Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.17.24301452

ABSTRACT

BackgroundRisk stratification is a cornerstone of the Pediatric Infectious Diseases Society COVID-19 treatment guidance. This systematic review and meta-analysis aimed to define the clinical characteristics and comorbidities associated with critical COVID-19 in children and adolescents. MethodsTwo independent reviewers screened the literature (Medline and EMBASE) for studies published through August 2023 that reported outcome data on patients aged [≤]21 years with COVID-19. Critical disease was defined as an invasive mechanical ventilation requirement, intensive care unit admission, or death. Random effects models were used to estimate pooled odds ratios (OR) with 95% confidence intervals (CI), and heterogeneity was explored through subgroup analyses. ResultsAmong 10,178 articles, 136 studies met the inclusion criteria for review. Data from 70 studies, which collectively examined 172,165 children and adolescents with COVID-19, were pooled for meta-analysis. In previously healthy children, the absolute risk of critical disease from COVID-19 was 4% (95% CI, 1%-10%). Compared with no comorbidities, the pooled OR for critical disease was 3.95 (95% CI, 2.78-5.63) for presence of one comorbidity and 9.51 (95% CI, 5.62-16.06) for [≥]2 comorbidities. Key risk factors included cardiovascular and neurological disorders, chronic pulmonary conditions (excluding asthma), diabetes, obesity, and immunocompromise, all with statistically significant ORs >2.00. ConclusionsWhile the absolute risk for critical COVID-19 in children and adolescents without underlying health conditions is relatively low, the presence of one or more comorbidities was associated with markedly increased risk. These findings support the importance of risk stratification in tailoring pediatric COVID-19 management. SummaryThis systematic review with meta-analysis integrated data from 136 studies (172,165 patients) and identified diabetes; obesity; immunocompromise; and cardiovascular, neurological, and pulmonary disease as predictors of severe pediatric COVID-19. The presence of multiple comorbidities increases the risk of critical outcomes.


Subject(s)
COVID-19 , Nervous System Diseases , Lung Diseases , Invasive Pulmonary Aspergillosis , Diabetes Mellitus , Critical Illness , Obesity , Death
2.
Adv Respir Med ; 91(3): 185-202, 2023 May 08.
Article in English | MEDLINE | ID: covidwho-2326751

ABSTRACT

Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , COVID-19/complications , Antifungal Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , SARS-CoV-2
3.
J Clin Lab Anal ; 37(1): e24816, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2325150

ABSTRACT

BACKGROUND: Aspergillus endocarditis (AE) is a rare fatal infection. The infection is often reported in patients with prosthetic heart valves, immunosuppressed, broad-spectrum antimicrobial use regimens, and drug abusers. METHODS: Herein, we report a rare case of native mitral valve AE in a 63-year-old man, with a probable COVID-19-associated invasive pulmonary aspergillosis nine months ago treated with antifungals. RESULTS: In the last admission, the lethargy, neurological deficit, and septic-embolic brain abscess in brain MRI led to suspicion of infective endocarditis. Transesophageal two-dimensional echocardiography and color Doppler flow velocity mapping showed a large highly mobile mass destroying leaflet and severe mitral regurgitation. The Surgical valve replacement is performed. The surgical valve replacement is performed. Direct microscopic examination and culture of the explanted and vegetative mass revealed Aspergillus section Fumiagati confirmed by molecular method. Despite the administration of voriconazole and transient improvement the patient expired. CONCLUSION: As AE is a late consequence of COVID-19-associated invasive pulmonary aspergillosis, therefore, long-term follow-up of invasive aspergillosis, and prompt diagnosis of surgical and systemic antifungal therapy treatment, are warranted to provide robust management.


Subject(s)
COVID-19 , Endocarditis , Invasive Pulmonary Aspergillosis , Male , Humans , Middle Aged , Invasive Pulmonary Aspergillosis/complications , COVID-19/complications , Endocarditis/complications , Endocarditis/diagnostic imaging , Aspergillus , Voriconazole/therapeutic use
4.
Immun Inflamm Dis ; 11(1): e760, 2023 01.
Article in English | MEDLINE | ID: covidwho-2300913

ABSTRACT

BACKGROUND: Infections with fungi, such as Aspergillus species, have been found as common complications of viral pneumonia. This study aims to determine the risk factors of fungal superinfections in viral pneumonia patients using meta-analysis. OBJECTIVE: This study aims to determine the risk factors of fungal infection s in viral pneumonia patients using meta-analysis. METHODS: We reviewed primary literature about fungal infection in viral pneumonia patients published between January 1, 2010 and September 30, 2020, in the Chinese Biomedical Literature, Chinese National Knowledge Infrastructure, Wanfang (China), Cochrane Central Library, Embase, PubMed, and Web of Science databases. These studies were subjected to an array of statistical analyses, including risk of bias and sensitivity analyses. RESULTS: In this study, we found a statistically significant difference in the incidence of fungal infections in viral pneumonia patients that received corticosteroid treatment as compared to those without corticosteroid treatment (p < .00001). Additionally, regarding the severity of fungal infections, we observed significant higher incidence of invasive pulmonary aspergillosis (IPA) in patients with high Acute Physiology and Chronic Health Evaluation (APACHE) II scores (p < .001), tumors (p = .005), or immunocompromised patients (p < .0001). CONCLUSIONS: Our research shows that corticosteroid treatment was an important risk factor for the development of fungal infection in patients with viral pneumonia. High APACHE II scores, tumors, and immunocompromised condition are also important risk factors of developing IPA. The diagnosis of fungal infection in viral pneumonia patients can be facilitated by early serum galactomannan (GM) testing, bronchoalveolar lavage fluid Aspergillus antigen testing, culture, and biopsy.


Subject(s)
Invasive Pulmonary Aspergillosis , Neoplasms , Superinfection , Humans , Superinfection/complications , Sensitivity and Specificity , Aspergillus , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Risk Factors
5.
J Infect Chemother ; 29(6): 580-585, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2233928

ABSTRACT

INTRODUCTION: Invasive pulmonary aspergillosis (IPA) is an important complication of coronavirus disease 2019 (COVID-19), and while there are case reports and epidemiological studies, few studies have isolated Aspergillus strains from patients. Therefore, we analyzed the strains, sensitivities, and genetic homology of Aspergillus spp. Isolated from patients with COVID-19. METHODS: We investigated the Aspergillus strains detected from patients with COVID-19 hospitalized in Osaka Metropolitan University Hospital from December 2020 to June 2021. A molecular epidemiological analysis of Aspergillus spp. was performed using drug susceptibility tests and TRESPERG typing, and data on patient characteristics were collected from electronic medical records. RESULTS: Twelve strains of Aspergillus were detected in 11 of the 122 patients (9%) with COVID-19. A. fumigatus was the most common species detected, followed by one strain each of Aspergillus aureolus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus. A. aureolus was resistant to voriconazole, and no resistance was found in other strains. All A. fumigatus strains were genetically distinct strains. Six of the 11 patients that harbored Aspergillus received antifungal drug treatment and tested positive for ß-D-glucan and/or Aspergillus galactomannan antigen. The results indicated that Aspergillus infections were acquired from outside the hospital and not from nosocomial infections. CONCLUSION: Strict surveillance of Aspergillus spp. is beneficial in patients at high-risk for IPA. When Aspergillus is detected, it is important to monitor the onset of IPA carefully and identify the strain, perform drug sensitivity tests, and facilitate early administration of therapeutic agents to patients with IPA.


Subject(s)
Aspergillosis , COVID-19 , Invasive Pulmonary Aspergillosis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillus/genetics , Aspergillosis/drug therapy , Voriconazole/therapeutic use , Invasive Pulmonary Aspergillosis/drug therapy , Microbial Sensitivity Tests
6.
Lancet Respir Med ; 10(12): 1147-1159, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2221527

ABSTRACT

BACKGROUND: Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS: In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1ß, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS: Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION: Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING: Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.


Subject(s)
Aspergillosis , COVID-19 , Influenza, Human , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , COVID-19/complications , Influenza, Human/complications , Influenza, Human/drug therapy , SARS-CoV-2 , Antifungal Agents/therapeutic use , Retrospective Studies , RNA, Viral , Pulmonary Aspergillosis/complications , Lung/pathology , Immunity, Innate , Invasive Pulmonary Aspergillosis/complications
8.
BMC Infect Dis ; 22(1): 822, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108749

ABSTRACT

BACKGROUND: Invasive pulmonary aspergillosis (IPA) is seen during coronavirus-2019 (COVID-19), has been reported in different incidences, and is defined as COVID-19-associated pulmonary aspergillosis (CAPA). Detection of galactomannan antigen is an important diagnostic step in diagnosing IPA. Enzyme-linked immunoassay (ELISA) is the most frequently used method, and lateral flow assay (LFA) is increasingly used with high sensitivity and specificity for rapid diagnosis. The present study aimed to compare the sensitivity of LFA and ELISA in the diagnosis of CAPA in COVID-19 patients followed in our hospital's ICU for pandemic (ICU-P). METHODS: This study included patients with a diagnosis of COVID-19 cases confirmed by polymerase chain reaction and were followed up in ICU-P between August 2021 and February 2022 with acute respiratory failure. The diagnosis of CAPA was based on the European Confederation of Medical Mycology (ECMM) and the International Society for Human and Animal Mycology 2020 (ECMM/ ISHAM) guideline. Galactomannan levels were determined using LFA and ELISA in serum samples taken simultaneously from the patients. RESULTS: Out of the 174 patients followed in the ICU-P, 56 did not meet any criteria for CAPA and were excluded from the analysis. The rate of patients diagnosed with proven CAPA was 5.7% (10 patients). A statistically significant result was obtained with LFA for the cut-off value of 0.5 ODI in the diagnosis of CAPA (p < 0.001). The same significant statistical relationship was found for the cut-off value of 1.0 ODI for the ELISA (p < 0.01). The sensitivity of LFA was 80% (95% CI: 0.55-1.05, p < 0.05), specificity 94% (95% CI: 0.89-0.98, p < 0.05); PPV 53% (95% CI: 0.28-0.79, p > 0.05) and NPV was 98% (95% CI: 0.95-1.01, p < 0.05). The risk of death was 1.66 (HR: 1.66, 95% CI: 1.02-2.86, p < 0.05) times higher in patients with an LFA result of ≥ 0.5 ODI than those with < 0.5 (p < 0.05). CONCLUSIONS: It is reckoned that LFA can be used in future clinical practice, particularly given its effectiveness in patients with hematological malignancies and accuracy in diagnosing CAPA.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , COVID-19/diagnosis , Bronchoalveolar Lavage Fluid , Invasive Pulmonary Aspergillosis/diagnosis , Pandemics , Mycology , Pulmonary Aspergillosis/diagnosis
11.
BMJ Open ; 12(8): e057746, 2022 08 29.
Article in English | MEDLINE | ID: covidwho-2020034

ABSTRACT

INTRODUCTION: Increasing numbers of patients with non-haematological diseases are infected with invasive pulmonary aspergillosis (IPA), with a high mortality reported which is mainly due to delayed diagnosis. The diagnostic capability of mycological tests for IPA including galactomannan test, (1,3)-ß-D-glucan test, lateral flow assay, lateral flow device and PCR for the non-haematological patients remains unknown. This protocol aims to conduct a systematic review and meta-analysis of the diagnostic performance of mycological tests to facilitate the early diagnosis and treatments of IPA in non-haematological diseases. METHODS AND ANALYSIS: Database including PubMed, CENTRAL and EMBASE will be searched from 2002 until the publication of results. Cohort or cross-sectional studies that assessing the diagnostic capability of mycological tests for IPA in patients with non-haematological diseases will be included. The true-positive, false-positive, true-negative and false-negative of each test will be extracted and pooled in bivariate random-effects model, by which the sensitivity and specificity will be calculated with 95% CI. The second outcomes will include positive (negative) likelihood ratio, area under the receiver operating characteristic curve and diagnostic OR will also be computed in the bivariate model. When applicable, subgroup analysis will be performed with several prespecified covariates to explore potential sources of heterogeneity. Factors that may impact the diagnostic effects of mycological tests will be examined by sensitivity analysis. The risk of bias will be appraised by the Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS-2). ETHICS AND DISSEMINATION: This protocol is not involved with ethics approval, and the results will be peer-reviewed and disseminated on a recognised journal. PROSPERO REGISTRATION NUMBER: CRD42021241820.


Subject(s)
Diagnostic Tests, Routine , Invasive Pulmonary Aspergillosis , Meta-Analysis as Topic , Systematic Reviews as Topic , Cross-Sectional Studies , Diagnostic Tests, Routine/standards , Hematology , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Likelihood Functions , Odds Ratio , ROC Curve , Sensitivity and Specificity , Systematic Reviews as Topic/methods
12.
Mycoses ; 65(10): 960-968, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1992875

ABSTRACT

BACKGROUND: Galactomannan Enzyme Immunoassay (GM-EIA) is proved to be a cornerstone in the diagnosis of COVID-19-associated pulmonary aspergillosis (CAPA), its use is limited in middle and low-income countries, where the application of simple and rapid test, including Galactomannan Lateral Flow Assay (GM-LFA), is highly appreciated. Despite such merits, limited studies directly compared GM-LFA with GM-EIA. Herein we compared the diagnostic features of GM-LFA, GM-EIA and bronchoalveolar lavage (BAL) culture for CAPA diagnosis in Iran, a developing country. MATERIALS/METHODS: Diagnostic performances of GM-LFA and GM-EIA in BAL (GM indexes ≥1) and serum (GM indexes >0.5), i.e. sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and areas under the curve (AUC), were evaluated using BAL (n = 105) and serum (n = 101) samples from mechanically ventilated COVID-19 patients in intensive care units. Patients were classified based on the presence of host factors, radiological findings and mycological evidences according to 2020 ECMM/ISHAM consensus criteria for CAPA diagnosis. RESULTS: The Aspergillus GM-LFA for serum and BAL samples showed a sensitivity of 56.3% and 60.6%, specificity of 94.2% and 88.9%, PPV of 81.8% and 71.4%, NPV of 82.3% and 83.1%, when compared with BAL culture, respectively. GM-EIA showed sensitivities of 46.9% and 54.5%, specificities of 100% and 91.7%, PPVs of 100% and 75%, NPVs of 80.2% and 81.5% for serum and BAL samples, respectively. CONCLUSION: Our study found GM-LFA as a reliable simple and rapid diagnostic tool, which could circumvent the shortcomings of culture and GM-EIA and be pivotal in timely initiation of antifungal treatment.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Antifungal Agents , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/diagnosis , COVID-19 Testing , Galactose/analogs & derivatives , Humans , Immunoenzyme Techniques , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Mannans , Sensitivity and Specificity
14.
Acta Med Indones ; 54(2): 292-298, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1929565

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been a worldwide pandemic with several problems, one of which is the lack of definitive treatment. COVID-19-associated pulmonary aspergillosis (CAPA), the presence of invasive pulmonary aspergillosis (IPA) in COVID-19 patients, is one of the concerning secondary infections associated with higher mortality and worse clinical outcomes. Diagnosing CAPA may be challenging due to the possible absence of classic host factors and clinical symptoms or obscured radiological findings. We described two CAPA cases, which were suspected due to persistent respiratory failure despite standard treatment of COVID-19 with additional therapies and antimicrobial agents for secondary infections, eventually diagnosed with serum galactomannan testing. Clinical conditions of both patients improved significantly after the administration of voriconazole. This case series emphasizes the importance of being aware of clinical suspicions indicating CAPA followed by galactomannan testing as a relatively fast, noninvasive test for its diagnosis, which leads to appropriate antifungal treatment.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , COVID-19/complications , COVID-19/therapy , Coinfection , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/virology
15.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.18.500514

ABSTRACT

Purpose: The opportunistic fungus Aspergillus fumigatus infects the lungs of immunocompromised hosts, including patients undergoing chemotherapy or organ transplantation. More recently however, immunocompetent patients with severe SARS-CoV2 have been reported to be affected by COVID-19 Associated Pulmonary Aspergillosis (CAPA), in the absence of the conventional risk factors for invasive aspergillosis. This paper explores the hypothesis that contributing causes are the destruction of the lung epithelium permitting colonization by opportunistic pathogens. At the same time, the exhaustion of the immune system, characterized by cytokine storms, apoptosis, and depletion of leukocytes may hinder the response to Aspergillus infection. The combination of these factors may explain the onset of invasive aspergillosis in immunocompetent patients. Methods: We used a previously published computational model of the innate immune response to infection with Aspergillus fumigatus. Variation of model parameters was used to create a virtual patient population. A simulation study of this virtual patient population to test potential causes for co-infection in immunocompetent patients. Results: The two most important factors determining the likelihood of CAPA were the inherent virulence of the fungus and the effectiveness of the neutrophil population, as measured by granule half-life and ability to kill fungal cells. Varying these parameters across the virtual patient population generated a realistic distribution of CAPA phenotypes observed in the literature. Conclusions: Computational models are an effective tool for hypothesis generation. Varying model parameters can be used to create a virtual patient population for identifying candidate mechanisms for phenomena observed in actual patient populations.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Invasive Pulmonary Aspergillosis , Coinfection , Mycoses
17.
Int J Environ Res Public Health ; 19(12)2022 06 09.
Article in English | MEDLINE | ID: covidwho-1884188

ABSTRACT

Aspergillosis is a disease caused by Aspergillus, and invasive pulmonary aspergillosis (IPA) is the most common invasive fungal infection leading to death in severely immuno-compromised patients. The literature reports Aspergillus co-infections in patients with COVID-19 (CAPA). Diagnosing CAPA clinically is complex since the symptoms are non-specific, and performing a bronchoscopy is difficult. Generally, the microbiological diagnosis of aspergillosis is based on cultural methods and on searching for the circulating antigens galactomannan and 1,3-ß-D-glucan in the bronchoalveolar lavage fluid (bGM) or serum (sGM). In this study, to verify whether the COVID-19 period has stimulated clinicians to pay greater attention to IPA in patients with respiratory tract infections, we evaluated the number of requests for GM-Ag research and the number of positive tests found during the pre-COVID-19 and COVID-19 periods. Our data show a significant upward trend in GM-Ag requests and positivity from the pre-COVID to COVID period, which is attributable in particular to the increase in IPA risk factors as a complication of COVID-19. In the COVID period, parallel to the increase in requests, the number of positive tests for GM-Ag also increased, going from 2.5% in the first period of 2020 to 12.3% in the first period of 2021.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aspergillus , Bronchoalveolar Lavage Fluid , COVID-19/epidemiology , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/epidemiology , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/epidemiology , Sensitivity and Specificity
18.
Mycoses ; 65(8): 824-833, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1879087

ABSTRACT

BACKGROUND: In the absence of lung biopsy, there are various algorithms for the diagnosis of invasive pulmonary aspergillosis (IPA) in critically ill patients that rely on clinical signs, underlying conditions, radiological features and mycology. The aim of the present study was to compare four diagnostic algorithms in their ability to differentiate between probable IPA (i.e., requiring treatment) and colonisation. METHODS: For this diagnostic accuracy study, we included a mixed ICU population with a positive Aspergillus culture from respiratory secretions and applied four different diagnostic algorithms to them. We compared agreement among the four algorithms. In a subgroup of patients with lung tissue histopathology available, we determined the sensitivity and specificity of the single algorithms. RESULTS: A total number of 684 critically ill patients (69% medical/31% surgical) were included between 2005 and 2020. Overall, 79% (n = 543) of patients fulfilled the criteria for probable IPA according to at least one diagnostic algorithm. Only 4% of patients (n = 29) fulfilled the criteria for probable IPA according to all four algorithms. Agreement among the four diagnostic criteria was low (Cohen's kappa 0.07-0.29). From 85 patients with histopathological examination of lung tissue, 40% (n = 34) had confirmed IPA. The new EORTC/MSGERC ICU working group criteria had high specificity (0.59 [0.41-0.75]) and sensitivity (0.73 [0.59-0.85]). CONCLUSIONS: In a cohort of mixed ICU patients, the agreement among four algorithms for the diagnosis of IPA was low. Although improved by the latest diagnostic criteria, the discrimination of invasive fungal infection from Aspergillus colonisation in critically ill patients remains challenging and requires further optimization.


Subject(s)
Invasive Pulmonary Aspergillosis , Aspergillus , Cohort Studies , Critical Illness , Humans , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/microbiology , Sensitivity and Specificity
19.
Med Mycol ; 60(5)2022 May 28.
Article in English | MEDLINE | ID: covidwho-1860885

ABSTRACT

Although a high prevalence of COVID-19-associated pulmonary aspergillosis has been reported, it is still difficult to distinguish between colonization with Aspergillus fumigatus and infection. Concomitantly, similarities between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and hypersensitivity pneumonitis were suggested. The objective of this study was to investigate retrospectively if precipitin assays targeting A. fumigatus could have been useful in the management of SARS-CoV-2 patients hospitalized in an Intensive Care Unit (ICU) in 2020. SARS-CoV-2 ICU patients were screened for Aspergillus co-infection using biomarkers (galactomannan antigen, qPCR) and culture of respiratory samples (tracheal aspirates and bronchoalveolar lavage). For all these patients, clinical data, ICU characteristics and microbial results were collected. Electrosyneresis assays were performed using commercial A. fumigatus somatic and metabolic antigens. ELISA were performed using in-house A. fumigatus purified antigen and recombinant antigens.Our study population consisted of 65 predominantly male patients, with a median ICU stay of 22 days, and a global survival rate of 62%. Thirty-five patients had at least one positive marker for Aspergillus species detection. The number of arcs obtained by electrosyneresis using the somatic A. fumigatus antigen was significantly higher for these 35 SARS-CoV-2 ICU patients (P 0.01, Welch's t-test). Our study showed that SARS-CoV-2 ICU patients with a positive marker for Aspergillus species detection more often presented precipitins towards A. fumigatus. Serology assays could be an additional tool to assess the clinical relevance of the Aspergillus species in respiratory samples of SARS-CoV-2 ICU patients. LAY SUMMARY: This study showed retrospectively that precipitin assays, such as electrosyneresis, could be helpful to distinguish between colonization and infection with Aspergillus fumigatus during the management of severe acute respiratory syndrome Coronavirus-2 (SARS CoV-2) patients in an intensive care unit.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Animals , Antigens, Fungal , Aspergillus , Aspergillus fumigatus , Biomarkers , COVID-19/diagnosis , COVID-19/veterinary , Female , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/veterinary , Male , Precipitins , Retrospective Studies , SARS-CoV-2
20.
Rev Chilena Infectol ; 38(6): 754-760, 2021 12.
Article in Spanish | MEDLINE | ID: covidwho-1835030

ABSTRACT

BACKGROUND: Aspergillus spp. fungal coinfections have been described in critically ill COVID-19 patients. AIM: To describe the clinical characteristics, diagnosis, treatment and evolution of patients with acute respiratory distress syndrome with COVID-19, who present with COVID-19 associated pulmonary aspergillosis (CAPA) in a single public hospital. METHODS: Retrospective review of clinical records during 12 months in patients diagnosed with CAPA by cultures of respiratory samples or determination of galactomannan (GM). RESULTS: Probable CAPA was diagnosed in 11 patients (average APACHE II score of 11.7). Respiratory samples were obtained in 73% of cases by bronchoalveolar lavage and in 27% by tracheal aspirate. A. fumigatus was isolated in 4 cultures, A. niger, A. terreus and Aspergillus spp on one occasion each and the cultures were negative in 4 samples. Respiratory sample GM was performed in 7 patients, median: 3.6 (IQR: 1.71 - 4.4). In 10 patients, serum GM was performed, median: 0.5 (IQR: 0.265 - 0.9 75) with 50% of them > 0.5. Two patients showed classic findings suggestive of CAPA on computed tomography. All received antifungal therapy with voriconazole, mean time 14 days. Four patients died. CONCLUSIONS: The presence of CAPA should be a diagnosis to be considered in critically ill COVID-19 patients.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aspergillus , COVID-19/complications , Chile/epidemiology , Critical Illness , Hospitals, Public , Humans , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL