVID-19 were randomized from August 2020 to January 2021, with last follow-up on February 10, 2021. INTERVENTIONS: Patients were randomly assigned to receive high-flow oxygen through a nasal cannula (n = 109) or conventional oxygen therapy (n = 111). MAIN OUTCOMES AND MEASURES: The co-primary outcomes were need for intubation and time to clinical recovery until day 28 as assessed by a 7-category ordinal scale (range, 1-7, with higher scores indicating a worse condition). Effects of treatments were calculated with a Cox proportional hazards model adjusted for hypoxemia severity, age, and comorbidities. RESULTS: Among 220 randomized patients, 199 were included in the analysis (median age, 60 years; n = 65 women [32.7%]). Intubation occurred in 34 (34.3%) randomized to high-flow oxygen therapy and in 51 (51.0%) randomized to conventional oxygen therapy (hazard ratio, 0.62; 95% CI, 0.39-0.96; P = .03). The median time to clinical recovery within 28 days was 11 (IQR, 9-14) days in patients randomized to high-flow oxygen therapy vs 14 (IQR, 11-19) days in those randomized to conventional oxygen therapy (hazard ratio, 1.39; 95% CI, 1.00-1.92; P = .047). Suspected bacterial pneumonia occurred in 13 patients (13.1%) randomized to high-flow oxygen and in 17 (17.0%) of those randomized to conventional oxygen therapy, while bacteremia was detected in 7 (7.1%) vs 11 (11.0%), respectively. CONCLUSIONS AND RELEVANCE: Among patients with severe COVID-19, use of high-flow oxygen through a nasal cannula significantly decreased need for mechanical ventilation support and time to clinical recovery compared with conventional low-flow oxygen therapy. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04609462.


Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Oxygen Inhalation Therapy/methods , Oxygen/therapeutic use , Respiratory Insufficiency/therapy , Aged , Aged, 80 and over , COVID-19/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Humans , Intensive Care Units , Intubation, Intratracheal/adverse effects , Male , Middle Aged , Oxygen Inhalation Therapy/instrumentation , Respiration, Artificial , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , SARS-CoV-2 , Time Factors , Treatment Outcome
6.
J Med Internet Res ; 23(2): e24246, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1573886

ABSTRACT

BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk for deterioration. Given the complexity of COVID-19, machine learning approaches may support clinical decision making for patients with this disease. OBJECTIVE: Our objective is to derive a machine learning model that predicts respiratory failure within 48 hours of admission based on data from the emergency department. METHODS: Data were collected from patients with COVID-19 who were admitted to Northwell Health acute care hospitals and were discharged, died, or spent a minimum of 48 hours in the hospital between March 1 and May 11, 2020. Of 11,525 patients, 933 (8.1%) were placed on invasive mechanical ventilation within 48 hours of admission. Variables used by the models included clinical and laboratory data commonly collected in the emergency department. We trained and validated three predictive models (two based on XGBoost and one that used logistic regression) using cross-hospital validation. We compared model performance among all three models as well as an established early warning score (Modified Early Warning Score) using receiver operating characteristic curves, precision-recall curves, and other metrics. RESULTS: The XGBoost model had the highest mean accuracy (0.919; area under the curve=0.77), outperforming the other two models as well as the Modified Early Warning Score. Important predictor variables included the type of oxygen delivery used in the emergency department, patient age, Emergency Severity Index level, respiratory rate, serum lactate, and demographic characteristics. CONCLUSIONS: The XGBoost model had high predictive accuracy, outperforming other early warning scores. The clinical plausibility and predictive ability of XGBoost suggest that the model could be used to predict 48-hour respiratory failure in admitted patients with COVID-19.


Subject(s)
COVID-19/physiopathology , Hospitalization , Intubation, Intratracheal/statistics & numerical data , Machine Learning , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/epidemiology , Aged , COVID-19/complications , Clinical Decision Rules , Early Warning Score , Emergency Service, Hospital , Female , Hospitals , Humans , Logistic Models , Male , Middle Aged , Patient Admission , ROC Curve , Respiratory Insufficiency/etiology , Retrospective Studies , SARS-CoV-2 , Triage
7.
Turk J Med Sci ; 51(4): 1665-1674, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1526879

ABSTRACT

Background/aim: Coronavirus disease 2019 (COVID-19) is a disease with a high rate of progression to critical illness. However, the predictors of mortality in critically ill patients admitted to the intensive care unit (ICU) are not yet well understood. In this study, we aimed to investigate the risk factors associated with ICU mortality in our hospital. Materials and methods: In this single-centered retrospective study, we enrolled 86 critically ill adult patients with COVID-19 admitted to ICU of Dokuz Eylül University Hospital (Izmir, Turkey) between 18 March 2020 and 31 October 2020. Data on demographic information, preexisting comorbidities, treatments, the laboratory findings at ICU admission, and clinical outcomes were collected. The chest computerized tomography (CT) of the patients were evaluated specifically for COVID-19 and CT score was calculated. Data of the survivors and nonsurvivors were compared with survival analysis to identify risk factors of mortality in the ICU. Results: The mean age of the patients was 71.1 ± 14.1 years. The patients were predominantly male. The most common comorbidity in patients was hypertension. ICU mortality was 62.8%. Being over 60 years old, CT score > 15, acute physiology and chronic health evaluation (APACHE) II score ≥ 15, having dementia, treatment without favipiravir, base excess in blood gas analysis ≤ ­2.0, WBC > 10,000/mm3, D-dimer > 1.6 µg/mL, troponin > 24 ng/L, Na ≥ 145 mmol/L were considered to link with ICU mortality according to Kaplan­Meier curves (log-rank test, p < 0.05). The APACHE II score (HR: 1.055, 95% CI: 1.021­1.090) and chest CT score (HR: 2.411, 95% CI:1.193­4.875) were associated with ICU mortality in the cox proportional-hazard regression model adjusted for age, dementia, favipiravir treatment and troponin. Howewer, no difference was found between survivors and nonsurvivors in terms of intubation timing. Conclusions: COVID-19 patients have a high ICU admission and mortality rate. Studies in the ICU are also crucial in this respect. In our study, we investigated the ICU mortality risk factors of COVID-19 patients. We determined a predictive mortality model consisting of APACHE II score and chest CT score. It was thought that this feasible and practical model would assist in making clinical decisions.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/mortality , Critical Care/methods , Hospital Mortality , Intubation, Intratracheal/methods , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Lung/diagnostic imaging , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Survival Analysis , Time Factors , Turkey/epidemiology , Young Adult
8.
Nutr Hosp ; 38(6): 1263-1268, 2021 Dec 09.
Article in English | MEDLINE | ID: covidwho-1478821

ABSTRACT

INTRODUCTION: Background: nutritional status might vary according to different underlying illnesses such as cancer or infectious diseases, including COVID-19. In this context, data from developing countries remain scarce. Objectives: the objective of this study was to assess the nutritional status and outcomes of Mexican cancer patients diagnosed with COVID-19 at a tertiary care center. Methods: this was a retrospective study including 121 consecutive cancer patients diagnosed with COVID-19 at the National Cancer Institute, Mexico City, during four months. Results: the most frequent oncological diagnoses were gynecological (19 %) and hematological (17 %). Most patients were overweight (35 %). In the univariate analysis, ≥ 65 years, intubation, hypoalbuminemia, high creatinine, lymphopenia, nutrition-impact symptoms, and ECOG 2-4 were statistically associated with lower survival. The median survival of the cohort was 41 days. Conclusions: to our best knowledge, this is the first study of its kind performed in Mexico, and as other studies from other regions, our results might aid in identifying cancer patients most at risk for severe COVID-19, and could be potentially useful to enhance public health messaging on self-isolation and social distancing among Mexican cancer patients.


INTRODUCCIÓN: Antecedentes: el estado nutricional puede variar según las diferentes enfermedades subyacentes, como el cáncer o las enfermedades infecciosas, por ejemplo, la COVID-19. En este contexto, los datos de los países en desarrollo siguen siendo escasos. Objetivos: el objetivo de este estudio fue evaluar el estado nutricional y los resultados de pacientes mexicanos con cáncer diagnosticados de COVID-19 en un centro de atención terciaria. Métodos: se trata de un estudio retrospectivo que incluyó a 121 pacientes consecutivos con cáncer diagnosticados de COVID-19 en el Instituto Nacional del Cáncer de la Ciudad de México durante cuatro meses. Resultados: los diagnósticos oncológicos más frecuentes fueron los ginecológicos (19 %) y hematológicos (17 %). La mayoría de los pacientes tenían sobrepeso (35 %) y obesidad (31 %). En el análisis univariado, ≥ 65 años, intubación, hipoalbuminemia, creatinina alta, linfopenia, síntomas de impacto nutricional y ECOG 2-4 se asociaron estadísticamente con una menor supervivencia. La mediana de supervivencia de la cohorte fue de 41 días. Conclusiones: hasta donde sabemos, este es el primer estudio de este tipo realizado en México y, al igual que otros estudios de otras regiones, nuestros resultados podrían ayudar a identificar a los pacientes con cáncer y mayor riesgo de COVID-19 grave; también podrían ser potencialmente útiles para mejorar los mensajes de salud sobre el autoaislamiento y el distanciamiento social entre los pacientes mexicanos con cáncer.


Subject(s)
COVID-19/mortality , Neoplasms/mortality , Nutritional Status , Adult , Age Factors , Aged , Aged, 80 and over , Analysis of Variance , COVID-19/epidemiology , Creatinine/blood , Female , Humans , Hypoalbuminemia/epidemiology , Intubation, Intratracheal/statistics & numerical data , Lymphopenia/epidemiology , Male , Mexico/epidemiology , Middle Aged , Overweight/epidemiology , Retrospective Studies , Young Adult
9.
Clin Neurophysiol ; 132(12): 3019-3024, 2021 12.
Article in English | MEDLINE | ID: covidwho-1466232

ABSTRACT

OBJECTIVE: Neurological manifestations in patients with coronavirus disease 2019 (COVID-19) have been reported from early features of anosmia and dysgeusia to widespread involvement of the central nervous system, peripheral nervous system, as well as the neuromuscular junction and muscle. Our study objective is to evaluate the electromyography and nerve conduction study (EMG/NCS) findings among COVID-19 patients and look for possible correlations. METHODS: This is a hospital-based retrospective observational study. All COVID-19 patients between the period of 1st January 2020 to 31st December 2020 undergoing an EMG/NCS were included. RESULTS: Eighteen patients (12 male and 6 female) were included. Mean age was 55 ± 12 years. 11 patients required intubation for a mean period of 18.6 days (range: 3-37 days). Electrodiagnostic findings were consistent with a myopathy in a majority of these patients (82%). Five of them also had a concurrent axonal neuropathy. In the remaining patients who did not require intubation (n = 7), three patients had myopathic EMG changes and one had Guillain Barre syndrome. CONCLUSION: At this time, there are no neuromuscular-specific recommendations for patients who contract COVID-19. Only time and additional data will unveil the varying nature and potential neurological sequelae of COVID-19. SIGNIFICANCE: Myopathic EMG changes are commonly seen in critically ill COVID-19 patients, especially with a prolonged hospital stay.


Subject(s)
COVID-19/complications , Electromyography , Muscular Diseases/diagnosis , Nervous System Diseases/diagnosis , Neural Conduction , Adult , Aged , Comorbidity , Female , Guillain-Barre Syndrome/diagnosis , Humans , Intubation, Intratracheal/statistics & numerical data , Length of Stay , Male , Middle Aged , Muscle, Skeletal , Retrospective Studies
10.
BMC Anesthesiol ; 21(1): 34, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1455914

ABSTRACT

BACKGROUND: The insertion of inappropriately sized uncuffed endotracheal tubes (ETTs) with a tight seal or presence of air leakage may be necessary in children. This study aimed to analyze the frequency of the requirement of inappropriately sized uncuffed ETT insertion, air leakage after the ETT was replaced with one of a larger size, and factors associated with air leakage after ETT replacement. METHODS: Patients under 2 years of age who underwent oral surgery under general anesthesia with uncuffed ETTs between December 2013 and May 2015 were enrolled. The ETT size was selected at the discretion of the attending anesthesiologists. A leak test was performed after intubation. The ETT was replaced when considered necessary. Data regarding the leak pressure (PLeak) and inspiratory and expiratory tidal volumes were extracted from anesthesia records. We considered a PLeak of 10 < PLeak ≤ 30 cmH2O to be appropriate. The frequencies of the requirement of inappropriately sized ETTs, absence of leakage after ETT replacement, ETT size difference, and leak rate were calculated. A logistic regression was performed, with PLeak, leak rate, and size difference included as explanatory variables and presence of leakage after replacement as the outcome variable. RESULTS: Out of the 156 patients enrolled, 109 underwent ETT replacement, with the requirement of inappropriately sized ETTs being observed in 25 patients (23%). ETT replacement was performed in patients with PLeak ≤ 10 cmH2O; leakage was absent after replacement (PLeak < 30 cmH2O) in 52% of patients (25/48). In the multivariate logistic model, the leak rate before ETT replacement was significantly associated with the presence of leakage after replacement (p = 0.021). CONCLUSIONS: Inappropriately sized ETTs were inserted in approximately 23% of the patients. The leak rate may be useful to guide ETT replacement.


Subject(s)
Equipment Design/methods , Intubation, Intratracheal/instrumentation , Intubation, Intratracheal/methods , Equipment Design/statistics & numerical data , Female , Humans , Infant , Intubation, Intratracheal/statistics & numerical data , Male , Retrospective Studies
11.
Biomed Res Int ; 2021: 1901772, 2021.
Article in English | MEDLINE | ID: covidwho-1440845

ABSTRACT

BACKGROUND: Although vaccine rollout for COVID-19 has been effective in some countries, there is still an urgent need to reduce disease transmission and severity. We recently carried out a meta-analysis and found that pre- and in-hospital use of statins may improve COVID-19 mortality outcomes. Here, we provide an updated meta-analysis in an attempt to validate these results and increase the statistical power of these potentially important findings. METHODS: The meta-analysis investigated the effect of observational and randomized clinical studies on intensive care unit (ICU) admission, tracheal intubation, and death outcomes in COVID-19 cases involving statin treatment, by searching the scientific literature up to April 23, 2021. Statistical analysis and random effect modeling were performed to assess the combined effects of the updated and previous findings on the outcome measures. Findings. The updated literature search led to the identification of 23 additional studies on statin use in COVID-19 patients. Analysis of the combined studies (n = 47; 3,238,508 subjects) showed no significant effect of statin treatment on ICU admission and all-cause mortality but a significant reduction in tracheal intubation (OR = 0.73, 95% CI: 0.54-0.99, p = 0.04, n = 10 studies). The further analysis showed that death outcomes were significantly reduced in the patients who received statins during hospitalization (OR = 0.54, 95% CI: 0.50-0.58, p < 0.001, n = 7 studies), with no such effect of statin therapy before hospital admission (OR = 1.06, 95% CI = 0.82-1.37, p = 0.670, n = 29 studies). CONCLUSION: Taken together, this updated meta-analysis extends and confirms the findings of our previous study, suggesting that in-hospital statin use leads to significant reduction of all-cause mortality in COVID-19 cases. Considering these results, statin therapy during hospitalization, while indicated, should be recommended.


Subject(s)
COVID-19/drug therapy , Hospitalization/trends , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Intubation, Intratracheal/trends , COVID-19/mortality , Cause of Death/trends , Hospitalization/statistics & numerical data , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Intensive Care Units , Intubation, Intratracheal/statistics & numerical data , Models, Statistical , Observational Studies as Topic , Randomized Controlled Trials as Topic , Survival Analysis , Treatment Outcome
12.
Lancet Respir Med ; 9(9): 989-998, 2021 09.
Article in English | MEDLINE | ID: covidwho-1392669

ABSTRACT

BACKGROUND: Although COVID-19 has greatly affected many low-income and middle-income countries, detailed information about patients admitted to the intensive care unit (ICU) is still scarce. Our aim was to examine ventilation characteristics and outcomes in invasively ventilated patients with COVID-19 in Argentina, an upper middle-income country. METHODS: In this prospective, multicentre cohort study (SATICOVID), we enrolled patients aged 18 years or older with RT-PCR-confirmed COVID-19 who were on invasive mechanical ventilation and admitted to one of 63 ICUs in Argentina. Patient demographics and clinical, laboratory, and general management variables were collected on day 1 (ICU admission); physiological respiratory and ventilation variables were collected on days 1, 3, and 7. The primary outcome was all-cause in-hospital mortality. All patients were followed until death in hospital or hospital discharge, whichever occurred first. Secondary outcomes were ICU mortality, identification of independent predictors of mortality, duration of invasive mechanical ventilation, and patterns of change in physiological respiratory and mechanical ventilation variables. The study is registered with ClinicalTrials.gov, NCT04611269, and is complete. FINDINGS: Between March 20, 2020, and Oct 31, 2020, we enrolled 1909 invasively ventilated patients with COVID-19, with a median age of 62 years [IQR 52-70]. 1294 (67·8%) were men, hypertension and obesity were the main comorbidities, and 939 (49·2%) patients required vasopressors. Lung-protective ventilation was widely used and median duration of ventilation was 13 days (IQR 7-22). Median tidal volume was 6·1 mL/kg predicted bodyweight (IQR 6·0-7·0) on day 1, and the value increased significantly up to day 7; positive end-expiratory pressure was 10 cm H2O (8-12) on day 1, with a slight but significant decrease to day 7. Ratio of partial pressure of arterial oxygen (PaO2) to fractional inspired oxygen (FiO2) was 160 (IQR 111-218), respiratory system compliance 36 mL/cm H2O (29-44), driving pressure 12 cm H2O (10-14), and FiO2 0·60 (0·45-0·80) on day 1. Acute respiratory distress syndrome developed in 1672 (87·6%) of patients; 1176 (61·6%) received prone positioning. In-hospital mortality was 57·7% (1101/1909 patients) and ICU mortality was 57·0% (1088/1909 patients); 462 (43·8%) patients died of refractory hypoxaemia, frequently overlapping with septic shock (n=174). Cox regression identified age (hazard ratio 1·02 [95% CI 1·01-1·03]), Charlson score (1·16 [1·11-1·23]), endotracheal intubation outside of the ICU (ie, before ICU admission; 1·37 [1·10-1·71]), vasopressor use on day 1 (1·29 [1·07-1·55]), D-dimer concentration (1·02 [1·01-1·03]), PaO2/FiO2 on day 1 (0·998 [0·997-0·999]), arterial pH on day 1 (1·01 [1·00-1·01]), driving pressure on day 1 (1·05 [1·03-1·08]), acute kidney injury (1·66 [1·36-2·03]), and month of admission (1·10 [1·03-1·18]) as independent predictors of mortality. INTERPRETATION: In patients with COVID-19 who required invasive mechanical ventilation, lung-protective ventilation was widely used but mortality was high. Predictors of mortality in our study broadly agreed with those identified in studies of invasively ventilated patients in high-income countries. The sustained burden of COVID-19 on scarce health-care personnel might have contributed to high mortality over the course of our study in Argentina. These data might help to identify points for improvement in the management of patients in middle-income countries and elsewhere. FUNDING: None. TRANSLATION: For the Spanish translation of the Summary see Supplementary Materials section.


Subject(s)
COVID-19/therapy , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Adult , Aged , Argentina/epidemiology , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Nucleic Acid Testing , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Prospective Studies , Respiration, Artificial/methods , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/mortality , Respiratory Insufficiency/virology , Risk Factors , SARS-CoV-2/isolation & purification , Tidal Volume , Treatment Outcome , Young Adult
13.
JAMA Netw Open ; 4(8): e2120456, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1351178

ABSTRACT

Importance: Prior studies on COVID-19 and pregnancy have reported higher rates of cesarean delivery and preterm birth and increased morbidity and mortality. Additional data encompassing a longer time period are needed. Objective: To examine characteristics and outcomes of a large US cohort of women who underwent childbirth with vs without COVID-19. Design, Setting, and Participants: This cohort study compared characteristics and outcomes of women (age ≥18 years) who underwent childbirth with vs without COVID-19 between March 1, 2020, and February 28, 2021, at 499 US academic medical centers or community affiliates. Follow-up was limited to in-hospital course and discharge destination. Childbirth was defined by clinical classification software procedural codes of 134-137. A diagnosis of COVID-19 was identified using International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) diagnosis of U07.1. Data were analyzed from April 1 to April 30, 2021. Exposures: The presence of a COVID-19 diagnosis using ICD-10. Main Outcomes and Measures: Analyses compared demographic characteristics, gestational age, and comorbidities. The primary outcome was in-hospital mortality. Secondary outcomes included hospital length of stay, intensive care unit (ICU) admission, mechanical ventilation, and discharge status. Continuous variables were analyzed using t test, and categorical variables were analyzed using χ2. Results: Among 869 079 women, 18 715 (2.2%) had COVID-19, and 850 364 (97.8%) did not. Most women were aged 18 to 30 years (11 550 women with COVID-19 [61.7%]; 447 534 women without COVID-19 [52.6%]) and were White (8060 White women [43.1%] in the COVID-19 cohort; 499 501 White women (58.7%) in the non-COVID-19 cohort). There was no significant increase in cesarean delivery among women with COVID-19 (6088 women [32.5%] vs 273 810 women [32.3%]; P = .57). Women with COVID-19 were more likely to have preterm birth (3072 women [16.4%] vs 97 967 women [11.5%]; P < .001). Women giving birth with COVID-19, compared with women without COVID-19, had significantly higher rates of ICU admission (977 women [5.2%] vs 7943 women [0.9%]; odds ratio [OR], 5.84 [95% CI, 5.46-6.25]; P < .001), respiratory intubation and mechanical ventilation (275 women [1.5%] vs 884 women [0.1%]; OR, 14.33 [95% CI, 12.50-16.42]; P < .001), and in-hospital mortality (24 women [0.1%] vs 71 [<0.01%]; OR, 15.38 [95% CI, 9.68-24.43]; P < .001). Conclusions and Relevance: This retrospective cohort study found that women with COVID-19 giving birth had higher rates of mortality, intubation, ICU admission, and preterm birth than women without COVID-19.


Subject(s)
COVID-19/mortality , Intensive Care Units/statistics & numerical data , Premature Birth/epidemiology , Academic Medical Centers/statistics & numerical data , Adolescent , Adult , COVID-19/therapy , Case-Control Studies , Cesarean Section/statistics & numerical data , Databases, Factual , Female , Hospital Mortality , Humans , Intubation, Intratracheal/statistics & numerical data , Length of Stay/statistics & numerical data , Middle Aged , Pandemics , Pregnancy , Pregnancy Complications, Infectious/mortality , Pregnancy Complications, Infectious/therapy , Retrospective Studies , SARS-CoV-2 , United States/epidemiology , Young Adult
14.
Sci Rep ; 11(1): 14407, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1309466

ABSTRACT

Prone position (PP) is known to improve oxygenation and reduce mortality in COVID-19 patients. This systematic review and meta-analysis aimed to determine the effects of PP on respiratory parameters and outcomes. PubMed, EMBASE, ProQuest, SCOPUS, Web of Sciences, Cochrane library, and Google Scholar were searched up to 1st January 2021. Twenty-eight studies were included. The Cochran's Q-test and I2 statistic were assessed heterogeneity, the random-effects model was estimated the pooled mean difference (PMD), and a meta-regression method has utilized the factors affecting heterogeneity between studies. PMD with 95% confidence interval (CI) of PaO2/FIO2 Ratio in before-after design, quasi-experimental design and in overall was 55.74, 56.38, and 56.20 mmHg. These values for Spo2 (Sao2) were 3.38, 17.03, and 7.58. PP in COVID-19 patients lead to significantly decrease of the Paco2 (PMD: - 8.69; 95% CI - 14.69 to - 2.69 mmHg) but significantly increase the PaO2 (PMD: 37.74; 95% CI 7.16-68.33 mmHg). PP has no significant effect on the respiratory rate. Based on meta-regression, the study design has a significant effect on the heterogeneity of Spo2 (Sao2) (Coefficient: 12.80; p < 0.001). No significant associations were observed for other respiratory parameters with sample size and study design. The pooled estimate for death rate and intubation rates were 19.03 (8.19-32.61) and 30.68 (21.39-40.75). The prone positioning was associated with improved oxygenation parameters and reduced mortality and intubation rate in COVID-19 related respiratory failure.


Subject(s)
COVID-19/mortality , COVID-19/physiopathology , Prone Position/physiology , COVID-19/therapy , Humans , Intubation, Intratracheal/statistics & numerical data , Models, Theoretical , Respiratory Insufficiency/mortality , Respiratory Insufficiency/physiopathology , Respiratory Insufficiency/therapy
15.
J Surg Res ; 266: 361-365, 2021 10.
Article in English | MEDLINE | ID: covidwho-1275539

ABSTRACT

BACKGROUND: Tracheostomy improves outcomes for critically ill patients requiring prolonged mechanical ventilation. Data are limited on the use and benefit of tracheostomies for intubated, critically ill coronavirus disease 2019 (COVID-19) patients. During the surge in COVID 19 infections in metropolitan New York/New Jersey, our hospital cared for many COVID-19 patients who required prolonged intubation. This study describes the outcomes in COVID-19 patients who underwent tracheostomy. METHODS: We present a case series of patients with COVID-19 who underwent tracheostomy at a single institution. Tracheostomies were performed on patients with prolonged mechanical ventilation beyond 3 wk. Patient demographics, medical comorbidities, and ventilator settings prior to tracheostomy were reviewed. Primary outcome was in-hospital mortality. Secondary outcomes included time on mechanical ventilation, length of ICU and hospital stay, and discharge disposition. RESULTS: Fifteen COVID-19 patients underwent tracheostomy at an average of 31 d post intubation. Two patients (13%) died. Half of our cohort was liberated from the ventilator (8 patients, 53%), with an average time to liberation of 14 ± 6 d after tracheostomy. Among patients off mechanical ventilation, 5 (63%) had their tracheostomies removed prior to discharge. The average intensive care length of stay was 47 ± 13 d (range 29-74 d) and the average hospital stay was 59 ± 16 d (range 34-103 d). CONCLUSIONS: This study reports promising outcomes in COVID-19 patients with acute respiratory failure and need for prolonged ventilation who undergo tracheostomy during their hospitalization. Further research is warranted to establish appropriate indications for tracheostomy in COVID-19 and confirm outcomes.


Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/therapy , Tracheostomy/statistics & numerical data , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Critical Care/statistics & numerical data , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Intubation, Intratracheal/adverse effects , Length of Stay/statistics & numerical data , Male , Middle Aged , Prospective Studies , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Respiratory Insufficiency/etiology , Respiratory Insufficiency/mortality , Retrospective Studies , Time Factors , Time-to-Treatment/statistics & numerical data , Tracheostomy/adverse effects , Treatment Outcome , Ventilator Weaning/statistics & numerical data
16.
West J Emerg Med ; 22(3): 678-686, 2021 May 17.
Article in English | MEDLINE | ID: covidwho-1266876

ABSTRACT

INTRODUCTION: The objective of this study was to compare airway management technique, performance, and peri-intubation complications during the novel coronavirus pandemic (COVID-19) using a single-center cohort of patients requiring emergent intubation. METHODS: We retrospectively collected data on non-operating room (OR) intubations from February 1-April 23, 2020. All patients undergoing emergency intubation outside the OR were eligible for inclusion. Data were entered using an airway procedure note integrated within the electronic health record. Variables included level of training and specialty of the laryngoscopist, the patient's indication for intubation, methods of intubation, induction and paralytic agents, grade of view, use of video laryngoscopy, number of attempts, and adverse events. We performed a descriptive analysis comparing intubations with an available positive COVID-19 test result with cases that had either a negative or unavailable test result. RESULTS: We obtained 406 independent procedure notes filed between February 1-April 23, 2020, and of these, 123 cases had a positive COVID-19 test result. Residents performed fewer tracheal intubations in COVID-19 cases when compared to nurse anesthetists (26.0% vs 37.4%). Video laryngoscopy was used significantly more in COVID-19 cases (91.1% vs 56.8%). No difference in first-pass success was observed between COVID-19 positive cases and controls (89.4% vs. 89.0%, p = 1.0). An increased rate of oxygen desaturation was observed in COVID-19 cases (20.3% vs. 9.9%) while there was no difference in the rate of other recorded complications and first-pass success. DISCUSSION: An average twofold increase in the rate of tracheal intubation was observed after March 24, 2020, corresponding with an influx of COVID-19 positive cases. We observed adherence to society guidelines regarding performance of tracheal intubation by an expert laryngoscopist and the use of video laryngoscopy.


Subject(s)
COVID-19/therapy , Emergency Service, Hospital/statistics & numerical data , Intubation, Intratracheal/statistics & numerical data , COVID-19/epidemiology , Case-Control Studies , Female , Humans , Intubation, Intratracheal/standards , Laryngoscopy/adverse effects , Laryngoscopy/methods , Male , Quality Improvement , Retrospective Studies , SARS-CoV-2
17.
Turk J Med Sci ; 51(3): 1675-1681, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1264581

ABSTRACT

Background and aim: The aim of this study is to evaluate whether the long-term (≥4 weeks) use of proton pump inhibitors (PPIs) is a risk factor for intubation requirement and mortality in patients hospitalized for COVID-19. Materials and methods: In this multicentric retrospective study, a total of 382 adult patients (≥18 years of age) with confirmed COVID-19 who were hospitalized for treatment were enrolled. The patients were divided into two groups according to the periods during which they used PPIs: the first group included patients who were not on PPI treatment, and the second group included those who have used PPIs for more than 4 weeks. Results: The study participants were grouped according to their PPI usage history over the last 6 months. In total, 291 patients did not use any type of PPI over the last 6 months, and 91 patients used PPIs for more than 4 weeks. Older age (HR: 1.047, 95% CI: 1.026­1.068), current smoking (HR: 2.590, 95% CI: 1.334­5.025), and PPI therapy for more than 4 weeks (HR: 1.83, 95% CI: 1.06­2.41) were found to be independent risk factors for mortality. Conclusion: The results obtained in this study show that using PPIs for more than 4 weeks is associated with negative outcomes for patients with COVID-19. Patients receiving PPI therapy should be evaluated more carefully if they are hospitalized for COVID-19 treatment.


Subject(s)
COVID-19/mortality , Proton Pump Inhibitors/adverse effects , Adult , Aged , Female , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Time , Turkey/epidemiology
18.
Am J Otolaryngol ; 42(6): 103102, 2021.
Article in English | MEDLINE | ID: covidwho-1260644

ABSTRACT

BACKGROUND: Tracheostomy is one of the most common surgical procedures performed on ventilated COVID-19 patients, yet the appropriate timing for operating is controversial. OBJECTIVES: Assessing the effect of early tracheostomy on mortality and decannulation; elucidating changes in ventilation parameters, vasopressors and sedatives dosages immediately following the procedure. METHODS: A retrospective cohort of 38 ventilated COVID-19 patients, 19 of them (50%) underwent tracheostomy within 7 days of intubation (early tracheostomy group) and the rest underwent tracheostomy after 8 days or more (late tracheostomy group). RESULTS: Decannulation rates were significantly higher while mortality rates were non-significantly lower in the early tracheostomy group compared with the late tracheostomy group (58% vs 21% p < 0.05; 42% vs 74% p = 0.1, respectively). Tidal volume increased (446 ml vs 483 ml; p = 0.02) while PEEP (13 cmH20 vs 11.6 cmH2O, p = 0.04) decreased at the immediate time following the procedure. No staff member participating in the procedures was infected with SARS-CoV-2 virus. CONCLUSION: Early tracheostomy might offer improved outcomes with higher decannulation rates and lower mortality rates in ventilated COVID-19 patients, yet larger scale studies are needed. Most likely, early exposure to COVID-19 patients with appropriate personal protective equipment during open tracheostomy does not put the surgical team at risk.


Subject(s)
COVID-19/surgery , Respiration, Artificial , Tracheostomy/methods , Aged , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Device Removal/statistics & numerical data , Female , Humans , Intubation, Intratracheal/statistics & numerical data , Male , Middle Aged , Retrospective Studies , Tidal Volume , Time Factors , Tracheostomy/statistics & numerical data
19.
Sci Rep ; 11(1): 11334, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1249212

ABSTRACT

Prophylactic low molecular weight heparin (pLMWH) is currently recommended in COVID-19 to reduce the risk of coagulopathy. The aim of this study was to evaluate whether the antinflammatory effects of pLMWH could translate in lower rate of clinical progression in patients with COVID-19 pneumonia. Patients admitted to a COVID-hospital in Rome with SARS-CoV-2 infection and mild/moderate pneumonia were retrospectively evaluated. The primary endpoint was the time from hospital admission to orotracheal intubation/death (OTI/death). A total of 449 patients were included: 39% female, median age 63 (IQR, 50-77) years. The estimated probability of OTI/death for patients receiving pLMWH was: 9.5% (95% CI 3.2-26.4) by day 20 in those not receiving pLMWH vs. 10.4% (6.7-15.9) in those exposed to pLMWH; p-value = 0.144. This risk associated with the use of pLMWH appeared to vary by PaO2/FiO2 ratio: aHR 1.40 (95% CI 0.51-3.79) for patients with an admission PaO2/FiO2 ≤ 300 mmHg and 0.27 (0.03-2.18) for those with PaO2/FiO2 > 300 mmHg; p-value at interaction test 0.16. pLMWH does not seem to reduce the risk of OTI/death mild/moderate COVID-19 pneumonia, especially when respiratory function had already significantly deteriorated. Data from clinical trials comparing the effect of prophylactic vs. therapeutic dosage of LMWH at various stages of COVID-19 disease are needed.


Subject(s)
COVID-19/drug therapy , COVID-19/mortality , Heparin, Low-Molecular-Weight/therapeutic use , Intubation, Intratracheal/statistics & numerical data , Respiration, Artificial/statistics & numerical data , Aged , COVID-19/diagnostic imaging , COVID-19/physiopathology , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Retrospective Studies , Risk Assessment , Rome , Severity of Illness Index
20.
JAMA ; 325(17): 1731-1743, 2021 05 04.
Article in English | MEDLINE | ID: covidwho-1241490

ABSTRACT

Importance: High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19. Objective: To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen ≤200). Interventions: Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H2O; pressure support, 10-12 cm H2O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). Main Outcomes and Measures: The primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. Results: Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, -2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, -21% [95% CI, -38% to -3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR, 13-28] vs 25 [IQR 4-28]; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, -1% [95% CI, -17% to 15%]; P > .99). Conclusions and Relevance: Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine effects on other outcomes, including the need for endotracheal intubation. Trial Registration: ClinicalTrials.gov Identifier: NCT04502576.


Subject(s)
COVID-19/complications , Intubation, Intratracheal/statistics & numerical data , Noninvasive Ventilation/instrumentation , Oxygen Inhalation Therapy/methods , Respiratory Insufficiency/therapy , Aged , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Humans , Hypoxia/etiology , Male , Middle Aged , Noninvasive Ventilation/methods , Respiratory Insufficiency/etiology , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL