Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Virol ; 93(7): 4454-4460, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263094

ABSTRACT

Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , Furans/pharmacology , Itraconazole/pharmacology , Pyrroles/pharmacology , SARS-CoV-2/drug effects , Triazines/pharmacology , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , Humans , Vero Cells , Virus Replication/drug effects
2.
Br J Pharmacol ; 178(11): 2339-2350, 2021 06.
Article in English | MEDLINE | ID: covidwho-1171214

ABSTRACT

BACKGROUND AND PURPOSE: The SARS-COV-2 pandemic and the global spread of coronavirus disease 2019 (COVID-19) urgently call for efficient and safe antiviral treatment strategies. A straightforward approach to speed up drug development at lower costs is drug repurposing. Here, we investigated the therapeutic potential of targeting the interface of SARS CoV-2 with the host via repurposing of clinically licensed drugs and evaluated their use in combinatory treatments with virus- and host-directed drugs in vitro. EXPERIMENTAL APPROACH: We tested the antiviral potential of the antifungal itraconazole and the antidepressant fluoxetine on the production of infectious SARS-CoV-2 particles in the polarized Calu-3 cell culture model and evaluated the added benefit of a combinatory use of these host-directed drugs with the direct acting antiviral remdesivir, an inhibitor of viral RNA polymerase. KEY RESULTS: Drug treatments were well-tolerated and potently impaired viral replication. Importantly, both itraconazole-remdesivir and fluoxetine-remdesivir combinations inhibited the production of infectious SARS-CoV-2 particles > 90% and displayed synergistic effects, as determined in commonly used reference models for drug interaction. CONCLUSION AND IMPLICATIONS: Itraconazole-remdesivir and fluoxetine-remdesivir combinations are promising starting points for therapeutic options to control SARS-CoV-2 infection and severe progression of COVID-19.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Pharmaceutical Preparations , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Fluoxetine/pharmacology , Hepatitis C, Chronic/drug therapy , Humans , Itraconazole/pharmacology , SARS-CoV-2
3.
EBioMedicine ; 66: 103288, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1141720

ABSTRACT

BACKGROUND: The antifungal drug itraconazole exerts in vitro activity against SARS-CoV-2 in Vero and human Caco-2 cells. Preclinical and clinical studies are required to investigate if itraconazole is effective for the treatment and/or prevention of COVID-19. METHODS: Due to the initial absence of preclinical models, the effect of itraconazole was explored in a clinical, proof-of-concept, open-label, single-center study, in which hospitalized COVID-19 patients were randomly assigned to standard of care with or without itraconazole. Primary outcome was the cumulative score of the clinical status until day 15 based on the 7-point ordinal scale of the World Health Organization. In parallel, itraconazole was evaluated in a newly established hamster model of acute SARS-CoV-2 infection and transmission, as soon as the model was validated. FINDINGS: In the hamster acute infection model, itraconazole did not reduce viral load in lungs, stools or ileum, despite adequate plasma and lung drug concentrations. In the transmission model, itraconazole failed to prevent viral transmission. The clinical trial was prematurely discontinued after evaluation of the preclinical studies and because an interim analysis showed no signal for a more favorable outcome with itraconazole: mean cumulative score of the clinical status 49 vs 47, ratio of geometric means 1.01 (95% CI 0.85 to 1.19) for itraconazole vs standard of care. INTERPRETATION: Despite in vitro activity, itraconazole was not effective in a preclinical COVID-19 hamster model. This prompted the premature termination of the proof-of-concept clinical study. FUNDING: KU Leuven, Research Foundation - Flanders (FWO), Horizon 2020, Bill and Melinda Gates Foundation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Itraconazole/pharmacology , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/transmission , Chlorocebus aethiops , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Itraconazole/administration & dosage , Itraconazole/pharmacokinetics , Itraconazole/therapeutic use , Male , Mesocricetus , Middle Aged , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Proof of Concept Study , SARS-CoV-2/drug effects , Treatment Outcome , Vero Cells
4.
J Med Virol ; 93(7): 4454-4460, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1118165

ABSTRACT

Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/drug therapy , Furans/pharmacology , Itraconazole/pharmacology , Pyrroles/pharmacology , SARS-CoV-2/drug effects , Triazines/pharmacology , Adenosine/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Caco-2 Cells , Cell Line, Tumor , Chlorocebus aethiops , Drug Repositioning , Humans , Vero Cells , Virus Replication/drug effects
5.
FEBS J ; 287(17): 3664-3671, 2020 09.
Article in English | MEDLINE | ID: covidwho-960850

ABSTRACT

The quest for the effective treatment against coronavirus disease 2019 pneumonia caused by the severe acute respiratory syndrome (SARS)-coronavirus 2(CoV-2) coronavirus is hampered by the lack of knowledge concerning the basic cell biology of the infection. Given that most viruses use endocytosis to enter the host cell, mechanistic investigation of SARS-CoV-2 infection needs to consider the diversity of endocytic pathways available for SARS-CoV-2 entry in the human lung epithelium. Taking advantage of the well-established methodology of membrane trafficking studies, this research direction allows for the rapid characterisation of the key cell biological mechanism(s) responsible for SARS-CoV-2 infection. Furthermore, 11 clinically approved generic drugs are identified as potential candidates for repurposing as blockers of several potential routes for SARS-CoV-2 endocytosis. More broadly, the paradigm of targeting a fundamental aspect of human cell biology to protect against infection may be advantageous in the context of future pandemic outbreaks.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning , Endocytosis/drug effects , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Amiloride/pharmacology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Caveolae/drug effects , Caveolae/virology , Chlorpromazine/pharmacology , Clathrin-Coated Vesicles/drug effects , Clathrin-Coated Vesicles/virology , Endosomes/drug effects , Endosomes/virology , Humans , Itraconazole/pharmacology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Lysosomes/drug effects , Lysosomes/virology , Nystatin/pharmacology , Pinocytosis/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Vinblastine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL