Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
J Neurol ; 269(3): 1651-1662, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1733983


OBJECTIVE: To investigate the safety and efficacy of N-acetyl-L-leucine (NALL) on symptoms, functioning, and quality of life in pediatric (≥ 6 years) and adult Niemann-Pick disease type C (NPC) patients. METHODS: In this multi-national, open-label, rater-blinded Phase II study, patients were assessed during a baseline period, a 6-week treatment period (orally administered NALL 4 g/day in patients ≥ 13 years, weight-tiered doses for patients 6-12 years), and a 6-week post-treatment washout period. The primary Clinical Impression of Change in Severity (CI-CS) endpoint (based on a 7-point Likert scale) was assessed by blinded, centralized raters who compared randomized video pairs of each patient performing a pre-defined primary anchor test (8-Meter Walk Test or 9-Hole Peg Test) during each study periods. Secondary outcomes included cerebellar functional rating scales, clinical global impression, and quality of life assessments. RESULTS: 33 subjects aged 7-64 years with a confirmed diagnosis of NPC were enrolled. 32 patients were included in the primary modified intention-to-treat analysis. NALL met the CI-CS primary endpoint (mean difference 0.86, SD = 2.52, 90% CI 0.25, 1.75, p = 0.029), as well as secondary endpoints. No treatment-related serious adverse events occurred. CONCLUSIONS: NALL demonstrated a statistically significant and clinical meaningfully improvement in symptoms, functioning, and quality of life in 6 weeks, the clinical effect of which was lost after the 6-week washout period. NALL was safe and well-tolerated, informing a favorable benefit-risk profile for the treatment of NPC. CLINICALTRIALS. GOV IDENTIFIER: NCT03759639.

Niemann-Pick Disease, Type C , Adolescent , Adult , Child , Double-Blind Method , Humans , Leucine/analogs & derivatives , Leucine/therapeutic use , Middle Aged , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Quality of Life , Treatment Outcome , Young Adult
Nature ; 603(7899): 25-27, 2022 03.
Article in English | MEDLINE | ID: covidwho-1730273

Antiviral Agents/therapeutic use , COVID-19/drug therapy , Clinical Trials as Topic , Drug Repositioning , Host-Pathogen Interactions/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/economics , Antibodies, Neutralizing/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , COVID-19/economics , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , COVID-19 Vaccines , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/therapeutic use , Drug Combinations , Drug Synergism , Esters/pharmacology , Esters/therapeutic use , Guanidines/pharmacology , Guanidines/therapeutic use , Hospitalization , Humans , Hydroxylamines/therapeutic use , Internationality , Lactams/therapeutic use , Leucine/therapeutic use , Mice , National Institutes of Health (U.S.)/organization & administration , Nitriles/therapeutic use , Peptide Elongation Factor 1/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Proline/therapeutic use , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , RNA-Dependent RNA Polymerase/antagonists & inhibitors
Science ; 374(6575): 1586-1593, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1666355


The worldwide outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to countering the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency in a phase 1 clinical trial in healthy human participants.

COVID-19/drug therapy , Lactams/pharmacology , Lactams/therapeutic use , Leucine/pharmacology , Leucine/therapeutic use , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/pharmacology , Proline/therapeutic use , SARS-CoV-2/drug effects , Viral Protease Inhibitors/pharmacology , Viral Protease Inhibitors/therapeutic use , Administration, Oral , Animals , COVID-19/virology , Clinical Trials, Phase I as Topic , Coronavirus/drug effects , Disease Models, Animal , Drug Therapy, Combination , Humans , Lactams/administration & dosage , Lactams/pharmacokinetics , Leucine/administration & dosage , Leucine/pharmacokinetics , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nitriles/administration & dosage , Nitriles/pharmacokinetics , Proline/administration & dosage , Proline/pharmacokinetics , Randomized Controlled Trials as Topic , Ritonavir/administration & dosage , Ritonavir/therapeutic use , SARS-CoV-2/physiology , Viral Protease Inhibitors/administration & dosage , Viral Protease Inhibitors/pharmacokinetics , Virus Replication/drug effects
Antiviral Res ; 198: 105252, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654043


We assessed the in vitro antiviral activity of remdesivir and its parent nucleoside GS-441524, molnupiravir and its parent nucleoside EIDD-1931 and the viral protease inhibitor nirmatrelvir against the ancestral SARS-CoV2 strain and the five variants of concern including Omicron. VeroE6-GFP cells were pre-treated overnight with serial dilutions of the compounds before infection. The GFP signal was determined by high-content imaging on day 4 post-infection. All molecules have equipotent antiviral activity against the ancestral virus and the VOCs Alpha, Beta, Gamma, Delta and Omicron. These findings are in line with the observation that the target proteins of these antivirals (respectively the viral RNA dependent RNA polymerase and the viral main protease Mpro) are highly conserved.

Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Lactams/therapeutic use , Leucine/therapeutic use , Nitriles/therapeutic use , Proline/therapeutic use , SARS-CoV-2/drug effects , Adenosine/analogs & derivatives , Adenosine/therapeutic use , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Cytidine/therapeutic use , Humans , Microbial Sensitivity Tests , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Vero Cells , Virus Replication/drug effects
Nature ; 601(7894): 496, 2022 01.
Article in English | MEDLINE | ID: covidwho-1641925

Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Drug Development/trends , Drug Resistance, Viral , Research Personnel , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Administration, Oral , Alanine/administration & dosage , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/supply & distribution , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/supply & distribution , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Cytidine/therapeutic use , Drug Approval , Drug Combinations , Drug Resistance, Viral/drug effects , Drug Resistance, Viral/genetics , Drug Therapy, Combination , Hospitalization/statistics & numerical data , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Hydroxylamines/therapeutic use , Lactams/administration & dosage , Lactams/pharmacology , Lactams/therapeutic use , Leucine/administration & dosage , Leucine/pharmacology , Leucine/therapeutic use , Medication Adherence , Molecular Targeted Therapy , Mutagenesis , Nitriles/administration & dosage , Nitriles/pharmacology , Nitriles/therapeutic use , Proline/administration & dosage , Proline/pharmacology , Proline/therapeutic use , Public-Private Sector Partnerships/economics , Ritonavir/administration & dosage , Ritonavir/pharmacology , Ritonavir/therapeutic use , SARS-CoV-2/enzymology , SARS-CoV-2/genetics
Diabetes Metab Syndr ; 16(2): 102396, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1620631


BACKGROUND AND AIMS: Molnupiravir is a newer oral antiviral drug that has recently received emergency use authorization (EUA) in USA, UK and India. We aim to conduct an update on our previous systematic review to provide practical clinical guideline for using molnupiravir in patients with COVID-19. METHODS: We systematically searched the electronic database of PubMed, MedRxiv and Google Scholar until January 5, 2022, using key MeSH keywords. RESULTS: Final result of phase 3 study in 1433 non-hospitalized COVID-19 patients showed a significant reduction in composite risk of hospital admission or death (absolute risk difference, -3.0% [95% confidence interval {CI}, -5.9 to -0.1%]; 1-sided P = 0.02) although with a non-significant 31% relative risk reduction (RRR). RRR for death alone was 89% (95% CI, 14 to 99; P-value not reported). Number needed to treat to prevent 1 death or 1 hospitalization or death composite appears to be closely competitive to other agents having EUA in people with COVID-19. However, cost-wise molnupiravir is comparatively cheaper compared to all other agents. CONCLUSION: Molnupiravir could be a useful agent in non-pregnant unvaccinated adults with COVID-19 who are at increased risk of severity including hospitalization. However, it is effective only when used within 5-days of onset of symptoms. A 5-days course seems to be safe without any obvious short-term side effects.

Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Animals , COVID-19/mortality , COVID-19 Vaccines , Cytidine/adverse effects , Cytidine/therapeutic use , Double-Blind Method , Drug Approval , Drug Combinations , Female , Hospitalization , Humans , Hydroxylamines/adverse effects , Lactams/therapeutic use , Leucine/therapeutic use , Male , Middle Aged , Nitriles/therapeutic use , Proline/therapeutic use , Ritonavir/therapeutic use , Severity of Illness Index , Treatment Outcome
Med Sci Monit ; 28: e935952, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1596813


On 4th November 2021, the first oral antiviral drug for COVID-19, molnupiravir (Lagevrio®), received full regulatory approval from the Medicines and Healthcare Products Regulatory Agency (MHRA) in the UK. Molnupiravir is an orally bioavailable antiviral drug for use at home when a SARS-CoV-2 test is positive. On 22nd December 2022, the FDA granted emergency use authorization (EUA) for the oral antiviral drug, nirmatrelvir/ritonavir (Paxlovid®) for adults and children with mild and moderate COVID-19 at increased risk of progression to severe COVID-19. These regulatory drug approvals come at a crucial time when new variants of concern of the SARS-CoV-2 virus are spreading rapidly. Although the FDA approved remdesivir (Veklury®) on 22nd October 2020 for use in adults and children for the treatment of COVID-19 requiring hospitalization, its use has been limited by the requirement for intravenous administration in a healthcare facility. The four FDA-approved therapeutic neutralizing monoclonal antibodies, imdevimab, bamlanivimab, etesevimab, and casirivimab are costly and also require medically-supervised intravenous administration. The availability of effective, low-cost oral antiviral drugs available in a community setting that can be used at an early stage of SARS-CoV-2 infection is now a priority in controlling COVID-19. An increasing number of repurposed antiviral drugs are currently under investigation or in the early stages of regulatory approval. This Editorial aims to present an update on the current status of orally bioavailable antiviral drug treatments for SARS-CoV-2 infection.

Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cytidine/analogs & derivatives , Hydroxylamines/therapeutic use , Administration, Oral , Antibodies, Monoclonal/therapeutic use , Cytidine/therapeutic use , Drug Approval , Drug Repositioning/trends , Humans , Lactams/therapeutic use , Leucine/therapeutic use , Nitriles/therapeutic use , Proline/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , United States , United States Food and Drug Administration
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374423


The novel coronavirus disease, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), rapidly spreading around the world, poses a major threat to the global public health. Herein, we demonstrated the binding mechanism of PF-07321332, α-ketoamide, lopinavir, and ritonavir to the coronavirus 3-chymotrypsin-like-protease (3CLpro) by means of docking and molecular dynamic (MD) simulations. The analysis of MD trajectories of 3CLpro with PF-07321332, α-ketoamide, lopinavir, and ritonavir revealed that 3CLpro-PF-07321332 and 3CLpro-α-ketoamide complexes remained stable compared with 3CLpro-ritonavir and 3CLpro-lopinavir. Investigating the dynamic behavior of ligand-protein interaction, ligands PF-07321332 and α-ketoamide showed stronger bonding via making interactions with catalytic dyad residues His41-Cys145 of 3CLpro. Lopinavir and ritonavir were unable to disrupt the catalytic dyad, as illustrated by increased bond length during the MD simulation. To decipher the ligand binding mode and affinity, ligand interactions with SARS-CoV-2 proteases and binding energy were calculated. The binding energy of the bespoke antiviral PF-07321332 clinical candidate was two times higher than that of α-ketoamide and three times than that of lopinavir and ritonavir. Our study elucidated in detail the binding mechanism of the potent PF-07321332 to 3CLpro along with the low potency of lopinavir and ritonavir due to weak binding affinity demonstrated by the binding energy data. This study will be helpful for the development and optimization of more specific compounds to combat coronavirus disease.

Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Lactams/pharmacology , Leucine/pharmacology , Nitriles/pharmacology , Proline/pharmacology , Antiviral Agents/therapeutic use , Catalytic Domain/drug effects , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/therapeutic use , Humans , Lactams/therapeutic use , Leucine/therapeutic use , Lopinavir/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Nitriles/therapeutic use , Proline/therapeutic use , Ritonavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology