Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Antimicrob Resist Infect Control ; 11(1): 73, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1854873

ABSTRACT

BACKGROUND: There is a paucity of data regarding blood culture utilization and antimicrobial-resistant (AMR) infections in low and middle-income countries (LMICs). In addition, there has been a concern for increasing AMR infections among COVID-19 cases in LMICs. Here, we investigated epidemiology of AMR bloodstream infections (BSI) before and during the COVID-19 pandemic in the Indonesian national referral hospital. METHODS: We evaluated blood culture utilization rate, and proportion and incidence rate of AMR-BSI caused by WHO-defined priority bacteria using routine hospital databases from 2019 to 2020. A patient was classified as a COVID-19 case if their SARS-CoV-2 RT-PCR result was positive. The proportion of resistance was defined as the ratio of the number of patients having a positive blood culture for a WHO global priority resistant pathogen per the total number of patients having a positive blood culture for the given pathogen. Poisson regression models were used to assess changes in rate over time. RESULTS: Of 60,228 in-hospital patients, 8,175 had at least one blood culture taken (total 17,819 blood cultures), giving a blood culture utilization rate of 30.6 per 1,000 patient-days. A total of 1,311 patients were COVID-19 cases. Blood culture utilization rate had been increasing before and during the COVID-19 pandemic (both p < 0.001), and was higher among COVID-19 cases than non-COVID-19 cases (43.5 vs. 30.2 per 1,000 patient-days, p < 0.001). The most common pathogens identified were K. pneumoniae (23.3%), Acinetobacter spp. (13.9%) and E. coli (13.1%). The proportion of resistance for each bacterial pathogen was similar between COVID-19 and non-COVID-19 cases (all p > 0.10). Incidence rate of hospital-origin AMR-BSI increased from 130.1 cases per 100,000 patient-days in 2019 to 165.5 in 2020 (incidence rate ratio 1.016 per month, 95%CI:1.016-1.017, p < 0.001), and was not associated with COVID-19 (p = 0.96). CONCLUSIONS: In our setting, AMR-BSI incidence and etiology were similar between COVID-19 and non-COVID-19 cases. Incidence rates of hospital-origin AMR-BSI increased in 2020, which was likely due to increased blood culture utilization. We recommend increasing blood culture utilization and generating AMR surveillance reports in LMICs to inform local health care providers and policy makers.


Subject(s)
COVID-19 , Cross Infection , Sepsis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Blood Culture , COVID-19/epidemiology , Cross Infection/microbiology , Escherichia coli , Hospitals , Humans , Indonesia/epidemiology , Klebsiella pneumoniae , Pandemics , Referral and Consultation , SARS-CoV-2/genetics , Sepsis/microbiology
2.
Int J Environ Res Public Health ; 19(9)2022 04 26.
Article in English | MEDLINE | ID: covidwho-1809915

ABSTRACT

Bacterial co-infections may aggravate COVID-19 disease, and therefore being cognizant of other pathogens is imperative. We studied the types, frequency, antibiogram, case fatality rates (CFR), and clinical profiles of co-infecting-pathogens in 301 COVID-19 patients. Co-infection was 36% (n = 109), while CFR was 31.2% compared to 9.9% in non-co-infected patients (z-value = 3.1). Four bacterial species dominated, namely, multidrug-resistant Klebsiella pneumoniae (37%, n = 48), extremely drug-resistant Acinetobacter baumannii (26%, n = 34), multidrug-resistant Eschericia. coli (18.6%, n = 24), and extremely drug-resistant Pseudomonas aeruginosa (8.5%, n = 11), in addition to other bacterial species (9.3%, n = 12). Increased co-infection of K. pneumoniae and A. baumannii was associated with increased death rates of 29% (n = 14) and 32% (n = 11), respectively. Klebsiella pneumoniae was equally frequent in respiratory and urinary tract infections (UTI), while E. coli mostly caused UTI (67%), and A. baumannii and P. aeruginosa dominated respiratory infections (38% and 45%, respectively). Co-infections correlated with advance in age: seniors ≥ 50 years (71%), young adults 21-49 years (25.6%), and children 0-20 years (3%). These findings have significant clinical implications in the successful COVID-19 therapies, particularly in geriatric management. Future studies would reveal insights into the potential selective mechanism(s) of Gram-negative bacterial co-infection in COVID-19 patients.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Gram-Negative Bacterial Infections , Urinary Tract Infections , Aged , Anti-Bacterial Agents/therapeutic use , Bacteria , Bacterial Infections/microbiology , COVID-19/epidemiology , Child , Coinfection/drug therapy , Coinfection/epidemiology , Escherichia coli , Female , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/epidemiology , Humans , Klebsiella pneumoniae , Male , Microbial Sensitivity Tests , Middle Aged , Pseudomonas aeruginosa , Urinary Tract Infections/drug therapy
4.
BMJ Case Rep ; 15(4)2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1774938

ABSTRACT

We present an unusual case of a woman in her 30s who was admitted for diabetic ketoacidosis (DKA) in the setting of newly diagnosed but late COVID-19 infection with associated Klebsiella pneumoniae infection. Her altered mental status, out of proportion with her metabolic decompensation, revealed a superimposed cerebral venous sinus thrombosis (CVST) with fulminant cerebral oedema and ultimately brain death. This unusual and fulminant case of cerebral oedema in the setting of COVID-19 infection with bacterial infection, DKA and CVST was the perfect storm with multiple interwoven factors. It offered diagnostic and treatment challenges with an unfortunate outcome. This unique case is a reminder that it is important to consider a broad neurological differential in patients with COVID-19 with unexplained neurological manifestations, which may require specific neurointensive care management.


Subject(s)
Brain Edema , COVID-19 , Diabetes Mellitus , Diabetic Ketoacidosis , Sinus Thrombosis, Intracranial , Brain Edema/complications , Brain Edema/etiology , COVID-19/complications , Diabetic Ketoacidosis/complications , Diabetic Ketoacidosis/diagnosis , Female , Humans , Klebsiella pneumoniae , Sinus Thrombosis, Intracranial/complications , Sinus Thrombosis, Intracranial/diagnostic imaging
5.
Recenti Prog Med ; 113(3): 213-215, 2022 03.
Article in Italian | MEDLINE | ID: covidwho-1753254

ABSTRACT

Riassunto. La pandemia da covid-19 ha comportato un incremento dell'uso degli antibiotici e dell'antibiotico-resistenza negli ospedali, sia negli Stati Uniti che in Europa, causando un aumento della morbilità e della mortalità nei pazienti ospedalizzati per la covid-19. Come in altri ospedali anche noi abbiamo documentato un incremento delle colonizzazioni e infezioni da germi multiresistenti. In questo studio siamo andati a valutare, nel nostro ospedale, come è cambiata la prevalenza delle infezioni ematiche da Klebsiella pneumoniae resistente ai carbapenemici nel periodo 2019-primo quadrimestre del 2021 (prima e durante la diffusione della pandemia covid-19). I nostri dati documentano un incremento significativo delle infezioni ematiche da Klebsiella pneumoniae resistente ai carbapenemici e un incremento dell'uso e dei costi per ceftazidime/avibactam.


Subject(s)
COVID-19 , Klebsiella pneumoniae , Humans , SARS-CoV-2
6.
BMC Infect Dis ; 22(1): 173, 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1699389

ABSTRACT

BACKGROUND: Prevalence of carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infection with high mortality has attached physicians' attention. High visceral adipose tissue (VAT) and high subcutaneous adipose tissue (SAT) were confirmed by previous studies that were closely related to increased pneumonia severity, more complications, and higher mortality in COVID-19. Thus, we speculate that CT-quantified body composition may also be connected to all-cause mortality and bacterial clearance in patients with CRKP bloodstream infection (BSI). METHODS: We investigated the associations of CT-quantified body composition with the mortality of CRKP bloodstream infectious patients. All CT images were obtained at the level of the L3/4 spinal level. The prognostic value of the body composition was analyzed using the Cox regression model, and precise clinical nomograms were established. RESULTS: 72 eligible patients both suffered from CRKP bloodstream infection and performed abdominopelvic CT were included. Factors associated with 30-day all-in hospital mortality included total adipose tissue (TAT) [adjusted hazard ratio (HR) = 1.028, 95% confidence interval (CI), 1.003-1.053; P = 0.025], age [HR = 1.030, 95% CI, 1.000-1.061; P = 0.047] and SOFA scores [HR = 1.138, 95% CI 1.049-1.263; P = 0.002]. Compared with low-VAT, patients with high-VAT show a strikingly poor prognosis in both 30-day all-cause mortality (P = 0.0108, Fig. 2A) and 30-day CRKP BSI mortality (P = 0.0049, Fig. 2C). The results of TAT were similar to VAT. CONCLUSIONS: Our study suggested that CT-derived body composition could be a credible and effective alternative to assess the prognosis of patients with BSI owing to CRKP. CT-quantified TAT, age, and SOFA scores were independently associated with 30-day all-cause mortality in these severe infectious patients, while skeletal muscle did not have obvious statistical significance.


Subject(s)
Bacteremia , COVID-19 , Klebsiella Infections , Sepsis , Adipose Tissue , Anti-Bacterial Agents/therapeutic use , Bacteremia/microbiology , Carbapenems , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sepsis/drug therapy
8.
J Antimicrob Chemother ; 77(4): 1140-1145, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1632142

ABSTRACT

OBJECTIVES: To report an outbreak of hypervirulent Klebsiella pneumoniae (hvKp) in COVID-19 patients. METHODS: Prospective, observational study including consecutive COVID-19 patients with hvKp infections admitted to the University Hospital of Pisa (Italy). Clinical data and outcome of patients were collected. All patients were followed-up to 30 days from the diagnosis of infection. Mortality within 30 days of the diagnosis of hvKp infection was reported. The hypermucoviscous phenotype was determined by the 'string test'. Molecular typing was performed on three strains collected during different periods of the outbreak. The strains underwent whole genome sequencing using the Illumina MiSeq instrument. The complete circular assemblies were also obtained for the chromosome and a large plasmid using the Unicycler tool. RESULTS: From November 2020 to March 2021, hvKp has been isolated from 36 COVID-19 patients: 29/36 (80.6%) had infections (15 bloodstream infections, 8 ventilator-associated pneumonias and 6 complicated urinary tract infections), while 7/36 (19.4%) had colonization (3 urine, 2 rectal and 2 skin). The isolates belonged to ST147 and their plasmid carried three replicons of the IncFIB (Mar), IncR and IncHI1B types and several resistance genes, including the rmpADC genes encoding enhancers of capsular synthesis. The hvKp isolates displayed an ESBL phenotype, with resistance to piperacillin/tazobactam and ceftolozane/tazobactam and susceptibility only to meropenem and ceftazidime/avibactam. The majority of patients were treated with meropenem alone or in combination with fosfomycin. Thirty-day mortality was 48.3% (14/29). CONCLUSIONS: ST147 ESBL-producing hvKp is associated with high mortality in COVID-19 patients. Strict microbiological surveillance and infection control measures are needed in this population.


Subject(s)
COVID-19 , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Prospective Studies
9.
Rev Esp Quimioter ; 35(1): 80-83, 2022 Feb.
Article in Spanish | MEDLINE | ID: covidwho-1609053

ABSTRACT

OBJECTIVE: We carry out an analysis of the bacteremia diagnosed in the Emergency Department during 2020, coinciding with the period of the pandemic. METHODS: We performed a retrospective analysis from March 4, 2020 to December 31, 2020. RESULTS: The number of patients who went to the Emergency Department during the study period and the number of extracted blood cultures decreased by 46.79% and 35.7% compared to the same period in 2019 (p <0.05). 320 bacteremia occurred while 507 occurred in 2019, assuming a decrease of 36.8% (p <0.05). The positivity rate of blood cultures was 7.09% in 2020 and 7.23% in 2019 and the contamination rate was 7.07 % in 2020 and 5.67% in 2019. The most frequently isolated microorganism was Escherichia coli, followed by Staphylococcus aureus and Klebsiella pneumoniae. A 6.62% of the isolated E. coli were carriers of extended-spectrum beta-lactamases (ESBL). The percentage of methicillin-resistant S. aureus was 12.9 % and that of K. pneumoniae ESBL was 11.54%. CONCLUSIONS: During the SARS-CoV-2 pandemic there has been a decrease in the number of bacteremia diagnoses, it is possible that attention was focused especially on COVID, forgetting other diseases, such as bacteremia.


Subject(s)
Bacteremia , COVID-19 , Escherichia coli Infections , Klebsiella Infections , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Bacteremia/diagnosis , Bacteremia/drug therapy , Bacteremia/epidemiology , Escherichia coli , Escherichia coli Infections/drug therapy , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae , Retrospective Studies , SARS-CoV-2 , Tertiary Care Centers , beta-Lactamases
10.
Eur J Clin Microbiol Infect Dis ; 41(3): 495-500, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1603573

ABSTRACT

The objective was to study ceftazidime-avibactam resistant and susceptible Klebsiella pneumoniae isolated from a patient admitted to the Policlinico Umberto I of Rome for SARS-CoV2. Data on the evolution of patient's conditions, antimicrobial therapies, and microbiological data were collected. Whole-genome sequencing performed by Illumina and Nanopore sequencing methods were used to type the strains. During the hospitalization, a SARS-CoV2-infected patient was colonized by a KPC-producing K. pneumoniae strain and empirically treated with ceftazidime-avibactam (CZA) when presenting spiking fever symptoms. Successively, ST2502 CZA-resistant strain producing the KPC-31 variant gave a pulmonary infection to the patient. The infection was treated with high doses of meropenem. The KPC-31-producing strain disappeared but the patient remained colonized by a KPC-3-producing K. pneumoniae strain. An interplay between highly conserved KPC-31- and KPC-3-producing ST2502 strains occurred in the SARS-CoV2 patient during the hospitalization, selected by CZA and carbapenem treatments, respectively.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Klebsiella Infections , Meropenem , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , COVID-19/complications , Ceftazidime/therapeutic use , Drug Combinations , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/genetics , Meropenem/therapeutic use , Microbial Sensitivity Tests , beta-Lactamases/genetics
11.
Biomed Res Int ; 2021: 2347872, 2021.
Article in English | MEDLINE | ID: covidwho-1582891

ABSTRACT

INTRODUCTION: Patients with acute respiratory distress syndrome caused by coronavirus disease 2019 (COVID-19) are at risk for superadded infections, especially infections caused by multidrug resistant (MDR) pathogens. Before the COVID-19 pandemic, the prevalence of MDR infections, including infections caused by MDR Klebsiella pneumoniae (K. pneumoniae), was very high in Iran. This study is aimed at assessing the genetic diversity, antimicrobial resistance pattern, and biofilm formation in K. pneumoniae isolates obtained from patients with COVID-19 and ventilator-associated pneumonia (VAP) hospitalized in an intensive care unit (ICU) in Iran. METHODS: In this cross-sectional study, seventy K. pneumoniae isolates were obtained from seventy patients with COVID-19 hospitalized in the ICU of Shahid Beheshti hospital, Kashan, Iran, from May to September, 2020. K. pneumoniae was detected through the ureD gene. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and biofilm was detected using the microtiter plate assay method. Genetic diversity was also analyzed through polymerase chain reaction based on enterobacterial repetitive intergenic consensus (ERIC-PCR). The BioNumerics software (v. 8.0, Applied Maths, Belgium) was used for analyzing the data and drawing dendrogram and minimum spanning tree. Findings. K. pneumoniae isolates had varying levels of resistance to antibiotics meropenem (80.4%), cefepime-aztreonam-piperacillin/tazobactam (70%), tobramycin (61.4%), ciprofloxacin (57.7%), gentamicin (55.7%), and imipenem (50%). Around 77.14% of isolates were MDR, and 42.8% of them formed biofilm. Genetic diversity analysis revealed 28 genotypes (E1-E28) and 74.28% of isolates were grouped into ten clusters (i.e., clusters A-J). Clusters were further categorized into three major clusters, i.e., clusters E, H, and J. Antimicrobial resistance to meropenem, tobramycin, gentamicin, and ciprofloxacin in cluster J was significantly higher than cluster H, denoting significant relationship between ERIC clusters and antimicrobial resistance. However, there was no significant difference among major clusters E, H, and J respecting biofilm formation. CONCLUSION: K. pneumoniae isolates obtained from patients with COVID-19 have high antimicrobial resistance, and 44.2% of them have genetic similarity and can be clustered in three major clusters. There is a significant difference among clusters respecting antimicrobial resistance.


Subject(s)
Biofilms/growth & development , COVID-19/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , COVID-19/virology , Cross-Sectional Studies , Humans , Intensive Care Units , Iran , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests/methods , Pandemics/prevention & control , Pneumonia, Ventilator-Associated/virology
12.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
13.
Microbiol Spectr ; 9(3): e0112221, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1511426

ABSTRACT

Whole-genome sequencing was used to characterize carbapenemase-producing Enterobacterales (CPE) strains recovered from rectal screening swab samples obtained from children at a tertiary-care pediatric hospital in Qatar during a 3-year period. A total of 72 CPE isolates recovered from 61 fecal carriers were characterized. Escherichia coli (47 isolates [65.3%]) and Klebsiella pneumoniae (22 isolates [30.6%]) were the most common species identified. High levels of genetic diversity were observed for both species. These 72 isolates produced 78 carbapenemases, characterized as either NDM-type (41 enzymes [52.6%]) or OXA-48-type (37 enzymes [47.4%]). NDM-5 (24 enzymes [30.8%]), NDM-1 (15 enzymes [19.2%]), and OXA-181 (15 enzymes [19.2%]) were the most common variants detected within each type. Twenty-three NDM producers exhibited difficult-to-treat resistance, compared with only 2 of the OXA-48 producers. Multiple comorbidities were identified in 88.5% of the patients, whereas recent travel history to countries in which CPE are endemic was documented for 57.4% of the patients. All 9 blaOXA-48-type-gene-containing E. coli sequence type 38 (ST38) strains were isolated from patients without international travel history. The mean quarterly incidence of fecal carriage decreased more than 6-fold after the implementation of coronavirus disease 2019 (COVID-19)-related international travel restrictions in Qatar in mid-March 2020. Our data suggest that NDM-type and OXA-48-type carbapenemases expressed by a large diversity of E. coli and K. pneumoniae genotypes are largely dominant in the pediatric population of Qatar. Although our data indicate successful local expansion of E. coli ST38 strains harboring blaOXA-244 genes, at least within health care settings, blaOXA-48-type and blaNDM-type genes appear to have been mainly introduced sporadically by asymptomatic carriers who visited or received health care in some nearby countries in which the genes are endemic. IMPORTANCE To the best of our knowledge, this is the first study addressing the molecular characteristics of CPE in a pediatric population in Qatar using whole-genome sequencing. Since several countries in the Arabian Peninsula share relatively similar demographic patterns and international links, it is plausible that the molecular characteristics of CPE in children, at least in the middle and eastern parts of the region, are similar to those observed in our study.


Subject(s)
Bacterial Proteins/chemistry , Enterobacteriaceae/enzymology , Feces/chemistry , beta-Lactamases/chemistry , Adolescent , Anti-Bacterial Agents , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , COVID-19 , Child , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Escherichia coli/enzymology , Escherichia coli/genetics , Genotype , Humans , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Qatar , Retrospective Studies , SARS-CoV-2 , Whole Genome Sequencing , beta-Lactamases/genetics , beta-Lactamases/isolation & purification
14.
Retina ; 41(8): 1709-1714, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1503647

ABSTRACT

PURPOSE: To describe endogenous endophthalmitis in the setting of COVID-19 pneumonia. METHODS: Patients recovering from COVID-19 pneumonia who presented to our department with any or all of the following complaints: pain, watering, redness, and decreased vision were identified. All relevant data were collected for analysis. RESULTS: Three patients with endogenous endophthalmitis were identified. All patients had been treated for COVID-19 pneumonia and therefore had received remdesivir and systemic steroids; 2 of the 3 patients received tocilizumab. All patients received vitreous biopsy, vitrectomy, and intraocular antibiotic injection. Patient 1 demonstrated Klebsiella pneumoniae in blood culture, K. pneumoniae and Escherichia coli in urine culture, and K. pneumoniae in vitreous fluid, whereas Patients 2 and 3 demonstrated Stenotrophomonas maltophilia and methicillin-resistant Staphylococcus aureus in the blood and nasopharyngeal culture, respectively. Correspondingly, the same organism was cultured from vitreous in Patients 2 and 3. The visual acuity at the last follow-up in Patients 1 to 3 was 20/100, 20/80, and 20/40, respectively. The probable source of infection was identified in each as renal calculi, dental caries, and the pharynx, respectively. Real-time polymerase chain reaction demonstrated the presence of Severe Acute Respiratory Syndrome Coronavirus 2 in the vitreous fluid of Patient 1. CONCLUSION: We report good outcomes of early intervention for endogenous endophthalmitis in the setting of COVID-19 infection. We also document the presence of SARS-CoV-2 in vitreous.


Subject(s)
COVID-19/complications , Endophthalmitis/microbiology , Eye Infections, Bacterial/microbiology , Klebsiella pneumoniae/isolation & purification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , SARS-CoV-2/isolation & purification , Stenotrophomonas maltophilia/isolation & purification , Adult , Aged , Anti-Bacterial Agents/therapeutic use , COVID-19 Nucleic Acid Testing , Endophthalmitis/diagnosis , Endophthalmitis/drug therapy , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/drug therapy , Female , Glucocorticoids/therapeutic use , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Male , Middle Aged , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vitrectomy , Vitreous Body/microbiology , Vitreous Body/virology
15.
Microbiol Spectr ; 9(3): e0028321, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501550

ABSTRACT

The Infectious Disease Surveillance of Pediatrics (ISPED) program was established in 2015 to monitor and analyze the trends of bacterial epidemiology and antimicrobial resistance (AMR) in children. Clinical bacterial isolates were collected from 11 tertiary care children's hospitals in China in 2016 to 2020. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method or automated systems, with interpretation according to the Clinical and Laboratory Standards Institute 2019 breakpoints. A total of 288,377 isolates were collected, and the top 10 predominant bacteria were Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Klebsiella pneumoniae, Moraxella catarrhalis, Streptococcus pyogenes, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Acinetobacter baumannii. In 2020, the coronavirus disease 2019 (COVID-19) pandemic year, we observed a significant reduction in the proportion of respiratory tract samples (from 56.9% to 44.0%). A comparable reduction was also seen in the primary bacteria mainly isolated from respiratory tract samples, including S. pneumoniae, H. influenzae, and S. pyogenes. Multidrug-resistant organisms (MDROs) in children were commonly observed and presented higher rates of drug resistance than sensitive strains. The proportions of carbapenem-resistant K. pneumoniae (CRKP), carbapenem-resistant A. baumannii (CRAB), carbapenem-resistant P. aeruginosa (CRPA), and methicillin-resistant S. aureus (MRSA) strains were 19.7%, 46.4%%, 12.8%, and 35.0%, respectively. The proportions of CRKP, CRAB, and CRPA strains all showed decreasing trends between 2015 and 2020. Carbapenem-resistant Enterobacteriaceae (CRE) and CRPA gradually decreased with age, while CRAB showed the opposite trend with age. Both CRE and CRPA pose potential threats to neonates. MDROs show very high levels of AMR and have become an urgent threat to children, suggesting that effective monitoring of AMR and antimicrobial stewardship among children in China are required. IMPORTANCE AMR, especially that involving multidrug-resistant organisms (MDROs), is recognized as a global threat to human health; AMR renders infections increasingly difficult to treat, constituting an enormous economic burden and producing tremendous negative impacts on patient morbidity and mortality rates. There are many surveillance programs in the world to address AMR profiles and MDRO prevalence in humans. However, published studies evaluating the overall AMR rates or MDRO distributions in children are very limited or are of mixed quality. In this study, we showed the bacterial epidemiology and resistance profiles of primary pathogens in Chinese children from 2016 to 2020 for the first time, analyzed MDRO distributions with time and with age, and described MDROs' potential threats to children, especially low-immunity neonates. Our study will be very useful to guide antiinfection therapy in Chinese children, as well as worldwide pediatric patients.


Subject(s)
Bacteria/classification , Communicable Diseases/epidemiology , Communicable Diseases/microbiology , Drug Resistance, Bacterial , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , COVID-19/epidemiology , Child , China/epidemiology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Humans , Klebsiella pneumoniae/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Moraxella catarrhalis , Pseudomonas aeruginosa/drug effects , SARS-CoV-2 , Staphylococcus aureus/drug effects , Staphylococcus epidermidis , Streptococcus pneumoniae , Streptococcus pyogenes
16.
J Antimicrob Chemother ; 76(10): 2538-2545, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1447597

ABSTRACT

OBJECTIVES: To assess the spread of New Delhi metallo-ß-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae ST147 organisms in Poland since an introduction from Tunisia in March 2015, including their phylogenetic position in the global population of the high-risk clone. METHODS: Out of 8925 unique NDM-positive K. pneumoniae isolates identified in Poland from April 2015 till December 2019, 126 isolates, including the Tunisian imports, were related by PFGE and blaNDM gene-carrying Tn125 transposon derivatives. Forty-seven representative isolates were sequenced by Illumina MiSeq. The phylogeny, resistome, virulome and plasmid replicons were analysed and compared with the international ST147 strains. Plasmids of six isolates were studied by the MinION sequencing. RESULTS: A high homogeneity of the 47 isolates was observed, with minor variations in their resistomes and plasmid replicon profiles. However, the detailed SNP comparison discerned a strict outbreak cluster of 40 isolates. All of the organisms were grouped within the ST147 phylogenetic international lineage, and four NDM-1 producers from Tunisia, Egypt and France were the closest relatives of the Polish isolates. Yersiniabactin genes (YbST280 type) were located within the ICEKpn12-like element in most of the outbreak isolates, characterized by O2v1 and KL64 antigen loci. The blaNDM-1 genes were located in double-replicon IncFIIK2+IncFIBK plasmids. CONCLUSIONS: The continuous spread of K. pneumoniae ST147 NDM-1 in Poland since 2015, largely in the Warsaw area, is demonstrated by this genomic analysis. The isolates showed a high degree of homogeneity, and close relatedness to organisms spreading in the Mediterranean region.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Phylogeny , Plasmids/genetics , Poland/epidemiology , beta-Lactamases/genetics
17.
Eur J Clin Invest ; 51(12): e13687, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1443255

ABSTRACT

BACKGROUND/OBJECTIVES: We investigated whether behavioral precautions adopted during Coronavirus disease (COVID-19) pandemic also influenced the spreading and multidrug resistance (MDR) of ESKAPEEc (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii [AB], Pseudomonas aeruginosa, Enterobacter spp and Escherichia Coli, [EC]) among Intensive Care Unit (ICU) patients. SUBJECTS/METHODS: We performed a single-center retrospective study in adult patients admitted to our COVID-19-free surgical ICU. Only patients staying in ICU for more than 48 hours were included. The ESKAPEEc infections recorded during the COVID-19 period (June 1, 2020 - February 28, 2021) and in the corresponding pre-pandemic period (June 1, 2019 - February 28, 2020) were compared. An interrupted time series analysis was performed to rule out possible confounders. RESULTS: Overall, 173 patients in the COVID-19 period and 132 in the pre-COVID-19 period were investigated. The ESKAPEEc infections were documented in 23 (13.3%) and 35 (26.5%) patients in the pandemic and the pre-pandemic periods, respectively (p = 0.005). Demographics, diagnosis, comorbidities, type of surgery, Simplified Acute Physiology Score II, length of mechanical ventilation, hospital and ICU length of stay, ICU death rate, and 28-day hospital mortality were similar in the two groups. In comparison with the pre-pandemic period, no AB was recorded during COVID-19 period, (p = 0.017), while extended-spectrum beta-lactamase-producing EC infections significantly decreased (p = 0.017). Overall, the ESKAPEEc isolates during pandemic less frequently exhibited multidrug-resistant (p = 0.014). CONCLUSIONS: These findings suggest that a robust adherence to hygiene measures together with human contact restrictions in a COVID-19 free ICU might also restrain the transmission of ESKAPEEc pathogens.


Subject(s)
COVID-19/prevention & control , Cross Infection/epidemiology , Gram-Negative Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/epidemiology , Infection Control , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , Acinetobacter Infections/transmission , Acinetobacter baumannii , Aged , Cross Infection/microbiology , Cross Infection/transmission , Drug Resistance, Multiple, Bacterial , Enterobacter , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/transmission , Enterococcus faecium , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Female , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/transmission , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/transmission , Hand Disinfection , Humans , Intensive Care Units , Interrupted Time Series Analysis , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/transmission , Klebsiella pneumoniae , Male , Methicillin-Resistant Staphylococcus aureus , Middle Aged , Organizational Policy , Personal Protective Equipment , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/transmission , Pseudomonas aeruginosa , Retrospective Studies , SARS-CoV-2 , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/transmission , Staphylococcus aureus , Visitors to Patients
18.
Microb Drug Resist ; 27(9): 1167-1175, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1406451

ABSTRACT

Background: The aim of this study was to assess the drivers of multidrug-resistant (MDR) bacterial infection development in coronavirus disease 2019 (COVID-19) and its impact on patient outcome. Methods: Retrospective analysis on data from 32 consecutive patients with COVID-19, admitted to our intensive care unit (ICU) from March to May 2020. Outcomes considered were MDR infection and ICU mortality. Results: Fifty percent of patients developed an MDR infection during ICU stay after a median time of 8 [4-11] days. Most common MDR pathogens were carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii, causing bloodstream infections and pneumonia. MDR infections were linked to a higher length of ICU stay (p = 0.002), steroid therapy (p = 0.011), and associated with a lower ICU mortality (odds ratio: 0.439, 95% confidence interval: 0.251-0.763; p < 0.001). Low-dose aspirin intake was associated with both MDR infection (p = 0.043) and survival (p = 0.015). Among MDR patients, mortality was related with piperacillin-tazobactam use (p = 0.035) and an earlier onset of MDR infection (p = 0.042). Conclusions: MDR infections were a common complication in critically ill COVID-19 patients at our center. MDR risk was higher among those dwelling longer in the ICU and receiving steroids. However, MDR infections were not associated with a worse outcome.


Subject(s)
Acinetobacter Infections/mortality , COVID-19/mortality , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/mortality , Opportunistic Infections/mortality , Pneumonia/mortality , SARS-CoV-2/pathogenicity , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter Infections/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/pathogenicity , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Aspirin/therapeutic use , COVID-19/drug therapy , COVID-19/microbiology , COVID-19/virology , Carbapenems/therapeutic use , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/virology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Length of Stay/statistics & numerical data , Male , Middle Aged , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology , Opportunistic Infections/virology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia/drug therapy , Pneumonia/microbiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Steroids/therapeutic use , Survival Analysis , Treatment Outcome
19.
Medicina (Kaunas) ; 57(5)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1389438

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Among them, metallo-ß-lactamases (MBLs)-producing Klebsiella pneumoniae are of global concern today. The ceftazidime/avibactam combination and the ceftazidime/avibactam + aztreonam combination currently represent the most promising antibiotic strategies to stave off these kinds of infections. We describe the case of a patient affected by thrombotic thrombocytopenic purpura (TTP) admitted in our ICU after developing a hospital-acquired SarsCoV2 interstitial pneumonia during his stay in the hematology department. His medical conditions during his ICU stay were further complicated by a K. Pneumoniae NDM sepsis. To our knowledge, the patient had no risk factors for multidrug-resistant bacteria exposure or contamination during his stay in the hematology department. During his stay in the ICU, we treated the sepsis with a combination therapy of ceftazidime/avibactam + aztreonam. The therapy solved his septic state, allowing for a progressive improvement in his general condition. Moreover, we noticed that the negativization of the hemocultures was also associated to a decontamination of his known rectal colonization. The ceftazidime/avibactam + aztreonam treatment could not only be a valid therapeutic option for these kinds of infections, but it could also be considered as a useful tool in selected patients' intestinal decolonizations.


Subject(s)
COVID-19 , Cross Infection , Purpura, Thrombotic Thrombocytopenic , Sepsis , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Aztreonam/therapeutic use , Ceftazidime/therapeutic use , Cross Infection/drug therapy , Drug Combinations , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Purpura, Thrombotic Thrombocytopenic/drug therapy , RNA, Viral , SARS-CoV-2 , Sepsis/drug therapy , beta-Lactamases
20.
Appl Biochem Biotechnol ; 194(2): 671-693, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1375835

ABSTRACT

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.


Subject(s)
Biofilms/drug effects , Polysaccharides/pharmacology , Quorum Sensing/drug effects , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , COVID-19/drug therapy , COVID-19/virology , Chlorophyta/chemistry , Humans , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Microbial Sensitivity Tests , Polysaccharides/chemistry , Respiratory Tract Infections/microbiology , SARS-CoV-2/drug effects , Serratia marcescens/growth & development , Serratia marcescens/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL