Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Eur J Clin Microbiol Infect Dis ; 41(3): 495-500, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1603573

ABSTRACT

The objective was to study ceftazidime-avibactam resistant and susceptible Klebsiella pneumoniae isolated from a patient admitted to the Policlinico Umberto I of Rome for SARS-CoV2. Data on the evolution of patient's conditions, antimicrobial therapies, and microbiological data were collected. Whole-genome sequencing performed by Illumina and Nanopore sequencing methods were used to type the strains. During the hospitalization, a SARS-CoV2-infected patient was colonized by a KPC-producing K. pneumoniae strain and empirically treated with ceftazidime-avibactam (CZA) when presenting spiking fever symptoms. Successively, ST2502 CZA-resistant strain producing the KPC-31 variant gave a pulmonary infection to the patient. The infection was treated with high doses of meropenem. The KPC-31-producing strain disappeared but the patient remained colonized by a KPC-3-producing K. pneumoniae strain. An interplay between highly conserved KPC-31- and KPC-3-producing ST2502 strains occurred in the SARS-CoV2 patient during the hospitalization, selected by CZA and carbapenem treatments, respectively.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Klebsiella Infections , Meropenem , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , COVID-19/complications , Ceftazidime/therapeutic use , Drug Combinations , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/genetics , Meropenem/therapeutic use , Microbial Sensitivity Tests , beta-Lactamases/genetics
2.
Biomed Res Int ; 2021: 2347872, 2021.
Article in English | MEDLINE | ID: covidwho-1582891

ABSTRACT

INTRODUCTION: Patients with acute respiratory distress syndrome caused by coronavirus disease 2019 (COVID-19) are at risk for superadded infections, especially infections caused by multidrug resistant (MDR) pathogens. Before the COVID-19 pandemic, the prevalence of MDR infections, including infections caused by MDR Klebsiella pneumoniae (K. pneumoniae), was very high in Iran. This study is aimed at assessing the genetic diversity, antimicrobial resistance pattern, and biofilm formation in K. pneumoniae isolates obtained from patients with COVID-19 and ventilator-associated pneumonia (VAP) hospitalized in an intensive care unit (ICU) in Iran. METHODS: In this cross-sectional study, seventy K. pneumoniae isolates were obtained from seventy patients with COVID-19 hospitalized in the ICU of Shahid Beheshti hospital, Kashan, Iran, from May to September, 2020. K. pneumoniae was detected through the ureD gene. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and biofilm was detected using the microtiter plate assay method. Genetic diversity was also analyzed through polymerase chain reaction based on enterobacterial repetitive intergenic consensus (ERIC-PCR). The BioNumerics software (v. 8.0, Applied Maths, Belgium) was used for analyzing the data and drawing dendrogram and minimum spanning tree. Findings. K. pneumoniae isolates had varying levels of resistance to antibiotics meropenem (80.4%), cefepime-aztreonam-piperacillin/tazobactam (70%), tobramycin (61.4%), ciprofloxacin (57.7%), gentamicin (55.7%), and imipenem (50%). Around 77.14% of isolates were MDR, and 42.8% of them formed biofilm. Genetic diversity analysis revealed 28 genotypes (E1-E28) and 74.28% of isolates were grouped into ten clusters (i.e., clusters A-J). Clusters were further categorized into three major clusters, i.e., clusters E, H, and J. Antimicrobial resistance to meropenem, tobramycin, gentamicin, and ciprofloxacin in cluster J was significantly higher than cluster H, denoting significant relationship between ERIC clusters and antimicrobial resistance. However, there was no significant difference among major clusters E, H, and J respecting biofilm formation. CONCLUSION: K. pneumoniae isolates obtained from patients with COVID-19 have high antimicrobial resistance, and 44.2% of them have genetic similarity and can be clustered in three major clusters. There is a significant difference among clusters respecting antimicrobial resistance.


Subject(s)
Biofilms/growth & development , COVID-19/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , COVID-19/virology , Cross-Sectional Studies , Humans , Intensive Care Units , Iran , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests/methods , Pandemics/prevention & control , Pneumonia, Ventilator-Associated/virology
3.
Genome Med ; 13(1): 182, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523323

ABSTRACT

BACKGROUND: Clinical metagenomics (CMg) has the potential to be translated from a research tool into routine service to improve antimicrobial treatment and infection control decisions. The SARS-CoV-2 pandemic provides added impetus to realise these benefits, given the increased risk of secondary infection and nosocomial transmission of multi-drug-resistant (MDR) pathogens linked with the expansion of critical care capacity. METHODS: CMg using nanopore sequencing was evaluated in a proof-of-concept study on 43 respiratory samples from 34 intubated patients across seven intensive care units (ICUs) over a 9-week period during the first COVID-19 pandemic wave. RESULTS: An 8-h CMg workflow was 92% sensitive (95% CI, 75-99%) and 82% specific (95% CI, 57-96%) for bacterial identification based on culture-positive and culture-negative samples, respectively. CMg sequencing reported the presence or absence of ß-lactam-resistant genes carried by Enterobacterales that would modify the initial guideline-recommended antibiotics in every case. CMg was also 100% concordant with quantitative PCR for detecting Aspergillus fumigatus from 4 positive and 39 negative samples. Molecular typing using 24-h sequencing data identified an MDR-K. pneumoniae ST307 outbreak involving 4 patients and an MDR-C. striatum outbreak involving 14 patients across three ICUs. CONCLUSION: CMg testing provides accurate pathogen detection and antibiotic resistance prediction in a same-day laboratory workflow, with assembled genomes available the next day for genomic surveillance. The provision of this technology in a service setting could fundamentally change the multi-disciplinary team approach to managing ICU infections. The potential to improve the initial targeted treatment and rapidly detect unsuspected outbreaks of MDR-pathogens justifies further expedited clinical assessment of CMg.


Subject(s)
COVID-19/pathology , Cross Infection/transmission , Metagenomics , Anti-Bacterial Agents/therapeutic use , COVID-19/virology , Coinfection/drug therapy , Coinfection/microbiology , Corynebacterium/genetics , Corynebacterium/isolation & purification , Cross Infection/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Female , Humans , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Male , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Sequence Analysis, DNA , beta-Lactamases/genetics
4.
Microbiol Spectr ; 9(3): e0112221, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1511426

ABSTRACT

Whole-genome sequencing was used to characterize carbapenemase-producing Enterobacterales (CPE) strains recovered from rectal screening swab samples obtained from children at a tertiary-care pediatric hospital in Qatar during a 3-year period. A total of 72 CPE isolates recovered from 61 fecal carriers were characterized. Escherichia coli (47 isolates [65.3%]) and Klebsiella pneumoniae (22 isolates [30.6%]) were the most common species identified. High levels of genetic diversity were observed for both species. These 72 isolates produced 78 carbapenemases, characterized as either NDM-type (41 enzymes [52.6%]) or OXA-48-type (37 enzymes [47.4%]). NDM-5 (24 enzymes [30.8%]), NDM-1 (15 enzymes [19.2%]), and OXA-181 (15 enzymes [19.2%]) were the most common variants detected within each type. Twenty-three NDM producers exhibited difficult-to-treat resistance, compared with only 2 of the OXA-48 producers. Multiple comorbidities were identified in 88.5% of the patients, whereas recent travel history to countries in which CPE are endemic was documented for 57.4% of the patients. All 9 blaOXA-48-type-gene-containing E. coli sequence type 38 (ST38) strains were isolated from patients without international travel history. The mean quarterly incidence of fecal carriage decreased more than 6-fold after the implementation of coronavirus disease 2019 (COVID-19)-related international travel restrictions in Qatar in mid-March 2020. Our data suggest that NDM-type and OXA-48-type carbapenemases expressed by a large diversity of E. coli and K. pneumoniae genotypes are largely dominant in the pediatric population of Qatar. Although our data indicate successful local expansion of E. coli ST38 strains harboring blaOXA-244 genes, at least within health care settings, blaOXA-48-type and blaNDM-type genes appear to have been mainly introduced sporadically by asymptomatic carriers who visited or received health care in some nearby countries in which the genes are endemic. IMPORTANCE To the best of our knowledge, this is the first study addressing the molecular characteristics of CPE in a pediatric population in Qatar using whole-genome sequencing. Since several countries in the Arabian Peninsula share relatively similar demographic patterns and international links, it is plausible that the molecular characteristics of CPE in children, at least in the middle and eastern parts of the region, are similar to those observed in our study.


Subject(s)
Bacterial Proteins/chemistry , Enterobacteriaceae/enzymology , Feces/chemistry , beta-Lactamases/chemistry , Adolescent , Anti-Bacterial Agents , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , COVID-19 , Child , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Escherichia coli/enzymology , Escherichia coli/genetics , Genotype , Humans , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Qatar , Retrospective Studies , SARS-CoV-2 , Whole Genome Sequencing , beta-Lactamases/genetics , beta-Lactamases/isolation & purification
5.
J Antimicrob Chemother ; 76(10): 2538-2545, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1447597

ABSTRACT

OBJECTIVES: To assess the spread of New Delhi metallo-ß-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae ST147 organisms in Poland since an introduction from Tunisia in March 2015, including their phylogenetic position in the global population of the high-risk clone. METHODS: Out of 8925 unique NDM-positive K. pneumoniae isolates identified in Poland from April 2015 till December 2019, 126 isolates, including the Tunisian imports, were related by PFGE and blaNDM gene-carrying Tn125 transposon derivatives. Forty-seven representative isolates were sequenced by Illumina MiSeq. The phylogeny, resistome, virulome and plasmid replicons were analysed and compared with the international ST147 strains. Plasmids of six isolates were studied by the MinION sequencing. RESULTS: A high homogeneity of the 47 isolates was observed, with minor variations in their resistomes and plasmid replicon profiles. However, the detailed SNP comparison discerned a strict outbreak cluster of 40 isolates. All of the organisms were grouped within the ST147 phylogenetic international lineage, and four NDM-1 producers from Tunisia, Egypt and France were the closest relatives of the Polish isolates. Yersiniabactin genes (YbST280 type) were located within the ICEKpn12-like element in most of the outbreak isolates, characterized by O2v1 and KL64 antigen loci. The blaNDM-1 genes were located in double-replicon IncFIIK2+IncFIBK plasmids. CONCLUSIONS: The continuous spread of K. pneumoniae ST147 NDM-1 in Poland since 2015, largely in the Warsaw area, is demonstrated by this genomic analysis. The isolates showed a high degree of homogeneity, and close relatedness to organisms spreading in the Mediterranean region.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Anti-Bacterial Agents , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Phylogeny , Plasmids/genetics , Poland/epidemiology , beta-Lactamases/genetics
6.
Medicina (Kaunas) ; 57(5)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1389438

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Among them, metallo-ß-lactamases (MBLs)-producing Klebsiella pneumoniae are of global concern today. The ceftazidime/avibactam combination and the ceftazidime/avibactam + aztreonam combination currently represent the most promising antibiotic strategies to stave off these kinds of infections. We describe the case of a patient affected by thrombotic thrombocytopenic purpura (TTP) admitted in our ICU after developing a hospital-acquired SarsCoV2 interstitial pneumonia during his stay in the hematology department. His medical conditions during his ICU stay were further complicated by a K. Pneumoniae NDM sepsis. To our knowledge, the patient had no risk factors for multidrug-resistant bacteria exposure or contamination during his stay in the hematology department. During his stay in the ICU, we treated the sepsis with a combination therapy of ceftazidime/avibactam + aztreonam. The therapy solved his septic state, allowing for a progressive improvement in his general condition. Moreover, we noticed that the negativization of the hemocultures was also associated to a decontamination of his known rectal colonization. The ceftazidime/avibactam + aztreonam treatment could not only be a valid therapeutic option for these kinds of infections, but it could also be considered as a useful tool in selected patients' intestinal decolonizations.


Subject(s)
COVID-19 , Cross Infection , Purpura, Thrombotic Thrombocytopenic , Sepsis , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Aztreonam/therapeutic use , Ceftazidime/therapeutic use , Cross Infection/drug therapy , Drug Combinations , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Purpura, Thrombotic Thrombocytopenic/drug therapy , RNA, Viral , SARS-CoV-2 , Sepsis/drug therapy , beta-Lactamases
7.
Am J Infect Control ; 49(10): 1324-1326, 2021 10.
Article in English | MEDLINE | ID: covidwho-1309130

ABSTRACT

An outbreak of Klebsiella pneumoniae producing the carbapenemase NDM-1 occurred in our ICU during the last COVID-19 wave. Twelve patients were tested positive, seven remained asymptomatic whereas 5 developed an infection. Resistome and in silico multilocus sequence typing confirmed the clonal origin of the strains. The identification of a possible environmental reservoir suggested that difficulties in observing optimal bio-cleaning procedures due to workload and exhaustion contributed to the outbreak besides the inappropriate excessive glove use.


Subject(s)
COVID-19 , Klebsiella Infections , Anti-Bacterial Agents , Bacterial Proteins/genetics , Disease Outbreaks , Dreams , Humans , Intensive Care Units , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Pandemics , SARS-CoV-2 , beta-Lactamases/genetics
8.
Genome Med ; 12(1): 113, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-964565

ABSTRACT

BACKGROUND: Antibiotic-resistant Klebsiella pneumoniae are a major cause of hospital- and community-acquired infections, including sepsis, liver abscess, and pneumonia, driven mainly by the emergence of successful high-risk clonal lineages. The K. pneumoniae sequence type (ST) 307 lineage has appeared in several different parts of the world after first being described in Europe in 2008. From June to October 2019, we recorded an outbreak of an extensively drug-resistant ST307 lineage in four medical facilities in north-eastern Germany. METHODS: Here, we investigated these isolates and those from subsequent cases in the same facilities. We performed whole-genome sequencing to study phylogenetics, microevolution, and plasmid transmission, as well as phenotypic experiments including growth curves, hypermucoviscosity, siderophore secretion, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance for an in-depth characterization of this outbreak clone. RESULTS: Phylogenetics suggest a homogenous phylogram with several sub-clades containing either isolates from only one patient or isolates originating from different patients, suggesting inter-patient transmission. We identified three large resistance plasmids, carrying either NDM-1, CTX-M-15, or OXA-48, which K. pneumoniae ST307 likely donated to other K. pneumoniae isolates of different STs and even other bacterial species (e.g., Enterobacter cloacae) within the clinical settings. Several chromosomally and plasmid-encoded, hypervirulence-associated virulence factors (e.g., yersiniabactin, metabolite transporter, aerobactin, and heavy metal resistance genes) were identified in addition. While growth, biofilm formation, desiccation resilience, serum survival, and heavy metal resistance were comparable to several control strains, results from siderophore secretion and hypermucoviscosity experiments revealed superiority of the ST307 clone, similar to an archetypical, hypervirulent K. pneumoniae strain (hvKP1). CONCLUSIONS: The combination of extensive drug resistance and virulence, partly conferred through a "mosaic" plasmid carrying both antibiotic resistance and hypervirulence-associated features, demonstrates serious public health implications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Iron/metabolism , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Disease Outbreaks , Genes, Bacterial/genetics , Germany/epidemiology , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/growth & development , Phylogeny , Plasmids , Polymorphism, Single Nucleotide , Virulence/drug effects , Virulence/genetics , Virulence Factors/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL