Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Mayo Clin Proc ; 96(10): 2561-2575, 2021 10.
Article in English | MEDLINE | ID: covidwho-1521396


OBJECTIVE: To compare coronavirus disease 2019 (COVID-19) acute kidney injury (AKI) to sepsis-AKI (S-AKI). The morphology and transcriptomic and proteomic characteristics of autopsy kidneys were analyzed. PATIENTS AND METHODS: Individuals 18 years of age and older who died from COVID-19 and had an autopsy performed at Mayo Clinic between April 2020 to October 2020 were included. Morphological evaluation of the kidneys of 17 individuals with COVID-19 was performed. In a subset of seven COVID-19 cases with postmortem interval of less than or equal to 20 hours, ultrastructural and molecular characteristics (targeted transcriptome and proteomics analyses of tubulointerstitium) were evaluated. Molecular characteristics were compared with archived cases of S-AKI and nonsepsis causes of AKI. RESULTS: The spectrum of COVID-19 renal pathology included macrophage-dominant microvascular inflammation (glomerulitis and peritubular capillaritis), vascular dysfunction (peritubular capillary congestion and endothelial injury), and tubular injury with ultrastructural evidence of mitochondrial damage. Investigation of the spatial architecture using a novel imaging mass cytometry revealed enrichment of CD3+CD4+ T cells in close proximity to antigen-presenting cells, and macrophage-enriched glomerular and interstitial infiltrates, suggesting an innate and adaptive immune tissue response. Coronavirus disease 2019 AKI and S-AKI, as compared to nonseptic AKI, had an enrichment of transcriptional pathways involved in inflammation (apoptosis, autophagy, major histocompatibility complex class I and II, and type 1 T helper cell differentiation). Proteomic pathway analysis showed that COVID-19 AKI and to a lesser extent S-AKI were enriched in necroptosis and sirtuin-signaling pathways, both involved in regulatory response to inflammation. Upregulation of the ceramide-signaling pathway and downregulation of oxidative phosphorylation in COVID-19 AKI were noted. CONCLUSION: This data highlights the similarities between S-AKI and COVID-19 AKI and suggests that mitochondrial dysfunction may play a pivotal role in COVID-19 AKI. This data may allow the development of novel diagnostic and therapeutic targets.

Acute Kidney Injury/pathology , COVID-19/pathology , Kidney/pathology , Sepsis/pathology , Acute Kidney Injury/virology , Adult , Autopsy , Humans , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Sepsis/virology
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518199


Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.

Acute Kidney Injury/urine , COVID-19/urine , Kidney Tubules, Proximal/virology , Kidney/virology , Organoids/virology , SARS-CoV-2/pathogenicity , Acute Kidney Injury/etiology , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Apoptosis , Bowman Capsule/cytology , Bowman Capsule/virology , COVID-19/complications , Chlorocebus aethiops , Female , Gene Knockout Techniques , Hospital Mortality , Hospitalization , Humans , Kidney/metabolism , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Organoids/metabolism , Podocytes/virology , Polycystic Kidney Diseases , Proteome , Receptors, Coronavirus/genetics , Reproducibility of Results , Transcriptome , Vero Cells , Viral Tropism , Virus Replication
Mol Genet Genomic Med ; 8(10): e1442, 2020 10.
Article in English | MEDLINE | ID: covidwho-692077


BACKGROUND: A novel coronavirus called SARS-Cov-2, which shared 82% similarity of genome sequence with SARS-CoV, was found in Wuhan in late December of 2019, causing an epidemic outbreak of novel coronavirus-induced pneumonia with dramatically increasing number of cases. Several organs are vulnerable to COVID-19 infection. Acute kidney injury (AKI) was reported in parts of case-studies reporting characteristics of COVID-19 patients. This study aimed at analyzing the potential route of SARS-Cov-2 entry and mechanism at cellular level. METHOD: Single-cell RNA sequencing (scRNA-seq) technology was used to obtain evidence of potential route and ACE2 expressing cell in renal system for underlying pathogenesis of kidney injury caused by COVID-19. The whole process was performed under R with Seurat packages. Canonical marker genes were used to annotate different types of cells. RESULTS: Ten different clusters were identified and ACE2 was mainly expressed in proximal tubule and glomerular parietal epithelial cells. From Gene Ontology (GO) & KEGG enrichment analysis, imbalance of ACE2 expression, renin-angiotensin system (RAS) activation, and neutrophil-related processes were the main issue of COVID-19 leading kidney injury. CONCLUSION: Our study provided the cellular evidence that SARS-Cov-2 invaded human kidney tissue via proximal convoluted tubule, proximal tubule, proximal straight tubule cells, and glomerular parietal cells by means of ACE2-related pathway and used their cellular protease TMPRSS2 for priming.

Acute Kidney Injury/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Kidney Glomerulus/metabolism , Kidney Tubules, Proximal/metabolism , Receptors, Virus/genetics , Acute Kidney Injury/pathology , Angiotensin-Converting Enzyme 2/genetics , Base Sequence , Humans , Kidney Glomerulus/pathology , Kidney Glomerulus/virology , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/virology , Principal Component Analysis , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Serine Endopeptidases/metabolism , Single-Cell Analysis