Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Front Immunol ; 13: 835156, 2022.
Article in English | MEDLINE | ID: covidwho-1902991

ABSTRACT

Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.


Subject(s)
COVID-19/immunology , Complement Pathway, Alternative/immunology , Lectins/immunology , Aged , Aged, 80 and over , Autopsy , COVID-19/pathology , COVID-19/virology , Complement System Proteins/immunology , Female , Humans , Kidney/immunology , Kidney/pathology , Kidney/virology , Lung/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/immunology , Peroxidase/immunology , SARS-CoV-2/immunology
2.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799028

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/therapy , Kidney/virology , Lung/virology , Mice , SARS-CoV-2
3.
J Am Soc Nephrol ; 32(9): 2242-2254, 2021 09.
Article in English | MEDLINE | ID: covidwho-1702796

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) causes significan t morbidity, mainly from pulmonary involvement, extrapulmonary symptoms are also major componen ts of the disease. Kidney disease, usually presenting as AKI, is particularly severe among patients with COVID-19. It is unknown, however, whether such injury results from direct kidney infection with COVID-19's causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or from indirect mechanisms. METHODS: Using ex vivo cell models, we sought to analyze SARS-CoV-2 interactions with kidney tubular cells and assess direct tubular injury. These models comprised primary human kidney epithelial cells (derived from nephrectomies) and grown as either proliferating monolayers or quiescent three-dimensional kidney spheroids. RESULTS: We demonstrated that viral entry molecules and high baseline levels of type 1 IFN-related molecules were present in monolayers and kidney spheroids. Although both models support viral infection and replication, they did not exhibit a cytopathic effect and cell death, outcomes that were strongly present in SARS-CoV-2-infected controls (African green monkey kidney clone E6 [Vero E6] cultures). A comparison of monolayer and spheroid cultures demonstrated higher infectivity and replication of SARS-CoV-2 in actively proliferating monolayers, although the spheroid cultures exhibited high er levels of ACE2. Monolayers exhibited elevation of some tubular injury molecules-including molecules related to fibrosis (COL1A1 and STAT6) and dedifferentiation (SNAI2)-and a loss of cell identity, evident by reduction in megalin (LRP2). The three-dimensional spheroids were less prone to such injury. CONCLUSIONS: SARS-CoV-2 can infect kidney cells without a cytopathic effect. AKI-induced cellular proliferation may potentially intensify infectivity and tubular damage by SARS-CoV-2, suggesting that early intervention in AKI is warranted to help minimize kidney infection.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/virology , COVID-19/complications , SARS-CoV-2/pathogenicity , Spheroids, Cellular/virology , Animals , Cells, Cultured , Chlorocebus aethiops , Cohort Studies , Cytopathogenic Effect, Viral , Epithelial Cells/pathology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Interferon Type I/metabolism , Kidney/immunology , Kidney/pathology , Kidney/virology , Mice , Mice, Inbred NOD , Mice, SCID , Models, Biological , Pandemics , Receptors, Virus/metabolism , Retrospective Studies , SARS-CoV-2/physiology , Spheroids, Cellular/pathology , Vero Cells , Virus Replication
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1700470

ABSTRACT

As of December 2021, SARS-CoV-2 had caused over 250 million infections and 5 million deaths worldwide. Furthermore, despite the development of highly effective vaccines, novel variants of SARS-CoV-2 continue to sustain the pandemic, and the search for effective therapies for COVID-19 remains as urgent as ever. Though the primary manifestation of COVID-19 is pneumonia, the disease can affect multiple organs, including the kidneys, with acute kidney injury (AKI) being among the most common extrapulmonary manifestations of severe COVID-19. In this article, we start by reflecting on the epidemiology of kidney disease in COVID-19, which overwhelmingly demonstrates that AKI is common in COVID-19 and is strongly associated with poor outcomes. We also present emerging data showing that COVID-19 may result in long-term renal impairment and delve into the ongoing debate about whether AKI in COVID-19 is mediated by direct viral injury. Next, we focus on the molecular pathogenesis of SARS-CoV-2 infection by both reviewing previously published data and presenting some novel data on the mechanisms of cellular viral entry. Finally, we relate these molecular mechanisms to a series of therapies currently under investigation and propose additional novel therapeutic targets for COVID-19.


Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , COVID-19/complications , Kidney/virology , Acute Kidney Injury/epidemiology , Acute Kidney Injury/mortality , Animals , Humans , Kidney/physiopathology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/virology
5.
Biomolecules ; 12(2)2022 02 12.
Article in English | MEDLINE | ID: covidwho-1686604

ABSTRACT

The onset of coronavirus disease (COVID-19) as a pandemic infection, has led to increasing insights on its pathophysiology and clinical features being revealed, such as a noticeable kidney involvement. In this study, we describe the histopathological, immunofluorescence, and ultrastructural features of biopsy-proven kidney injury observed in a series of SARS-CoV-2 positive cases in our institution from April 2020 to November 2021. We retrieved and retrospectively reviewed nine cases (two pediatric and seven adults) that experienced nephrotic syndrome (six cases), acute kidney injury (two cases), and a clinically silent microhematuria and leukocyturia. Kidney biopsies were investigated by means of light microscopy, direct immunofluorescence, and electron microscopy. The primary diagnoses were minimal change disease (four cases), acute tubular necrosis (two cases), collapsing glomerulopathy (two cases), and C3 glomerulopathy (one case). None of the cases showed viral or viral-like particles on ultrastructural analysis. Novel and specific histologic features on kidney biopsy related to SARS-CoV-2 infection have been gradually disclosed and reported, harboring relevant clinical and therapeutic implications. Recognizing and properly diagnosing renal involvement in patients experiencing COVID-19 could be challenging (due to the lack of direct proof of viral infection, e.g., viral particles) and requires a proper integration of clinical and pathological data.


Subject(s)
COVID-19/complications , Kidney Diseases/complications , Kidney Diseases/virology , Kidney/injuries , Kidney/virology , Adolescent , Aged , Aged, 80 and over , Biopsy , COVID-19/pathology , COVID-19/virology , Female , Humans , Italy , Kidney/pathology , Kidney/ultrastructure , Kidney Diseases/pathology , Male , Middle Aged , Retrospective Studies
6.
J Mol Cell Cardiol ; 164: 13-16, 2022 03.
Article in English | MEDLINE | ID: covidwho-1527886

ABSTRACT

Aged males disproportionately succumb to increased COVID-19 severity, hospitalization, and mortality compared to females. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease, serine 2 (TMPRSS2) facilitate SARS-CoV-2 viral entry and may have sexually dimorphic regulation. As viral load dictates disease severity, we investigated the expression, protein levels, and activity of ACE2 and TMPRSS2. Our data reveal that aged males have elevated ACE2 in both mice and humans across organs. We report the first comparative study comprehensively investigating the impact of sex and age in murine and human levels of ACE2 and TMPRSS2, to begin to elucidate the sex bias in COVID-19 severity.


Subject(s)
Aging/metabolism , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/epidemiology , Gene Expression Regulation, Enzymologic , Receptors, Virus/biosynthesis , SARS-CoV-2/physiology , Sex Characteristics , Aging/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Disease Susceptibility , Female , Heart/virology , Humans , Intestine, Small/enzymology , Intestine, Small/virology , Kidney/enzymology , Kidney/virology , Lung/enzymology , Lung/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myocardium/enzymology , Organ Specificity , Receptors, Virus/genetics , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Young Adult
7.
Clin J Am Soc Nephrol ; 16(11): 1755-1765, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526737

ABSTRACT

Despite evidence of multiorgan tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients with coronavirus disease 2019 (COVID-19), direct viral kidney invasion has been difficult to demonstrate. The question of whether SARS-CoV2 can directly infect the kidney is relevant to the understanding of pathogenesis of AKI and collapsing glomerulopathy in patients with COVID-19. Methodologies to document SARS-CoV-2 infection that have been used include immunohistochemistry, immunofluorescence, RT-PCR, in situ hybridization, and electron microscopy. In our review of studies to date, we found that SARS-CoV-2 in the kidneys of patients with COVID-19 was detected in 18 of 94 (19%) by immunohistochemistry, 71 of 144 (49%) by RT-PCR, and 11 of 84 (13%) by in situ hybridization. In a smaller number of patients with COVID-19 examined by immunofluorescence, SARS-CoV-2 was detected in 10 of 13 (77%). In total, in kidneys from 102 of 235 patients (43%), the presence of SARS-CoV-2 was suggested by at least one of the methods used. Despite these positive findings, caution is needed because many other studies have been negative for SARS-CoV-2 and it should be noted that when detected, it was only in kidneys obtained at autopsy. There is a clear need for studies from kidney biopsies, including those performed at early stages of the COVID-19-associated kidney disease. Development of tests to detect kidney viral infection in urine samples would be more practical as a noninvasive way to evaluate SARS-CoV-2 infection during the evolution of COVID-19-associated kidney disease.


Subject(s)
COVID-19/virology , Kidney Diseases/virology , Kidney/virology , SARS-CoV-2/pathogenicity , Animals , Biopsy , COVID-19/complications , COVID-19/diagnosis , COVID-19/mortality , COVID-19 Testing , Host-Pathogen Interactions , Humans , Kidney Diseases/diagnosis , Kidney Diseases/mortality , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
8.
JCI Insight ; 6(24)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1518199

ABSTRACT

Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.


Subject(s)
Acute Kidney Injury/urine , COVID-19/urine , Kidney Tubules, Proximal/virology , Kidney/virology , Organoids/virology , SARS-CoV-2/pathogenicity , Acute Kidney Injury/etiology , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Animals , Apoptosis , Bowman Capsule/cytology , Bowman Capsule/virology , COVID-19/complications , Chlorocebus aethiops , Female , Gene Knockout Techniques , Hospital Mortality , Hospitalization , Humans , Kidney/metabolism , Kidney/pathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , Middle Aged , Organoids/metabolism , Podocytes/virology , Polycystic Kidney Diseases , Protein Kinase D2/genetics , Proteome , Receptors, Coronavirus/genetics , Reproducibility of Results , Transcriptome , Vero Cells , Viral Tropism , Virus Replication
9.
Am J Pathol ; 191(12): 2064-2071, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506649

ABSTRACT

Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.


Subject(s)
COVID-19/genetics , COVID-19/pathology , SARS-CoV-2/pathogenicity , Autopsy , Disease Progression , Gene Expression Profiling , Heart/virology , Host-Pathogen Interactions/genetics , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Liver/metabolism , Liver/pathology , Liver/virology , Male , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Olfactory Bulb/virology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Prefrontal Cortex/virology , Respiratory System/metabolism , Respiratory System/pathology , Respiratory System/virology , Salivary Glands/metabolism , Salivary Glands/pathology , Salivary Glands/virology , Sequence Analysis, RNA , Signal Transduction/genetics
10.
J Virol ; 95(24): e0134521, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1441856

ABSTRACT

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, small interfering RNA (siRNA) interference, specific pharmacological inhibitors, and dominant negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin, and a low-pH environment but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV, has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis and provide clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis, which does not require a specific receptor, and clathrin-mediated endocytosis, which requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.


Subject(s)
Coronavirus Infections/virology , Deltacoronavirus/physiology , Dynamins/metabolism , Endocytosis , Epithelial Cells/virology , Animals , Cell Line , Cell Survival , Clathrin/metabolism , Coronavirus/genetics , Hydrogen-Ion Concentration , Ileum/virology , Kidney/virology , Phosphatidylinositol 3-Kinases/metabolism , Pinocytosis , RNA, Small Interfering/metabolism , Swine , Swine Diseases/virology , Virus Internalization , rab5 GTP-Binding Proteins/metabolism
11.
J Virol ; 95(20): e0101021, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440800

ABSTRACT

The host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is poorly understood due to a lack of an animal model that recapitulates severe human disease. Here, we report a Syrian hamster model that develops progressive lethal pulmonary disease that closely mimics severe coronavirus disease 2019 (COVID-19). We evaluated host responses using a multi-omic, multiorgan approach to define proteome, phosphoproteome, and transcriptome changes. These data revealed both type I and type II interferon-stimulated gene and protein expression along with a progressive increase in chemokines, monocytes, and neutrophil-associated molecules throughout the course of infection that peaked in the later time points correlating with a rapidly developing diffuse alveolar destruction and pneumonia that persisted in the absence of active viral infection. Extrapulmonary proteome and phosphoproteome remodeling was detected in the heart and kidneys following viral infection. Together, our results provide a kinetic overview of multiorgan host responses to severe SARS-CoV-2 infection in vivo. IMPORTANCE The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has created an urgent need to understand the pathogenesis of this infection. These efforts have been impaired by the lack of animal models that recapitulate severe coronavirus disease 2019 (COVID-19). Here, we report a hamster model that develops severe COVID-19-like disease following infection with human isolates of SARS-CoV-2. To better understand pathogenesis, we evaluated changes in gene transcription and protein expression over the course of infection to provide an integrated multiorgan kinetic analysis of the host response to infection. These data reveal a dynamic innate immune response to infection and corresponding immune pathologies consistent with severe human disease. Altogether, this model will be useful for understanding the pathogenesis of severe COVID-19 and for testing interventions.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Immunity, Innate , Proteome , Transcriptome , Animals , COVID-19/genetics , COVID-19/virology , Disease Models, Animal , Gene Ontology , Heart/virology , Kidney/metabolism , Kidney/virology , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Male , Mesocricetus , Myocardium/metabolism , Phosphoproteins/metabolism , Proteomics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
12.
Int J Legal Med ; 135(6): 2347-2349, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1391863

