Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Front Cell Infect Microbiol ; 13: 1162721, 2023.
Article in English | MEDLINE | ID: covidwho-2312110

ABSTRACT

Background: Antimicrobial resistance is a serious threat to public health globally. It is a slower-moving pandemic than COVID-19, so we are fast running out of treatment options. Purpose: Thus, this study was designed to search for an alternative biomaterial with broad-spectrum activity for the treatment of multidrug-resistant (MDR) bacterial and fungal pathogen-related infections. Methods: We isolated Streptomyces species from soil samples and identified the most active strains with antimicrobial activity. The culture filtrates of active species were purified, and the bioactive metabolite extracts were identified by thin-layer chromatography (TLC), preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentrations (MICs) of the bioactive metabolites against MDR bacteria and fungi were determined using the broth microdilution method. Results: Preliminary screening revealed that Streptomyces misakiensis and S. coeruleorubidus exhibited antimicrobial potential. The MIC50 and MIC90 of S. misakiensis antibacterial bioactive metabolite (ursolic acid methyl ester) and antifungal metabolite (tetradecamethylcycloheptasiloxane) against all tested bacteria and fungi were 0.5 µg/ml and 1 µg/mL, respectively, versus S. coeruleorubidus metabolites: thiocarbamic acid, N,N-dimethyl, S-1,3-diphenyl-2-butenyl ester against bacteria (MIC50: 2 µg/ml and MIC90: 4 µg/mL) and fungi (MIC50: 4 µg/ml and MIC90: 8 µg/mL). Ursolic acid methyl ester was active against ciprofloxacin-resistant strains of Streptococcus pyogenes, S. agalactiae, Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica serovars, colistin-resistant Aeromonas hydrophila and K. pneumoniae, and vancomycin-resistant Staphylococcus aureus. Tetradecamethylcycloheptasiloxane was active against azole- and amphotericin B-resistant Candida albicans, Cryptococcus neoformans, C. gattii, Aspergillus flavus, A. niger, and A. fumigatus. Ursolic acid methyl ester was applied in vivo for treating S. aureus septicemia and K. pneumoniae pneumonia models in mice. In the septicemia model, the ursolic acid methyl ester-treated group had a significant 4.00 and 3.98 log CFU/g decrease (P < 0.05) in liver and spleen tissue compared to the infected, untreated control group. Lung tissue in the pneumonia model showed a 2.20 log CFU/g significant decrease in the ursolic acid methyl ester-treated group in comparison to the control group. The haematological and biochemical markers in the ursolic acid methyl ester-treated group did not change in a statistically significant way. Moreover, no abnormalities were found in the histopathology of the liver, kidneys, lungs, and spleen of ursolic acid methyl ester-treated mice in comparison with the control group. Conclusion: S. misakiensis metabolite extracts are broad-spectrum antimicrobial biomaterials that can be further investigated for the potential against MDR pathogen infections. Hence, it opens up new horizons for exploring alternative drugs for current and reemerging diseases.


Subject(s)
Anti-Infective Agents , COVID-19 , Methicillin-Resistant Staphylococcus aureus , Pneumonia , Sepsis , Mice , Animals , Staphylococcus aureus , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Bacteria , Fungi , Microbial Sensitivity Tests , Pneumonia/drug therapy , Klebsiella pneumoniae , Sepsis/drug therapy
2.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2320842

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
3.
Biosensors (Basel) ; 13(4)2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2298134

ABSTRACT

Detection and quantification of DNA biomarkers relies heavily on the yield and quality of DNA obtained by extraction from different matrices. Although a large number of studies have compared the yields of different extraction methods, the repeatability and intermediate precision of these methods have been largely overlooked. In the present study, five extraction methods were evaluated, using digital PCR, to determine their efficiency in extracting DNA from three different Gram-negative bacteria in sputum samples. The performance of two automated methods (GXT NA and QuickPick genomic DNA extraction kit, using Arrow and KingFisher Duo automated systems, respectively), two manual kit-based methods (QIAamp DNA mini kit; DNeasy UltraClean microbial kit), and one manual non-kit method (CTAB), was assessed. While GXT NA extraction kit and the CTAB method have the highest DNA yield, they did not meet the strict criteria for repeatability, intermediate precision, and measurement uncertainty for all three studied bacteria. However, due to limited clinical samples, a compromise is necessary, and the GXT NA extraction kit was found to be the method of choice. The study also showed that dPCR allowed for accurate determination of extraction method repeatability, which can help standardize molecular diagnostic approaches. Additionally, the determination of absolute copy numbers facilitated the calculation of measurement uncertainty, which was found to be influenced by the DNA extraction method used.


Subject(s)
Acinetobacter baumannii , Klebsiella pneumoniae , Pseudomonas aeruginosa , Cetrimonium , DNA
4.
Antimicrob Resist Infect Control ; 12(1): 17, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2264184

ABSTRACT

BACKGROUND: Up to 48% of ventilated coronavirus disease 2019 (COVID-19) patients develop ventilator-associated pneumonia (VAP) during hospitalization in an ICU. Dysbiotic oral microbiota can colonize the lower respiratory tract and lead to VAP. It is recommended to introduce oral care strategies in the ICU to prevent VAP. In this study, we observed the impact of an oral hygienic protocol with tooth brushing on cultivable oral bacteriota, the incidence of HAI and patient safety among mechanically ventilated COVID-19 patients in an ICU setting. METHODS: In this prospective cohort study, we recruited 56 adult COVID-19 patients who qualified for mechanical ventilation. Patients were divided into 2 groups depending on the oral care procedure: standard and extended oral procedures with tooth brushing. Oral bacteriota samples were taken first within 36 h and after 7 days of intubation. Microorganisms were identified by MALDI/TOF mass spectrometry. bacterial health care-associated infection (HAI) cases were retrospectively analyzed by etiology. A PFGE study was performed for Klebsiella pneumoniae to check for clonal spreading of strains from oral bacteriota samples and HAI cases. RESULTS: We observed significant dysbiosis and a decrease in cultivable oral bacteriota diversity, with a high frequency of potentially pathogenic species, including Acinetobacter baumannii and K. pneumoniae. The HAI incidence rate was high (55.2/1000 patient-days), most commonly of K. pneumoniae and A. baumannii etiologies, which correlated with the presence of A. baumannii and K. pneumoniae in the oral samples. Strains isolated from VAP cases were the same as oral isolates in 8 cases. The procedure with tooth brushing led to less frequent identification of A. baumannii in oral samples (55.6% vs. 5.3%, p = 0.001); however, it did not decrease the incidence of HAIs. CONCLUSIONS: Dysbiotic oral bacteriota is an important source of respiratory pathogens. The introduction of tooth brushing in oral hygiene protocols in an ICU setting was effective in decreasing the extent of oral bacteriota dysbiosis; however, it did not reduce the risk of HAIs or mortality. TRIAL REGISTRATION: 1072.6120.333.2020.


Subject(s)
COVID-19 , Cross Infection , Pneumonia, Ventilator-Associated , Adult , Humans , Toothbrushing/adverse effects , Prospective Studies , Dysbiosis , Retrospective Studies , Intensive Care Units , COVID-19/epidemiology , COVID-19/complications , Pneumonia, Ventilator-Associated/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology , Klebsiella pneumoniae , Delivery of Health Care
5.
J Infect Public Health ; 16(4): 611-617, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2278043

ABSTRACT

World is in the middle of the pandemic (COVID-19), caused by SARS-COV-2 virus, which is a significant global health crisis after Spanish influenza in the beginning of 20th century. Progressive drastic steps have been enforced to minimize the transmission of the disease. Likewise, in the current years, antimicrobial resistance (AMR) has been referred as one of the potential perils to the global economy and health; however, it is now veiled under the present pandemic. During the current pandemic, AMR to available frontline antibiotics may prove fatal and life threatening to bacterial and fungal infections during routine procedures like elective surgery, C-sections, etc. Currently, a swift elevation in multidrug-resistant organisms (MDROs), like carbapenem-resistant New Delhi metallo-ß-lactamase (NDM)-producing Acinetobacter baumannii, Enterobacterales, extended-spectrum ß-lactamase (ESBL)-producing Klebsiella pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), multi-triazole-resistant Aspergillus fumigatus and pan-echinocandin-resistant Candida glabrata has been seen. Thereupon, the global outbreak of COVID-19 also offers some important ramification for developing antimicrobial drug resistance. This article aims to highlights episodes and aspects of AMR prevalence, impact of management and mismanagement of COVID-19 crisis, hospital settings, community, environment, and travel on the AMR during the current pandemic.


Subject(s)
COVID-19 , Influenza, Human , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Drug Resistance, Bacterial , Microbial Sensitivity Tests , SARS-CoV-2 , Klebsiella pneumoniae
6.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287707

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Subject(s)
COVID-19 , Coinfection , Microbiota , Respiratory Tract Infections , Humans , Saudi Arabia/epidemiology , SARS-CoV-2 , Nasopharynx , Klebsiella pneumoniae , Obesity , Respiratory Tract Infections/epidemiology
7.
Ann Clin Microbiol Antimicrob ; 22(1): 18, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2272518

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant clinical problem, given the lack of therapeutic options. The CRKP strains have emerged as an essential worldwide healthcare issue during the last 10 years. Global expansion of the CRKP has made it a significant public health hazard. We must consider to novel therapeutic techniques. Bacteriophages are potent restorative cases against infections with multiple drug-resistant bacteria. The Phages offer promising prospects for the treatment of CRKP infections. OBJECTIVE: In this study, a novel K. pneumoniae phage vB_KshKPC-M was isolated, characterized, and sequenced, which was able to infect and lyse Carbapenem-resistant K. pneumoniae host specifically. METHODS: One hundred clinical isolates of K. pneumoniae were collected from patients with COVID-19 associated with ventilator-associated acute pneumonia hospitalized at Shahid Beheshti Hospital, Kashan, Iran, from 2020 to 2021. Initially, all samples were cultured, and bacterial isolates identified by conventional biochemical tests, and then the ureD gene was used by PCR to confirm the isolates. The Antibiotic susceptibility test in the disc diffusion method and Minimum inhibitory concentrations for Colistin was done and interpreted according to guidelines. Phenotypic and molecular methods determined the Carbapenem resistance of isolates. The blaKPC, blaNDM, and blaOXA-23 genes were amplified for this detection. Biofilm determination of CRKP isolates was performed using a quantitative microtiter plate (MTP) method. The phage was isolated from wastewater during the summer season at a specific position from Beheshti Hospital (Kashan, Iran). The sample was processed and purified against the bacterial host, a CRKP strain isolated from a patient suffering from COVID-19 pneumoniae and resistance to Colistin with high potency for biofilm production. This isolate is called Kp100. The separated phages were diluted and titration by the double overlay agar plaque assay. The separate Phage is concentrated with 10% PEG and stored at -80 °C until use. The phage host range was identified by the spot test method. The purified phage morphology was determined using a transmission electron microscope. The phage stability tests (pH and temperature) were analyzed. The effect of cationic ions on phage adsorption was evaluated. The optimal titer of bacteriophage was determined to reduce the concentration of the CRKP strain. One-step growth assays were performed to identify the purified phage burst's latent cycle and size. The SDS-PAGE was used for phage proteins analysis. Phage DNA was extracted by chloroform technique, and the whole genome of lytic phage was sequenced using Illumina HiSeq technology (Illumina, San Diego, CA). For quality assurance and preprocessing, such as trimming, Geneious Prime 2021.2.2 and Spades 3.9.0. The whole genome sequence of the lytic phage is linked to the GenBank database accession number. RASTtk-v1.073 was used to predict and annotate the ORFs. Prediction of ORF was performed using PHASTER software. ResFinder is used to assess the presence of antimicrobial resistance and virulence genes in the genome. The tRNAs can-SE v2.0.6 is used to determine the presence of tRNA in the genome. Linear genome comparisons of phages and visualization of coding regions were performed using Easyfig 2.2.3 and Mauve 2.4.0. Phage lifestyles were predicted using the program PHACTS. Phylogenetic analysis and amino acid sequences of phage core proteins, such as the major capsid protein. Phylogenies were reconstructed using the Neighbor-Joining method with 1000 bootstrap repeat. HHpred software was used to predict depolymerase. In this study, GraphPad Prism version 9.1 was used for the statistical analysis. Student's t-test was used to compare the sets and the control sets, and the significance level was set at P ≤ 0.05. RESULTS: Phage vB_KshKPC-M is assigned to the Siphoviridae, order Caudovirales. It was identified as a linear double-stranded DNA phage of 54,378 bp with 50.08% G + C content, had a relatively broad host range (97.7%), a short latency of 20 min, and a high burst size of 260 PFU/cell, and was maintained stable at different pH (3-11) and temperature (45-65 °C). The vB_KshKPC-M genome contains 91 open-reading frames. No tRNA, antibiotic resistance, toxin, virulence-related genes, or lysogen-forming gene clusters were detected in the phage genome. Comparative genomic analysis revealed that phage vB_KshKPC-M has sequence similarity to the Klebsiella phages, phage 13 (NC_049844.1), phage Sushi (NC_028774.1), phage vB_KpnD_PeteCarol (OL539448.1) and phage PWKp14 (MZ634345.1). CONCLUSION: The broad host range and antibacterial activity make it a promising candidate for future phage therapy applications. The isolated phage was able to lyse most of the antibiotic-resistant clinical isolates. Therefore, this phage can be used alone or as a phage mixture in future studies to control and inhibit respiratory infections caused by these bacteria, especially in treating respiratory infections caused by resistant strains in sick patients.


Subject(s)
Bacteriophages , COVID-19 , Klebsiella Infections , Klebsiella pneumoniae , Humans , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , COVID-19/complications , Genomics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , Phylogeny , Ventilators, Mechanical
8.
BMC Infect Dis ; 23(1): 184, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2283554

ABSTRACT

BACKGROUND: There is a growing interest in Klebsiella variicola as a causative pathogen in humans, though its clinical features and the impact of co-infection or secondary infection with COVID-19 remain unknown. CASE PRESENTATION: A 71-year-old man presented with fever, altered mental status and generalized weakness and was admitted to ICU due to severe COVID-19 pneumonia. He was newly diagnosed with type II diabetes mellitus upon admission. On hospital day 3, his respiratory status deteriorated, requiring invasive mechanical ventilation. On hospital day 10, superimposed bacterial pneumonia was suspected and subsequently, broad-spectrum antibiotics were administered for the associated bloodstream infection. On hospital day 13, despite administration of active antibiotics and appropriate source control, he decompensated and died. The causative organism isolated from blood cultures was initially reported as K. pneumoniae, but it was identified as K. variicola by a genetic analysis. A representative isolate (FUJ01370) had a novel multilocus sequence typing allelic profile (gapA-infB-mdh-pgi-phoE-rpoB-tonB: 16-24-21-27-52-17-152), to which sequence type 5794 was assigned (GenBank assembly accession: GCA_019042755.1). CONCLUSIONS: We report a fatal case of respiratory and bloodstream infection due to K. variicola complicating severe COVID-19. Co-infection or secondary infection of K. variicola in COVID-19 is likely under-recognized and can be fulminant as in this case.


Subject(s)
COVID-19 , Coinfection , Diabetes Mellitus, Type 2 , Klebsiella Infections , Sepsis , Male , Humans , Aged , Coinfection/drug therapy , Klebsiella Infections/microbiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , COVID-19/complications , Klebsiella/genetics , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/therapeutic use , Sepsis/drug therapy
9.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2255591

ABSTRACT

The continuous spread of carbapenem-resistant Klebsiella pneumoniae (CP-Kp) strains presents a severe challenge to the healthcare system due to limited therapeutic options and high mortality. Since its availability, ceftazidime/avibactam (C/A) has become a first-line option against KPC-Kp, but C/A-resistant strains have been reported increasingly, especially with pneumonia or prior suboptimal blood exposure to C/A treatment. A retrospective, observational study was conducted with all patients admitted to the Intensive Care Unit (ICU) dedicated to COVID-19 patients at the City of Health & Sciences in Turin, between 1 May 2021 and 31 January 2022, with the primary endpoint to study strains with resistance to C/A, and secondly to describe the characteristics of this population, with or without previous exposure to C/A. Seventeen patients with colonization or invasive infection due to Klebsiella pneumoniae, C/A resistance, and susceptibility to meropenem (MIC = 2 µg/L) were included; the blaKPC genotype was detected in all isolates revealing D179Y mutation in the blaKPC-2 (blaKPC-33) gene. Cluster analysis showed that 16 out of the 17 C/A-resistant KPC-Kp isolates belonged to a single clone. Thirteen strains (76.5%) were isolated in a 60-day period. Only some patients had a previous infection with non-mutant KPC at other sites (5; 29.4%). Eight patients (47.1%) underwent previous large-spectrum antibiotic treatment, and four patients (23.5%) had prior treatment with C/A. The secondary spread of the D179Y mutation in the blaKPC-2 during the COVID-19 pandemic needs to be addressed constantly by an interdisciplinary interaction between microbiologists, infection control personnel, clinicians, and infectious diseases consultants to properly diagnose and treat patients.


Subject(s)
Anti-Bacterial Agents , Ceftazidime , Drug Combinations , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , beta-Lactamases/genetics , COVID-19/epidemiology , Intensive Care Units , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Meropenem/pharmacology , Meropenem/therapeutic use , Microbial Sensitivity Tests , Pandemics , Retrospective Studies
10.
PeerJ ; 11: e15007, 2023.
Article in English | MEDLINE | ID: covidwho-2248861

ABSTRACT

Bloodstream infections due to bacteria are a highly consequential nosocomial occurrences and the organisms responsible for them are usually multidrug-resistant. The aims of this study were to describe the incidence of bacteremia caused by Gram-negative ESKAPE bacilli during the COVID-19 pandemic and characterize the clinical and microbiological findings including antimicrobial resistance. A total of 115 Gram-negative ESKAPE isolates were collected from patients with nosocomial bacteremia (18% of the total bacteremias) in a tertiary care center in Mexico City from February 2020 to January 2021. These isolates were more frequently derived from the Respiratory Diseases Ward (27), followed by the Neurosurgery (12), Intensive Care Unit (11), Internal Medicine (11), and Infectious Diseases Unit (7). The most frequently isolated bacteria were Acinetobacter baumannii (34%), followed by Klebsiella pneumoniae (28%), Pseudomonas aeruginosa (23%) and Enterobacter spp (16%). A. baumannii showed the highest levels of multidrug-resistance (100%), followed by K. pneumoniae (87%), Enterobacter spp (34%) and P. aeruginosa (20%). The bla CTX-M-15 and bla TEM-1 genes were identified in all beta-lactam-resistant K. pneumoniae (27), while bla TEM-1 was found in 84.6% (33/39) of A. baumannii isolates. The carbapenemase gene bla OXA-398 was predominant among carbapenem-resistant A. baumannii (74%, 29/39) and bla OXA-24was detected in four isolates. One P. aeruginosa isolate was bla VIM-2 gene carrier, while two K. pneumoniae and one Enterobacter spp were bla NDM gene carriers. Among colistin-resistant isolates mcr-1 gene was not detected. Clonal diversity was observed in K. pneumoniae, P. aeruginosa and Enterobacter spp. Two outbreaks caused by A. baumannii ST208 and ST369 were detected, both belonging to the clonal complex CC92 and IC2. A. baumannii was associated with a death rate of 72% (28/32), most of them (86%, 24/28) extensively drug-resistant or pandrug-resistant isolates, mainly in patients with COVID-19 (86%, 24/28) in the Respiratory Diseases Ward. A. baumannii isolates had a higher mortality rate (72%), which was higher in patients with COVID-19. There was no statistically significant association between the multidrug-resistant profile in Gram-negative ESKAPE bacilli and COVID-19 disease. The results point to the important role of multidrug-resistant Gram-negative ESKAPE bacteria causing bacteremia in nosocomial settings before and during the COVID-19 epidemic. Additionally, we were unable to identify a local impact of the COVID-19 pandemic on antimicrobial resistance rates, at least in the short term.


Subject(s)
Anti-Infective Agents , Bacteremia , COVID-19 , Cross Infection , Gram-Negative Bacterial Infections , Sepsis , Humans , Pandemics , COVID-19/epidemiology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacteria/genetics , Klebsiella pneumoniae/genetics , Enterobacter , Bacteremia/drug therapy , Cross Infection/drug therapy , Sepsis/epidemiology
11.
J Infect Public Health ; 16(3): 320-331, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2238307

ABSTRACT

BACKGROUND: There is paucity of data describing the impact of COVID-19 pandemic on antimicrobial resistance. This review evaluated the changes in the rate of multidrug resistant gram negative and gram positive bacteria during the COVID-19 pandemic. METHODS: A search was conducted in PubMed, Science Direct, and Google Scholar databases to identify eligible studies. Studies that reported the impact of COVID-19 pandemic on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamase inhibitor (ESBL)-producing Enterobacteriaceae, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CPE) were selected. Studies published in English language from the start of COVID-19 pandemic to July 2022 were considered for inclusion. RESULTS: Thirty eligible studies were selected and most of them were from Italy (n = 8), Turkey (n = 3) and Brazil (n = 3). The results indicated changes in the rate of multidrug resistant bacteria, and the changes varied between the studies. Most studies (54.5%) reported increase in MRSA infection/colonization during the pandemic, and the increase ranged from 4.6 to 170.6%. Five studies (55.6%) reported a 6.8-65.1% increase in VRE infection/colonization during the pandemic. A 2.4-58.2% decrease in ESBL E. coli and a 1.8-13.3% reduction in ESBL Klebsiella pneumoniae was observed during the pandemic. For CRAB, most studies (58.3%) reported 1.5-621.6% increase in infection/colonization during the pandemic. Overall, studies showed increase in the rate of CRE infection/colonization during the pandemic. There was a reduction in carbapenem-resistant E. coli during COVID-19 pandemic, and an increase in carbapenem-resistant K. pneumoniae. Most studies (55.6%) showed 10.4 - 40.9% reduction in the rate of CRPA infection during the pandemic. CONCLUSION: There is an increase in the rate of multidrug resistant gram positive and gram negative bacteria during the COVID-19 pandemic. However, the rate of ESBL-producing Enterobacteriaceae and CRPA has decrease during the pandemic. Both infection prevention and control strategies and antimicrobial stewardship should be strengthen to address the increasing rate of multidrug resistant gram positive and gram negative bacteria.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pandemics , Gram-Negative Bacteria , Escherichia coli , Gram-Positive Bacteria , Enterobacteriaceae , Klebsiella pneumoniae , Carbapenems , Microbial Sensitivity Tests
12.
Braz J Infect Dis ; 27(1): 102735, 2023.
Article in English | MEDLINE | ID: covidwho-2233440

ABSTRACT

Colonizations/Infections caused by carbapenem-resistant Enterobacterales are of great clinical and epidemiological importance due to their rapid dissemination and high mortality rates. In this scenario, the use of antibiotics intensified by the COVID-19 pandemic has brought about a great warning on the real impact that this pandemic could have on antimicrobial management programs and long-term antimicrobial resistance rates. The objective of this study was to evaluate the increase of New Delhi Metallo ß-Lactamase (NDM)-producing Enterobacterales cases in COVID-19 units of a complex Brazilian tertiary hospital. This retrospective observational study included all patients admitted to the hospital identified as colonized or infected by NDM-producing Gram negative bacilli (GNB), from January 2017 to April 2021. Forty-two NDM-producing Enterobacterales were identified in 39 patients. The rate of NDM cases per total surveillance cultures increased progressively between 2017 and 2021 (chi-2 for trend, p < 0.0001) and was associated with a higher occurrence specifically in COVID units (Fisher exact, p < 0.0001). The molecular investigation of the NDM-producing Klebsiella pneumoniae strains revealed the emergence of diverse clones during the COVID-19 period, also with possible evidence of horizontal transmission among patients within COVID units. NDM-producing Enterobacterales with multiple and different clonalities in the COVID-19 units also raised questions about the importance of other factors besides horizontal clonal transfer, including the increase of antimicrobial consumption by these patients.


Subject(s)
COVID-19 , Pandemics , Humans , Tertiary Care Centers , Prevalence , Microbial Sensitivity Tests , COVID-19/epidemiology , Klebsiella pneumoniae , beta-Lactamases , Anti-Bacterial Agents/pharmacology
14.
Front Cell Infect Microbiol ; 12: 1048633, 2022.
Article in English | MEDLINE | ID: covidwho-2198718

ABSTRACT

Introduction: Novel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital. Methods: We conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events. Results: Twenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively. Discussion/conclusion: Use of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance.


Subject(s)
COVID-19 , Male , Female , Humans , Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases , Gram-Negative Bacteria , Drug Combinations , Klebsiella pneumoniae , Microbial Sensitivity Tests
15.
Ann Clin Microbiol Antimicrob ; 22(1): 1, 2023 Jan 03.
Article in English | MEDLINE | ID: covidwho-2196305

ABSTRACT

BACKGROUND: Carbapenem resistance is endemic in the Indian sub-continent. In this study, carbapenem resistance rates and the prevalence of different carbapenemases were determined in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa during two periods; Pre-COVID (August to October 2019) and COVID (January to February 2021) in a north-Indian tertiary care hospital. METHODS: Details of patient demographics and clinical condition was collated from the Hospital Information System and detection of carbapenemases NDM, OXA-48, VIM, IMP and KPC was done by Polymerase chain reaction (PCR) in 152 and 138 non-consecutive carbapenem resistant isolates during the two study periods respectively. Conjugation assay and sequencing of NDM and OXA-48 gene was done on a few selected isolates. RESULTS: As compared to Pre-COVID period, co-morbidities and the mortality rates were higher in patients harbouring carbapenem resistant organisms during the COVID period. The overall carbapenem resistance rate for all the four organisms increased from 23 to 41% between the two periods of study; with Pseudomonas aeruginosa and Klebsiella pneumoniae showing significant increase (p < 0.05). OXA-48, NDM and co-expression of NDM and OXA-48 were the most common genotypes detected. NDM-5 and OXA-232 were most common variants of NDM and OXA-48 family respectively during both the study periods. CONCLUSION: Higher rate of carbapenem resistance in COVID times could be attributed to increase in number of patients with co-morbidities. However, genetic elements of carbapenem resistance largely remained the same in the two time periods.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Humans , Anti-Bacterial Agents/pharmacology , Tertiary Care Centers , COVID-19/epidemiology , Bacterial Proteins/genetics , Carbapenems/pharmacology , beta-Lactamases/genetics , Escherichia coli/genetics , Klebsiella pneumoniae/genetics
16.
Microbiol Spectr ; 11(1): e0312422, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193565

ABSTRACT

Worldwide, extended-spectrum ß-lactamase (ESBL) rates are increasing at an alarming level with increasing rates of health care exposures, international travel, and antibiotic usage. In this study, we investigated whether enhanced social isolation, travel restrictions, and the reduced use of antibiotics in Ontario, Canada during coronavirus disease 2019 (COVID-19) pandemic had an impact on ESBL rates in urine cultures collected from the community and long-term-care (LTC) facilities across the province. Data from a total of 8.6 million urine cultures performed at LifeLabs Ontario from 2016 to 2021 were utilized for analysis. ESBL-producing Escherichia coli (ESBL Escherichia coli) and ESBL Klebsiella pneumoniae were identified using standard operating procedures. Data trends were estimated by interrupted time series (ITS) regression analysis. Among 2.3 million positive urine cultures, 48.9% and 7.2% grew E. coli and K. pneumoniae, of which 5.8% and 3.3% produced ESBLs, respectively. While the overall rate of ESBL isolation was higher in the pandemic period than in the prepandemic period, by ITS regression analysis of the monthly rates of ESBL isolation, decreasing trends were noted for ESBL E. coli in both the community and LTC facilities and for ESBL K. pneumoniae in the community. The ESBL K. pneumoniae rates in LTC facilities continued to increase throughout the COVID-19 period. By subgroup analysis for different genders, age groups, and local health integration network (LHIN) units, similar trends were seen in most cases (P < 0.05), except for a few densely populated LHINs where rate changes were not statistically significant. IMPORTANCE Community-onset urinary tract infections (UTIs) caused by ESBL-producing Enterobacterales, particularly E. coli and K. pneumoniae, are a major public health concern. In this study, we assessed the impact of COVID-19 on ESBL rates in urine cultures in Ontario, Canada. Our results show the recent epidemiology of ESBL-producing Enterobacterales in urine cultures from both the community and LTC facilities in Ontario, Canada, and the impact of COVID-19 restrictions on ESBL trends for the entire province as well as different subgroups of the population based on demographic and geographic characteristics. Our results may have important public health implications in the context of the gradual easing of COVID-19 restrictions.


Subject(s)
COVID-19 , Escherichia coli Infections , Klebsiella Infections , Humans , Male , Female , Escherichia coli , Pandemics , Ontario/epidemiology , beta-Lactamases , COVID-19/epidemiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests , Klebsiella Infections/epidemiology
18.
J Investig Med High Impact Case Rep ; 10: 23247096221140250, 2022.
Article in English | MEDLINE | ID: covidwho-2139082

ABSTRACT

Unvaccinated patients with comorbidities that impair the immune function, such as type 2 diabetes mellitus, are more likely to develop severe COVID-19. The COVID-19-associated acute respiratory distress syndrome has raised new concerns in intensive care units globally owing to the presence of secondary fungal infections. We report the case of a 71-year-old man from Ecuador with a history of type 2 diabetes mellitus, severe COVID-19 pneumonia, and lung cavitation associated with triple infections with Trichosporon asahii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The patient with a history of high blood pressure and type 2 diabetes was admitted to our hospital from a private care center with a diagnosis of COVID-19-associated acute respiratory distress syndrome. On arrival, the patient presented with signs of hypoxemic respiratory failure. During his stay at another hospital, he had received tocilizumab and corticosteroid therapy. Therefore, intubation was performed and mechanical ventilation was initiated. The patient developed a septic shock and renal failure with a glomerular filtration rate of 27.5 mL/min/1.73 m2; therefore, two hemodiafiltration sessions were started. The bronchoalveolar lavage revealed erythematous lesions in the bronchial tree and abundant purulent secretions and erosions in the bronchial mucosa, with a cavitary lesion in the right bronchial tree. The bronchoalveolar lavage samples were used to isolate Trichosporon asahii, Klebsiella pneumoniae, and Pseudomonas aeruginosa carbapenemase class A. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) Biotyper mass spectrometry and polymerase chain reaction (PCR) molecular identification were performed. This case report suggested that patients with severe COVID-19 pneumonia, with or without comorbidities, are more susceptible to opportunistic infections.


Subject(s)
COVID-19 , Coinfection , Diabetes Mellitus, Type 2 , Respiratory Distress Syndrome , Male , Humans , Aged , Klebsiella pneumoniae , Pseudomonas aeruginosa , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Ecuador , Lung
19.
Antimicrob Resist Infect Control ; 11(1): 73, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-2115294

ABSTRACT

BACKGROUND: There is a paucity of data regarding blood culture utilization and antimicrobial-resistant (AMR) infections in low and middle-income countries (LMICs). In addition, there has been a concern for increasing AMR infections among COVID-19 cases in LMICs. Here, we investigated epidemiology of AMR bloodstream infections (BSI) before and during the COVID-19 pandemic in the Indonesian national referral hospital. METHODS: We evaluated blood culture utilization rate, and proportion and incidence rate of AMR-BSI caused by WHO-defined priority bacteria using routine hospital databases from 2019 to 2020. A patient was classified as a COVID-19 case if their SARS-CoV-2 RT-PCR result was positive. The proportion of resistance was defined as the ratio of the number of patients having a positive blood culture for a WHO global priority resistant pathogen per the total number of patients having a positive blood culture for the given pathogen. Poisson regression models were used to assess changes in rate over time. RESULTS: Of 60,228 in-hospital patients, 8,175 had at least one blood culture taken (total 17,819 blood cultures), giving a blood culture utilization rate of 30.6 per 1,000 patient-days. A total of 1,311 patients were COVID-19 cases. Blood culture utilization rate had been increasing before and during the COVID-19 pandemic (both p < 0.001), and was higher among COVID-19 cases than non-COVID-19 cases (43.5 vs. 30.2 per 1,000 patient-days, p < 0.001). The most common pathogens identified were K. pneumoniae (23.3%), Acinetobacter spp. (13.9%) and E. coli (13.1%). The proportion of resistance for each bacterial pathogen was similar between COVID-19 and non-COVID-19 cases (all p > 0.10). Incidence rate of hospital-origin AMR-BSI increased from 130.1 cases per 100,000 patient-days in 2019 to 165.5 in 2020 (incidence rate ratio 1.016 per month, 95%CI:1.016-1.017, p < 0.001), and was not associated with COVID-19 (p = 0.96). CONCLUSIONS: In our setting, AMR-BSI incidence and etiology were similar between COVID-19 and non-COVID-19 cases. Incidence rates of hospital-origin AMR-BSI increased in 2020, which was likely due to increased blood culture utilization. We recommend increasing blood culture utilization and generating AMR surveillance reports in LMICs to inform local health care providers and policy makers.


Subject(s)
COVID-19 , Cross Infection , Sepsis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Blood Culture , COVID-19/epidemiology , Cross Infection/microbiology , Escherichia coli , Hospitals , Humans , Indonesia/epidemiology , Klebsiella pneumoniae , Pandemics , Referral and Consultation , SARS-CoV-2/genetics , Sepsis/microbiology
20.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2110188

ABSTRACT

With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.


Subject(s)
Copper , Metal Nanoparticles , Humans , Copper/chemistry , Cellulose/pharmacology , Antifungal Agents , Staphylococcus aureus , Escherichia coli , Antiviral Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Klebsiella pneumoniae , Oxides
SELECTION OF CITATIONS
SEARCH DETAIL