Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Article in English | MEDLINE | ID: covidwho-1416909

ABSTRACT

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , B-Lymphocytes/immunology , Biomarkers/blood , Blood Proteins/metabolism , Cohort Studies , Critical Illness/mortality , Female , Humans , Immunophenotyping , Influenza, Human/immunology , Lectins, C-Type/immunology , Lymphocyte Activation , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Patient Acuity
2.
J Biomed Sci ; 28(1): 46, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1266487

ABSTRACT

Dysregulated formation of neutrophil extracellular traps (NETs) is observed in acute viral infections. Moreover, NETs contribute to the pathogenesis of acute viral infections, including those caused by the dengue virus (DV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Furthermore, excessive NET formation (NETosis) is associated with disease severity in patients suffering from SARS-CoV-2-induced multiple organ injuries. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and other members of C-type lectin family (L-SIGN, LSECtin, CLEC10A) have been reported to interact with viral glycans to facilitate virus spreading and exacerbates inflammatory reactions. Moreover, spleen tyrosine kinase (Syk)-coupled C-type lectin member 5A (CLEC5A) has been shown as the pattern recognition receptor for members of flaviviruses, and is responsible for DV-induced cytokine storm and Japanese encephalomyelitis virus (JEV)-induced neuronal inflammation. Moreover, DV activates platelets via CLEC2 to release extracellular vesicles (EVs), including microvesicles (MVs) and exosomes (EXOs). The DV-activated EXOs (DV-EXOs) and MVs (DV-MVs) stimulate CLEC5A and Toll-like receptor 2 (TLR2), respectively, to enhance NET formation and inflammatory reactions. Thus, EVs from virus-activated platelets (PLT-EVs) are potent endogenous danger signals, and blockade of C-type lectins is a promising strategy to attenuate virus-induced NETosis and intravascular coagulopathy.


Subject(s)
COVID-19/immunology , Encephalitis Virus, Japanese/immunology , Encephalitis, Japanese/immunology , Extracellular Traps/immunology , Lectins, C-Type/immunology , SARS-CoV-2/immunology , Blood Platelets/immunology , Blood Platelets/pathology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Encephalitis, Japanese/pathology , Humans , Platelet Activation/immunology , Signal Transduction/immunology
3.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067752

ABSTRACT

The occurrence of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVD-19), represents a catastrophic threat to global health. Protruding from the viral surface is a densely glycosylated spike (S) protein, which engages angiotensin-converting enzyme 2 (ACE2) to mediate host cell entry. However, studies have reported viral susceptibility in intra- and extrapulmonary immune and non-immune cells lacking ACE2, suggesting that the S protein may exploit additional receptors for infection. Studies have demonstrated interactions between S protein and innate immune system, including C-lectin type receptors (CLR), toll-like receptors (TLR) and neuropilin-1 (NRP1), and the non-immune receptor glucose regulated protein 78 (GRP78). Recognition of carbohydrate moieties clustered on the surface of the S protein may drive receptor-dependent internalization, accentuate severe immunopathological inflammation, and allow for systemic spread of infection, independent of ACE2. Furthermore, targeting TLRs, CLRs, and other receptors (Ezrin and dipeptidyl peptidase-4) that do not directly engage SARS-CoV-2 S protein, but may contribute to augmented anti-viral immunity and viral clearance, may represent therapeutic targets against COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/pathology , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , Disease Progression , Heat-Shock Proteins/immunology , Heat-Shock Proteins/metabolism , Host-Pathogen Interactions , Humans , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Neuropilin-1/immunology , Neuropilin-1/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL