ABSTRACT
Cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapies, including elexacaftor-tezacaftor-ivacaftor, are primarily eliminated through cytochrome P450 (CYP) 3A-mediated metabolism. This creates a therapeutic challenge to the treatment of coronavirus disease 2019 (COVID-19) with nirmatrelvir-ritonavir in people with cystic fibrosis (CF) due to the potential for significant drug-drug interactions (DDIs). However, the population with CF is more at risk of serious illness following COVID-19 infection and hence it is important to manage the DDI risk and provide treatment options. CYP3A-mediated DDI of elexacaftor-tezacaftor-ivacaftor was evaluated using a physiologically-based pharmacokinetic modeling approach. Modeling was performed incorporating physiological information and drug-dependent parameters of elexacaftor-tezacaftor-ivacaftor to predict the effect of ritonavir (the CYP3A inhibiting component of the combination) on the pharmacokinetics of elexacaftor-tezacaftor-ivacaftor. The elexacaftor-tezacaftor-ivacaftor models were verified using independent clinical pharmacokinetic and DDI data of elexacaftor-tezacaftor-ivacaftor with a range of CYP3A modulators. When ritonavir was administered on Days 1 through 5, the predicted area under the curve (AUC) ratio of ivacaftor (the most sensitive CYP3A substrate) on Day 6 was 9.31, indicating that its metabolism was strongly inhibited. Based on the predicted DDI, the dose of elexacaftor-tezacaftor-ivacaftor should be reduced when coadministered with nirmatrelvir-ritonavir to elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg on Days 1 and 5, with delayed resumption of full-dose elexacaftor-tezacaftor-ivacaftor on Day 9, considering the residual inhibitory effect of ritonavir as a mechanism-based inhibitor. The simulation predicts a regimen of elexacaftor-tezacaftor-ivacaftor administered concomitantly with nirmatrelvir-ritonavir in people with CF that will likely decrease the impact of the drug interaction.
Subject(s)
COVID-19 Drug Treatment , Cystic Fibrosis , Aminophenols/pharmacology , Benzodioxoles/pharmacology , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator , Cytochrome P-450 CYP3A/metabolism , Drug Combinations , Drug Interactions , Humans , Indoles/pharmacology , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mutation , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines , Quinolines/pharmacology , Quinolones , Ritonavir/pharmacokineticsABSTRACT
There is an urgent need for potent and selective antivirals against SARS-CoV-2. Pfizer developed PF-07321332 (PF-332), a potent inhibitor of the viral main protease (Mpro, 3CLpro) that can be dosed orally and that is in clinical development. We here report that PF-332 exerts equipotent in vitro activity against the four SARS-CoV-2 variants of concerns (VoC) and that it can completely arrest replication of the alpha variant in primary human airway epithelial cells grown at the air-liquid interface. Treatment of Syrian Golden hamsters with PF-332 (250 mg/kg, twice daily) completely protected the animals against intranasal infection with the beta (B.1.351) and delta (B.1.617.2) SARS-CoV-2 variants. Moreover, treatment of SARS-CoV-2 (B.1.617.2) infected animals with PF-332 completely prevented transmission to untreated co-housed sentinels.
Subject(s)
COVID-19 Drug Treatment , Disease Models, Animal , Lactams/administration & dosage , Leucine/administration & dosage , Nitriles/administration & dosage , Proline/administration & dosage , SARS-CoV-2/drug effects , Viral Protease Inhibitors/administration & dosage , A549 Cells , Administration, Oral , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cricetinae , Humans , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mesocricetus , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Respiratory Mucosa/drug effects , Respiratory Mucosa/virology , SARS-CoV-2/enzymology , SARS-CoV-2/physiology , Vero Cells , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effectsABSTRACT
The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.
Subject(s)
COVID-19 Drug Treatment , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effectsABSTRACT
COVID-19 caused by the SARS-CoV-2 virus has become a global pandemic. 3CL protease is a virally encoded protein that is essential across a broad spectrum of coronaviruses with no close human analogs. PF-00835231, a 3CL protease inhibitor, has exhibited potent in vitro antiviral activity against SARS-CoV-2 as a single agent. Here we report, the design and characterization of a phosphate prodrug PF-07304814 to enable the delivery and projected sustained systemic exposure in human of PF-00835231 to inhibit coronavirus family 3CL protease activity with selectivity over human host protease targets. Furthermore, we show that PF-00835231 has additive/synergistic activity in combination with remdesivir. We present the ADME, safety, in vitro, and in vivo antiviral activity data that supports the clinical evaluation of PF-07304814 as a potential COVID-19 treatment.