Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
J Prim Care Community Health ; 12: 2150132720987711, 2021.
Article in English | MEDLINE | ID: covidwho-1060256

ABSTRACT

SARS-CoV-2 initially emerged in Wuhan, China in late 2019. It has since been recognized as a pandemic and has led to great social and economic disruption globally. The Reverse Transcriptase Real-Time Polymerase Chain Reaction (rtRT-PCR) has become the primary method for COVID-19 testing worldwide. The method requires a specialized laboratory set up. Long-term persistence of SARS-CoV-2 RNA in nasopharyngeal secretion after full clinical recovery of the patient is regularly observed nowadays. This forces the patients to spend a longer period in isolation and test repeatedly to obtain evidence of viral clearance. Repeated COVID-19 testing in asymptomatic or mildly symptomatic cases often leads to extra workload for laboratories that are already struggling with a high specimen turnover. Here, we present 5 purposively selected cases with different patterns of clinical presentations in which nasopharyngeal shedding of SARS-CoV-2 RNA was observed in patients for a long time. From these case studies, we emphasized the adoption of a symptom-based approach for discontinuing transmission-based precautions over a test-based strategy to reduce the time spent by asymptomatic and mildly symptomatic COVID-19 patients in isolation. A symptom-based approach will also help reduce laboratory burden for COVID-19 testing as well as conserve valuable resources and supplies utilized for rtRT-PCR testing in an emerging lower-middle-income setting. Most importantly, it will also make room for critically ill COVID-19 patients to visit or avail COVID-19 testing at their convenience.


Subject(s)
/methods , Health Care Rationing/methods , Symptom Assessment , Adult , /statistics & numerical data , Developing Countries , Female , Humans , Laboratories/statistics & numerical data , Male , Patient Isolation/statistics & numerical data , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , /isolation & purification , Young Adult
3.
Ann Biol Clin (Paris) ; 78(4): 363-382, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-709296

ABSTRACT

The point-of-care tests (POCT) are subject to accreditation. A national inventory survey provides a synthesis of knowledge. The survey distributed 31 questions in 2019. 147 responses were received (75% biologists, 49% CHU, 42% CHG). Only 20.41% are accredited ISO22870, the majority for <50% of the medical departments; 70% say they are going there at the end of 2019 or in 2020. The maps are unknown for 32% (EBMD) and 82% (TROD). Visibility is poor with: medical establishment committee (40%), IT department (31%). Connection is necessary for 87-95% depending on the criterion (QC, authorizations, etc.) and 66% of answers highlight that less than 50% of connexion is effective. The major advantage is the delay of the result (62.5%), then the relationship with the health teams (33.3%). The disadvantages: difficulty of the quality approach (45%), cost of tests (34.3%). Human resource requirements are identified for technicians (82%) and biologists (76%). The multiplicity of sites, devices and operators means that it is difficult to set up and maintain. Biology outside the laboratories, under biological responsibility, must meet a rigorous imperative quality approach.


Subject(s)
Clinical Laboratory Techniques , Global Health , Laboratories/statistics & numerical data , Laboratories/standards , Point-of-Care Testing , Accreditation , Clinical Laboratory Services/standards , Clinical Laboratory Services/statistics & numerical data , Clinical Laboratory Techniques/standards , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , France/epidemiology , Global Health/standards , Global Health/statistics & numerical data , History, 21st Century , Humans , Internationality , Laboratory Proficiency Testing/standards , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Point-of-Care Systems/standards , Point-of-Care Systems/statistics & numerical data , Point-of-Care Testing/organization & administration , Point-of-Care Testing/standards , Point-of-Care Testing/statistics & numerical data , Quality Assurance, Health Care/organization & administration , Surveys and Questionnaires
6.
Indian J Med Res ; 151(5): 424-437, 2020 May.
Article in English | MEDLINE | ID: covidwho-625725

ABSTRACT

Background & objectives: India has been reporting the cases of coronavirus disease 2019 (COVID-19) since January 30, 2020. The Indian Council of Medical Research (ICMR) formulated and established laboratory surveillance for COVID-19. In this study, an analysis of the surveillance data was done to describe the testing performance and descriptive epidemiology of COVID-19 cases by time, place and person. Methods: The data were extracted from January 22 to April 30, 2020. The frequencies of testing performance were described over time and by place. We described cases by time (epidemic curve by date of specimen collection; seven-day moving average), place (area map) and person (attack rate by age, sex and contact status), and trends were represented along with public health measures and events. Results: Between January 22 and April 30, 2020, a total of 1,021,518 individuals were tested for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Testing increased from about 250 individuals per day in the beginning of March to 50,000 specimens per day by the end of April 2020. Overall, 40,184 (3.9%) tests were reported positive. The proportion of positive cases was highest among symptomatic and asymptomatic contacts, 2-3-fold higher than among those with severe acute respiratory infection, or those with an international travel history or healthcare workers. The attack rate (per million) by age was highest among those aged 50-69 yr (63.3) and was lowest among those under 10 yr (6.1). The attack rate was higher among males (41.6) than females (24.3). The secondary attack rate was 6.0 per cent. Overall, 99.0 per cent of 736 districts reported testing and 71.1 per cent reported COVID-19 cases. Interpretation & conclusions: The coverage and frequency of ICMR's laboratory surveillance for SARS-CoV-2 improved over time. COVID-19 was reported from most parts of India, and the attack rate was more among men and the elderly and common among close contacts. Analysis of the data indicates that for further insight, additional surveillance tools and strategies at the national and sub-national levels are needed.


Subject(s)
Asymptomatic Infections/epidemiology , Betacoronavirus , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Clinical Laboratory Techniques/trends , Coronavirus Infections/diagnosis , Geographic Mapping , Humans , India/epidemiology , Infant , Infant, Newborn , Laboratories/statistics & numerical data , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Sex Factors , Spatio-Temporal Analysis , Time Factors , Young Adult
9.
Euro Surveill ; 25(10)2020 03.
Article in English | MEDLINE | ID: covidwho-7791

ABSTRACT

The peak of Internet searches and social media data about the coronavirus disease 2019 (COVID-19) outbreak occurred 10-14 days earlier than the peak of daily incidences in China. Internet searches and social media data had high correlation with daily incidences, with the maximum r > 0.89 in all correlations. The lag correlations also showed a maximum correlation at 8-12 days for laboratory-confirmed cases and 6-8 days for suspected cases.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks/statistics & numerical data , Internet , Laboratories/statistics & numerical data , Pneumonia, Viral/epidemiology , Population Surveillance/methods , Search Engine/statistics & numerical data , Social Media/statistics & numerical data , Web Browser/statistics & numerical data , China/epidemiology , Coronavirus Infections/transmission , Humans , Incidence , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Public Health Practice , Social Media/trends , Web Browser/trends
SELECTION OF CITATIONS
SEARCH DETAIL