ABSTRACT

Due to the development of novel functionalities, distinct SARS-CoV-2 variants such as B.1.1.7 fuel the current pandemic. B.1.1.7 is not only more transmissible, but may also cause an increased mortality compared to previous SARS-CoV-2 variants. Human tissue analysis of the SARS-CoV-2 lineage B.1.1.7 is urgently needed, and we here present autopsy data from 7 consecutive SARS-CoV-2 B.1.1.7 cases. The initial RT-qPCR analyses from nasopharyngeal swabs taken post mortem included typing assays for B.1.1.7. We quantitated SARS-CoV-2 B.1.1.7 viral load in autopsy tissue of multiple organs. Highest levels of SARS-CoV-2 B.1.1.7 copies normalized to ß-globin were detected in the respiratory system (lung and pharynx), followed by the liver and heart. Importantly, SARS-CoV-2 lineage B.1.1.7 was found in 100% of cases in the lungs and in 85.7% in pharynx tissue. Detection also in the kidney and brain highlighting a pronounced organ tropism. Comparison of the given results to a former cohort of SARS-CoV-2 deaths during the first wave in spring 2020 showed resembling organ tropism. Our results indicate that also SARS-CoV-2 B.1.1.7 has a relevant organ tropism beyond the respiratory tract. We speculate that B.1.1.7 spike protein's affinity to human ACE2 facilitates transmission, organ tropism, and ultimately morbidity and mortality. Further studies and larger cohorts are obligatory to proof this link.


Subject(s)
SARS-CoV-2/physiology , Viral Load , Viral Tropism , Aged , Autopsy , Female , Heart/virology , Humans , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Pharynx/virology
13.
PLoS One ; 16(6): e0252979, 2021.
Article in English | MEDLINE | ID: covidwho-1388923

ABSTRACT

BACKGROUND: Kidney transplant recipients are a unique cohort in regard to SARS-CoV 2 susceptibility and clinical course, owing to their immunosuppressed state and propensity for kidney injury. The primary purpose of this study is to ascertain if, in kidney transplant recipients, SARS-CoV 2 infection impacts long term renal allograft function. METHODS: This retrospective, single-center study reviewed 53 kidney transplant recipients with a positive SARS-CoV-2 PCR at NMH from January 1, 2020 to June 30, 2020. RESULTS: Change in eGFR from baseline kidney function prior to infection to 90 days after the first positive SARS-CoV 2 test was +1.76%, -17.5% and -23.16% the mild, moderate and severe disease groups respectively. There was a significant decline in kidney function in the moderate and severe disease cohorts as compared to the mild disease cohort, with respective p values of p = 0.0002 and p = 0.021. Relative to the mild disease cohort, the moderate and severe disease cohorts also demonstrated significantly increased risk of developing AKI (66%, 85%), both with p values of P = 0.0001. CONCLUSIONS: Clinically severe SARS-CoV 2 infection is associated with greater risk of acute kidney injury and greater decline in renal allograft function at 90 days post infection, compared to mild disease.


Subject(s)
Acute Kidney Injury/etiology , Allografts/virology , COVID-19/complications , Kidney Transplantation , Kidney/virology , SARS-CoV-2/isolation & purification , Acute Kidney Injury/physiopathology , Allografts/physiopathology , COVID-19/diagnosis , COVID-19/virology , Humans , Kidney/physiopathology , Middle Aged , Retrospective Studies , Transplant Recipients
15.
Pediatr Nephrol ; 36(11): 3789-3793, 2021 11.
Article in English | MEDLINE | ID: covidwho-1361293

ABSTRACT

BACKGROUND: Histological findings of kidney involvement have been rarely reported in pediatric patients with SARS-CoV-2 infection. Here, we describe clinical, laboratory, and histological findings of two pediatric cases with almost exclusive kidney involvement by SARS-CoV-2. RESULTS: A 10-year-old girl with IgA vasculitis nephritis underwent kidney biopsy, showing diffuse and segmental mesangial-proliferative glomerulonephritis, and steroid therapy was initiated. After the worsening of the clinical picture, including an atypical skin rash, she was diagnosed with SARS-CoV-2. The re-evaluation of initial biopsy showed cytoplasmatic blebs and virus-like particles in tubular cells at electron microscopy. Despite SARS-CoV-2 clearance and the intensification of immunosuppression, no improvement was observed. A second kidney biopsy showed a crescentic glomerulonephritis with sclerosis, while virus-like particles were no longer evident. The second patient was a 12-year-old girl with a 3-week history of weakness and weight loss. Rhinitis was reported the month before. No medications were being taken. Blood and urine analysis revealed elevated serum creatinine, hypouricemia, low molecular weight proteinuria, and glycosuria. A high SARS-CoV-2-IgG titre was detected. Kidney biopsy showed acute tubular-interstitial nephritis. Steroid therapy was started with a complete resolution of kidney involvement. CONCLUSION: We can speculate that in both cases SARS-CoV-2 played a major role as inflammatory trigger of the kidney damage. Therefore, we suggest investigating the potential kidney damage by SARS-CoV-2 in children. Moreover, SARS-CoV-2 can be included among infectious agents responsible for pediatric acute tubular interstitial nephritis.


Subject(s)
COVID-19/complications , Glomerulonephritis, IGA/immunology , Kidney/pathology , Nephritis, Interstitial/immunology , SARS-CoV-2/immunology , Biopsy , COVID-19/immunology , COVID-19/virology , Child , Female , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/virology , Humans , Kidney/immunology , Kidney/ultrastructure , Kidney/virology , Microscopy, Electron , Nephritis, Interstitial/diagnosis , Nephritis, Interstitial/pathology , Nephritis, Interstitial/virology , SARS-CoV-2/isolation & purification
16.
BMC Nephrol ; 22(1): 278, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1352651

ABSTRACT

BACKGROUND: The recent COVID-19 pandemic has raised concerns about patient diagnosis and follow-up of chronically ill patients. Patients suffering from chronic illnesses, concomitantly infected by SARS-CoV-2, globally tend to have a worse prognosis and poor outcomes. Renal tropism and acute kidney injury following SARS-CoV-2 infection has recently been described in the literature, with elevated mortality rates. Furthermore, patients with pre-existing chronic kidney disease, infected by SARS-CoV-2, should be monitored carefully. Here, we report the case of a 69-year-old patient with splenic marginal zone lymphoma, suffering from longstanding chronic kidney disease following SARS-CoV-2 infection. CASE PRESENTATION: A 69-year-old male patient previously diagnosed with pulmonary embolism and splenic marginal zone lymphoma (Splenomegaly, Matutes 2/5, CD5 negative and CD23 positive), was admitted to the hospital with shortness of breath, fever and asthenia. A nasopharyngeal swab test was performed in addition to a CT-scan, which confirmed SARS-CoV-2 infection. Blood creatinine increased following SARS-CoV-2 infection at 130 µmol/l, with usual values at 95 µmol/l. The patient was discharged at home with rest and symptomatic medical treatment (paracetamol and hydration), then readmitted to the hospital in August 2020. A kidney biopsy was therefore conducted as blood creatinine levels were abnormally elevated. Immunodetection performed in a renal biopsy specimen confirmed co-localization of SARS-CoV2 nucleocapsid and protease 3C proteins with ACE2, Lewis x and sialyl-Lewis x antigens in proximal convoluted tubules and podocytes. Co-localization of structural and non-structural viral proteins clearly demonstrated viral replication in proximal convoluted tubules in this chronically ill patient. Additionally, we observed the co-localization of sialyl-Lewis x and ACE2 receptors in the same proximal convoluted tubules. Reverse Transcriptase-Polymerase Chain Reaction test performed on the kidney biopsy was negative, with very low Ct levels (above 40). The patient was finally readmitted to the haematology department for initiation of chemotherapy, including CHOP protocol and Rituximab. CONCLUSIONS: Our case emphasizes on the importance of monitoring kidney function in immunosuppressed patients and patients suffering from cancer following SARS-CoV-2 infection, through histological screening. Further studies will be required to decipher the mechanisms underlying chronic kidney disease and the putative role of sialyl-Lewis x and HBGA during SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , Kidney Tubules/virology , Renal Insufficiency, Chronic/virology , SARS-CoV-2/physiology , Virus Replication , Aged , Angiotensin-Converting Enzyme 2/analysis , Biopsy , COVID-19/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Creatinine/blood , Humans , Kidney/chemistry , Kidney/pathology , Kidney/virology , Kidney Tubules/chemistry , Kidney Tubules/pathology , Lewis X Antigen/analysis , Lymphoma, B-Cell, Marginal Zone/complications , Male , Renal Insufficiency, Chronic/pathology , Sialyl Lewis X Antigen/analysis , Splenic Neoplasms/complications
17.
PLoS Pathog ; 17(7): e1009705, 2021 07.
Article in English | MEDLINE | ID: covidwho-1311291

ABSTRACT

COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of myocarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


Subject(s)
COVID-19/immunology , Down-Regulation/immunology , Interferon Type I/immunology , Kidney/immunology , Myocardium/immunology , Respiratory System/immunology , SARS-CoV-2/immunology , Animals , COVID-19/pathology , Cricetinae , Disease Models, Animal , Humans , Inflammation/immunology , Inflammation/pathology , Kidney/pathology , Kidney/virology , Male , Mesocricetus , Myocardium/pathology , Respiratory System/pathology , Respiratory System/virology
18.
Nat Rev Nephrol ; 17(11): 751-764, 2021 11.
Article in English | MEDLINE | ID: covidwho-1297305

ABSTRACT

Although respiratory failure and hypoxaemia are the main manifestations of COVID-19, kidney involvement is also common. Available evidence supports a number of potential pathophysiological pathways through which acute kidney injury (AKI) can develop in the context of SARS-CoV-2 infection. Histopathological findings have highlighted both similarities and differences between AKI in patients with COVID-19 and in those with AKI in non-COVID-related sepsis. Acute tubular injury is common, although it is often mild, despite markedly reduced kidney function. Systemic haemodynamic instability very likely contributes to tubular injury. Despite descriptions of COVID-19 as a cytokine storm syndrome, levels of circulating cytokines are often lower in patients with COVID-19 than in patients with acute respiratory distress syndrome with causes other than COVID-19. Tissue inflammation and local immune cell infiltration have been repeatedly observed and might have a critical role in kidney injury, as might endothelial injury and microvascular thrombi. Findings of high viral load in patients who have died with AKI suggest a contribution of viral invasion in the kidneys, although the issue of renal tropism remains controversial. An impaired type I interferon response has also been reported in patients with severe COVID-19. In light of these observations, the potential pathophysiological mechanisms of COVID-19-associated AKI may provide insights into therapeutic strategies.


Subject(s)
Acute Kidney Injury/physiopathology , Acute Kidney Injury/virology , COVID-19/physiopathology , Adaptive Immunity/physiology , Biopsy , Complement System Proteins , Drug-Related Side Effects and Adverse Reactions , Endothelium, Vascular/physiopathology , Extracorporeal Membrane Oxygenation , Hematuria/physiopathology , Humans , Immunity, Humoral/physiology , Immunity, Innate/physiology , Immunosenescence , Inflammation/physiopathology , Inflammation/virology , Interferon Type I/physiology , Kidney/pathology , Kidney/virology , Proteinuria/physiopathology , Severity of Illness Index , Viral Load
19.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Article in English | MEDLINE | ID: covidwho-1291220

ABSTRACT

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Subject(s)
COVID-19/mortality , Coronavirus Infections/mortality , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS Virus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/mortality , Viral Tropism/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
20.
Cell Res ; 31(8): 836-846, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275907

ABSTRACT

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


Subject(s)
COVID-19/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/virology , China , Cohort Studies , Critical Illness , Female , Fibrosis , Hospitalization , Humans , Kidney/pathology , Kidney/virology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Lung/pathology , Male , Middle Aged , RNA, Viral/metabolism , SARS-CoV-2/genetics , Spleen/pathology , Spleen/virology , Trachea/pathology , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL