Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Lancet ; 400(10349): 359-368, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-1967456

ABSTRACT

BACKGROUND: We aimed to evaluate the use of baricitinib, a Janus kinase (JAK) 1-2 inhibitor, for the treatment of patients admitted to hospital with COVID-19. METHODS: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple possible treatments in patients hospitalised with COVID-19 in the UK. Eligible and consenting patients were randomly allocated (1:1) to either usual standard of care alone (usual care group) or usual care plus baricitinib 4 mg once daily by mouth for 10 days or until discharge if sooner (baricitinib group). The primary outcome was 28-day mortality assessed in the intention-to-treat population. A meta-analysis was done, which included the results from the RECOVERY trial and all previous randomised controlled trials of baricitinib or other JAK inhibitor in patients hospitalised with COVID-19. The RECOVERY trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936) and is ongoing. FINDINGS: Between Feb 2 and Dec 29, 2021, from 10 852 enrolled, 8156 patients were randomly allocated to receive usual care plus baricitinib versus usual care alone. At randomisation, 95% of patients were receiving corticosteroids and 23% were receiving tocilizumab (with planned use within the next 24 h recorded for a further 9%). Overall, 514 (12%) of 4148 patients allocated to baricitinib versus 546 (14%) of 4008 patients allocated to usual care died within 28 days (age-adjusted rate ratio 0·87; 95% CI 0·77-0·99; p=0·028). This 13% proportional reduction in mortality was somewhat smaller than that seen in a meta-analysis of eight previous trials of a JAK inhibitor (involving 3732 patients and 425 deaths), in which allocation to a JAK inhibitor was associated with a 43% proportional reduction in mortality (rate ratio 0·57; 95% CI 0·45-0·72). Including the results from RECOVERY in an updated meta-analysis of all nine completed trials (involving 11 888 randomly assigned patients and 1485 deaths) allocation to baricitinib or another JAK inhibitor was associated with a 20% proportional reduction in mortality (rate ratio 0·80; 95% CI 0·72-0·89; p<0·0001). In RECOVERY, there was no significant excess in death or infection due to non-COVID-19 causes and no significant excess of thrombosis, or other safety outcomes. INTERPRETATION: In patients hospitalised with COVID-19, baricitinib significantly reduced the risk of death but the size of benefit was somewhat smaller than that suggested by previous trials. The total randomised evidence to date suggests that JAK inhibitors (chiefly baricitinib) reduce mortality in patients hospitalised for COVID-19 by about one-fifth. FUNDING: UK Research and Innovation (Medical Research Council) and National Institute of Health Research.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Azetidines , COVID-19/drug therapy , Hospitals , Humans , Janus Kinase Inhibitors/therapeutic use , Purines , Pyrazoles , Randomized Controlled Trials as Topic , SARS-CoV-2 , Sulfonamides , Treatment Outcome
2.
Clin Exp Rheumatol ; 40(7): 1247-1257, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1935079

ABSTRACT

New evidence for the treatment of rheumatoid arthritis (RA) has emerged during the last year. Specifically, updated guidelines on pharmacological and non-pharmacological management of RA have emphasised the necessity of global patient's care, and have shifted the role of some older drugs, such as glucocorticoids and methotrexate. In addition, the long-term safety of Janus kinase inhibitors was investigated and reinforced. With respect to the coronavirus-19 pandemic, reassuring data on the efficacy and safety of vaccinations in the RA population were acquired, as well as on the potential role of telemedicine in RA management. Machine learning prediction models and biomarkers development have emerged as promising innovations in the area of precision/personalised medicine, appearing to encourage future expansion.In this narrative review, the authors aim to give their specific point of view on the most relevant and potentially impacting novelties published during 2021 and early 2022 in the context of RA management.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Janus Kinase Inhibitors , Antirheumatic Agents/adverse effects , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Glucocorticoids/therapeutic use , Humans , Janus Kinase Inhibitors/adverse effects , Methotrexate/therapeutic use
4.
Cochrane Database Syst Rev ; 6: CD015209, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1888499

ABSTRACT

BACKGROUND: With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES: To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA: We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS: We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS: We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS: In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).


Subject(s)
COVID-19 , Coinfection , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Humans , Janus Kinase Inhibitors/therapeutic use , Oxygen , Randomized Controlled Trials as Topic , SARS-CoV-2 , United States
5.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: covidwho-1807764

ABSTRACT

COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19-associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.


Subject(s)
COVID-19 , Cytokines , Janus Kinase Inhibitors , Kidney Diseases , Apolipoprotein L1/genetics , Azetidines/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Janus Kinase Inhibitors/pharmacology , Janus Kinases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/virology , Organoids/metabolism , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/isolation & purification , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology
6.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1807487

ABSTRACT

During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the-possibly altered-response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19.We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , Azetidines , COVID-19/drug therapy , Cytokines/metabolism , Humans , Imidazoles , Indazoles , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Piperidines , SARS-CoV-2
8.
Clin Pharmacol Ther ; 112(2): 291-296, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1772679

ABSTRACT

Janus kinase (JAK) inhibitors baricitinib and tofacitinib are recommended by the US National Institutes of Health as immunomodulatory drugs for coronavirus disease 2019 (COVID-19) treatment. In addition, baricitinib has recently received Emergency Use Authorization from the US Food and Drug Administration, although the instruction provided dosing information only for adults. Geriatrics with organ dysfunction are one of the most vulnerable cohorts when combating the pandemic. The aim of the present work was to evaluate current dosing strategies of baricitinib and tofacitinib for potential COVID-19 treatment for White and Chinese geriatric patients with chronic renal impairment. An established physiologically-based pharmacokinetic (PBPK) modeling framework for age-dependent simulations was utilized. PBPK drug models adopted from literature were first verified. Several population models representing different age groups, ethnicities, and stages of renal impairment were used for prospective simulations. Notwithstanding the increase in systemic exposure of both drugs resulting from renal dysfunction was more pronounced for geriatrics than general White populations, our simulations confirmed their current dosage adjustments based on renal functions are broadly adequate. The exception being White older subjects with mild renal impairment where current recommendation of 4 mg baricitinib yielded a 2.31-fold increase in systemic exposure, and reduction to 2 mg could mitigate the potential risk to an acceptable 1.15-fold. Comparable relationships between systemic exposure and renal dysfunction were observed for both drugs in the Chinese population. In summary, PBPK modeling of both JAK inhibitors supports the rational and prudent dose adjustments of these COVID-19 therapeutics among adult patients of different age groups and renal functions.


Subject(s)
COVID-19 , Geriatrics , Janus Kinase Inhibitors , Renal Insufficiency, Chronic , Adult , Aged , Azetidines , COVID-19/drug therapy , Humans , Piperidines , Prospective Studies , Purines , Pyrazoles , Pyrimidines , Renal Insufficiency, Chronic/drug therapy , Sulfonamides , United States
9.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1753103

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Subject(s)
COVID-19/drug therapy , Central Nervous System/drug effects , Inflammasomes/drug effects , Neurodegenerative Diseases/drug therapy , Receptors, Virus/genetics , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , Basigin/genetics , Basigin/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Central Nervous System/metabolism , Central Nervous System/virology , Ephrins/genetics , Ephrins/metabolism , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunologic Factors/therapeutic use , Inflammasomes/genetics , Inflammasomes/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/virology , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction
11.
Brain Behav Immun ; 87: 59-73, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719339

ABSTRACT

As of April 15, 2020, the ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept through 213 countries and infected more than 1,870,000 individuals, posing an unprecedented threat to international health and the economy. There is currently no specific treatment available for patients with COVID-19 infection. The lessons learned from past management of respiratory viral infections have provided insights into treating COVID-19. Numerous potential therapies, including supportive intervention, immunomodulatory agents, antiviral therapy, and convalescent plasma transfusion, have been tentatively applied in clinical settings. A number of these therapies have provided substantially curative benefits in treating patients with COVID-19 infection. Furthermore, intensive research and clinical trials are underway to assess the efficacy of existing drugs and identify potential therapeutic targets to develop new drugs for treating COVID-19. Herein, we summarize the current potential therapeutic approaches for diseases related to COVID-19 infection and introduce their mechanisms of action, safety, and effectiveness.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bevacizumab/therapeutic use , COVID-19 , COVID-19 Vaccines , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Killer Cells, Natural , Medicine, Chinese Traditional , Mesenchymal Stem Cell Transplantation , Nitric Oxide/therapeutic use , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Trace Elements/therapeutic use , Viral Vaccines/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use
12.
Biomed Pharmacother ; 147: 112614, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682939

ABSTRACT

Post-Covid pulmonary fibrosis is evident following severe COVID-19. There is an urgent need to identify the cellular and pathophysiological characteristics of chronic lung squeals of Covid-19 for the development of future preventive and/or therapeutic interventions. Tissue-resident memory T (TRM) cells can mediate local immune protection against infections and cancer. Less beneficially, lung TRM cells cause chronic airway inflammation and fibrosis by stimulating pathologic inflammation. The effects of Janus kinase (JAK), an inducer pathway of cytokine storm, inhibition on acute Covid-19 cases have been previously evaluated. Here, we propose that Tofacitinib by targeting the CD8+ TRM cells could be a potential candidate for the treatment of chronic lung diseases induced by acute SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/drug therapy , Janus Kinase Inhibitors/therapeutic use , Lung Injury/drug therapy , Piperidines/therapeutic use , Pyrimidines/therapeutic use , T-Lymphocyte Subsets/immunology , COVID-19/complications , COVID-19/immunology , Humans , Immunologic Memory/immunology , Lung/immunology , Lung Injury/etiology , Lung Injury/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
13.
Gastroenterol Hepatol ; 44(8): 587-598, 2021 Oct.
Article in English, Spanish | MEDLINE | ID: covidwho-1626213

ABSTRACT

Patients with certain immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA) and inflammatory bowel disease (IBD), have an increased risk of severe infectious diseases than the general population, which are mainly associated with the immunosuppressive treatments that they receive. These treatments act on the immune system through different mechanisms, causing different degrees of immunosuppression and a variable risk depending on whether the pathogen is a virus, bacteria or fungus. This article reviews the most relevant literature on the subject, which was selected and discussed by a panel of experts. The aim of this article is to review the risk of infections in patients with IBD and RA, and the potential preventive measures.


Subject(s)
Arthritis, Rheumatoid/therapy , Bacterial Infections/prevention & control , Biological Therapy/adverse effects , Immunosuppressive Agents/adverse effects , Inflammatory Bowel Diseases/therapy , Janus Kinase Inhibitors/adverse effects , Virus Diseases/prevention & control , Arthritis, Rheumatoid/immunology , COVID-19/etiology , Hepatitis A/prevention & control , Hepatitis B/prevention & control , Herpes Zoster/prevention & control , Humans , Inflammatory Bowel Diseases/immunology , Influenza, Human/prevention & control , Pneumococcal Infections/prevention & control , Risk Factors , Tuberculosis, Pulmonary/prevention & control , Vaccination Coverage , Vaccines, Inactivated/administration & dosage
14.
Ann Rheum Dis ; 81(1): 117-123, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605885

ABSTRACT

OBJECTIVE: To compare the treatment efficacy and safety of tofacitinib (TOF) versus methotrexate (MTX) in Takayasu arteritis (TAK). METHODS: Fifty-three patients with active disease from an ongoing prospective TAK cohort in China were included in this study. Twenty-seven patients were treated with glucocorticoids (GCs) and TOF, and 26 patients were treated with GCs with MTX. The observation period was 12 months. Complete remission (CR), inflammatory parameter changes, GCs tapering and safety were assessed at the 6th, 9th and 12th month. Vascular lesions were evaluated at the 6th and 12th month, and relapse was analysed during 12 months. RESULTS: The CR rate was higher in the TOF group than in the MTX group (6 months: 85.19% vs 61.54%, p=0.07; 12 months: 88.46% vs 56.52%, p=0.02). During 12 months' treatment, patients in the TOF group achieved a relatively lower relapse rate (11.54% vs 34.78%, p=0.052) and a longer median relapse-free duration (11.65±0.98 vs 10.48±2.31 months, p=0.03). Average GCs dose at the 3rd, 6th and 12th month was lower in the TOF group than that in the MTX group (p<0.05). A difference was not observed in disease improvement or disease progression on imaging between the two groups (p>0.05). Prevalence of side effects was low in both groups (3.70% vs 15.38%, p=0.19). CONCLUSION: TOF was superior to MTX for CR induction, a tendency to prevent relapse and tapering of the GCs dose in TAK treatment. A good safety profile for TOF was also documented in patients with TAK.


Subject(s)
Antirheumatic Agents/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Methotrexate/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Takayasu Arteritis/drug therapy , Adolescent , Adult , Antirheumatic Agents/adverse effects , Disease Progression , Drug Therapy, Combination , Female , Glucocorticoids/therapeutic use , Humans , Janus Kinase Inhibitors/adverse effects , Male , Methotrexate/adverse effects , Middle Aged , Piperidines/adverse effects , Prospective Studies , Pyrimidines/adverse effects , Recurrence , Time Factors , Treatment Outcome , Young Adult
16.
Viruses ; 13(12)2021 11 27.
Article in English | MEDLINE | ID: covidwho-1574265

ABSTRACT

Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.


Subject(s)
Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/drug effects , Virus Diseases/metabolism , Viruses/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Immunity, Innate , Inflammation , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Virus Diseases/drug therapy , Virus Diseases/immunology , Viruses/classification , Viruses/drug effects
17.
Infection ; 50(2): 295-308, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1568416

ABSTRACT

PURPOSE: The Coronavirus disease 2019 (COVID-19) pandemic is one of the most devastating global problems. Regarding the lack of disease-specific treatments, repurposing drug therapy is currently considered a promising therapeutic approach in pandemic situations. Recently, the combination therapy of Janus kinase (JAK) inhibitor baricitinib has been authorized for emergency COVID-19 hospitalized patients; however, this strategy's safety, drug-drug interactions, and cellular signaling pathways remain a tremendous challenge. METHODS: In this study, we aimed to provide a deep insight into the baricitinib combination therapies in severe COVID-19 patients through reviewing the published literature on PubMed, Scopus, and Google scholar databases. We also focused on cellular and subcellular pathways related to the synergistic effects of baricitinib plus antiviral agents, virus entry, and cytokine storm (CS) induction. The safety and effectiveness of this strategy have also been discussed in moderate to severe forms of COVID-19 infection. RESULTS: The severity of COVID-19 is commonly associated with a dysregulated immune response and excessive release of pro-inflammatory agents, resulting in CS. It has been shown that baricitinib combined with antiviral agents could modulate the inflammatory response and provide a series of positive therapeutic outcomes in hospitalized adults and pediatric patients (age ≥ two years old). CONCLUSION: Baricitinib plus the standard of care treatment might be a potential strategy in hospitalized patients with severe COVID-19.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , Adult , Azetidines , COVID-19/drug therapy , Child , Child, Preschool , Humans , Janus Kinase Inhibitors/therapeutic use , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides
18.
Ann Rheum Dis ; 81(3): 422-432, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560917

ABSTRACT

OBJECTIVES: Perform a systematic literature review (SLR) on risk and prognosis of SARS-CoV-2 infection and vaccination against SARS-CoV-2 in patients with rheumatic and musculoskeletal diseases (RMDs). METHODS: Literature was searched up to 31 May 2021, including (randomised) controlled trials and observational studies with patients with RMD. Pending quality assessment, data extraction was performed and risk of bias (RoB) was assessed. Quality assessment required provision of (1) an appropriate COVID-19 case definition, and (2a) a base incidence (for incidence data) or (2b) a comparator, >10 cases with the outcome and risk estimates minimally adjusted for age, sex and comorbidities (for risk factor data). RESULTS: Of 5165 records, 208 were included, of which 90 passed quality assessment and data were extracted for incidence (n=42), risk factor (n=42) or vaccination (n=14). Most studies had unclear/high RoB. Generally, patients with RMDs do not face more risk of contracting SARS-CoV-2 (n=26 studies) or worse prognosis of COVID-19 (n=14) than individuals without RMDs. No consistent differences in risk of developing (severe) COVID-19 were found between different RMDs (n=19). Disease activity is associated with worse COVID-19 prognosis (n=2), possibly explaining the increased risk seen for glucocorticoid use (n=13). Rituximab is associated with worse COVID-19 prognosis (n=7) and possibly Janus kinase inhibitors (n=3). Vaccination is generally immunogenic, though antibody responses are lower than in controls. Vaccine immunogenicity is negatively associated with older age, rituximab and mycophenolate. CONCLUSION: This SLR informed the July 2021 update of the European Alliance of Associations for Rheumatology recommendations for the management of RMDs in the context of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/mortality , Musculoskeletal Diseases/virology , Rheumatic Diseases/virology , SARS-CoV-2/immunology , Adult , COVID-19/immunology , COVID-19/prevention & control , Female , Glucocorticoids/adverse effects , Humans , Immunogenicity, Vaccine/drug effects , Immunosuppressive Agents/adverse effects , Incidence , Janus Kinase Inhibitors/adverse effects , Male , Middle Aged , Musculoskeletal Diseases/drug therapy , Prognosis , Rheumatic Diseases/drug therapy , Risk Factors , Rituximab/adverse effects
19.
Expert Rev Anti Infect Ther ; 20(5): 773-779, 2022 May.
Article in English | MEDLINE | ID: covidwho-1500923

ABSTRACT

BACKGROUND: This meta-analysis of randomized controlled trials (RCTs) investigated the usefulness of Janus kinase (JAK) inhibitors among hospitalized patients with COVID-19. METHODS: PubMed, Web of Science, the Cochrane Library, and Ovid MEDLINE were searched for RCTs published before 7 September 2021. Only RCTs that compared the clinical efficacy and safety of JAK inhibitors with other alternative treatments or placebos in the treatment of hospitalized patients with COVID-19 were included. RESULTS: Overall, patients receiving JAK inhibitors exhibited a lower 28-day mortality rate than the control group (risk ratio [RR], 0.60; 95% CI, 0.47-0.77; I2 = 0%). Compared with the control group, the study group also had a lower 14-day mortality rate (RR, 0.60; 95% CI, 0.42-0.85; I2 = 0%), a higher rate of clinical improvement (RR, 1.05; 95% CI, 1.02-1.09; I2 = 0%), and less need of mechanical ventilation or extracorporeal membrane oxygenation (RR, 0.64; 95% CI, 0.50-0.84; I2 = 0%). Finally, JAK inhibitor use was associated with a similar risk of adverse events and infections as that observed in the control group. CONCLUSIONS: JAK inhibitors can help reduce mortality and improve clinical outcomes among hospitalized patients with COVID-19. Additionally, JAK inhibitors can be used safely in this clinical entity.


Subject(s)
COVID-19 , Janus Kinase Inhibitors , COVID-19/drug therapy , Humans , Janus Kinase Inhibitors/adverse effects , Randomized Controlled Trials as Topic , Respiration, Artificial , SARS-CoV-2
20.
Arthritis Rheumatol ; 73(12): 2166-2178, 2021 12.
Article in English | MEDLINE | ID: covidwho-1490704

ABSTRACT

The discovery of cytokines and their role in immune and inflammatory disease led to the development of a plethora of targeted biologic therapies. Later, efforts to understand mechanisms of cytokine signal transduction led to the discovery of JAKs, which themselves were quickly identified as therapeutic targets. It has been a decade since the first JAK inhibitors (jakinibs) were approved, and there are now 9 jakinibs approved for the treatment of rheumatic, dermatologic, hematologic, and gastrointestinal indications, along with emergency authorization for COVID-19. In this review, we will summarize relevant discoveries that led to first-generation jakinibs and review their efficacy and safety as demonstrated in pivotal clinical studies. We will discuss the next generation of more selective jakinibs, along with agents that target kinase families beyond JAKs. Finally, we will reflect on both the opportunities and challenges ahead as we enter the second decade of the clinical use of jakinibs.


Subject(s)
Janus Kinase Inhibitors/therapeutic use , COVID-19/drug therapy , Forecasting , Humans , Time Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL