Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1765729

ABSTRACT

Elastases are a broad group of enzymes involved in the lysis of elastin, the main component of elastic fibres. They are produced and released in the human body, mainly by neutrophils and the pancreas. The imbalance between elastase activity and its endogenous inhibitors can cause different illnesses due to their excessive activity. The main aim of this review is to provide an overview of the latest advancements on the identification, structures and mechanisms of action of peptide human neutrophil elastase inhibitors isolated from natural sources, such as plants, animals, fungi, bacteria and sponges. The discovery of new elastase inhibitors could have a great impact on the pharmaceutical development of novel drugs through the optimization of the natural lead compounds. Bacteria produce mainly cyclic peptides, while animals provide for long and linear amino acid sequences. Despite their diverse natural sources, these elastase inhibitors show remarkable IC50 values in a range from nM to µM values, thus representing an interesting starting point for the further development of potent bioactive compounds on human elastase enzymes.


Subject(s)
Leukocyte Elastase , Peptides , Animals , Humans , Leukocyte Elastase/metabolism , Neutrophils/metabolism , Proteinase Inhibitory Proteins, Secretory/pharmacology , Serine Proteinase Inhibitors/pharmacology
2.
Viruses ; 14(1)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1636836

ABSTRACT

Human adenoviruses (HAdV) cause a variety of infections in human hosts, from self-limited upper respiratory tract infections in otherwise healthy people to fulminant pneumonia and death in immunocompromised patients. Many HAdV enter polarized epithelial cells by using the primary receptor, the Coxsackievirus and adenovirus receptor (CAR). Recently published data demonstrate that a potent neutrophil (PMN) chemoattractant, interleukin-8 (IL-8), stimulates airway epithelial cells to increase expression of the apical isoform of CAR (CAREx8), which results in increased epithelial HAdV type 5 (HAdV5) infection. However, the mechanism for PMN-enhanced epithelial HAdV5 transduction remains unclear. In this manuscript, the molecular mechanisms behind PMN mediated enhancement of epithelial HAdV5 transduction are characterized using an MDCK cell line that stably expresses human CAREx8 under a doxycycline inducible promoter (MDCK-CAREx8 cells). Contrary to our hypothesis, PMN exposure does not enhance HAdV5 entry by increasing CAREx8 expression nor through activation of non-specific epithelial endocytic pathways. Instead, PMN serine proteases are responsible for PMN-mediated enhancement of HAdV5 transduction in MDCK-CAREx8 cells. This is evidenced by reduced transduction upon inhibition of PMN serine proteases and increased transduction upon exposure to exogenous human neutrophil elastase (HNE). Furthermore, HNE exposure activates epithelial autophagic flux, which, even when triggered through other mechanisms, results in a similar enhancement of epithelial HAdV5 transduction. Inhibition of F-actin with cytochalasin D partially attenuates PMN mediated enhancement of HAdV transduction. Taken together, these findings suggest that HAdV5 can leverage innate immune responses to establish infections.


Subject(s)
Adenoviruses, Human/pathogenicity , Epithelial Cells/virology , Leukocyte Elastase/metabolism , Neutrophils/immunology , Virus Internalization , Adenoviruses, Human/immunology , Adenoviruses, Human/physiology , Animals , Autophagy , Coxsackie and Adenovirus Receptor-Like Membrane Protein/metabolism , Cytochalasin B/pharmacology , Dogs , Endocytosis , Humans , Immunity, Innate , Macrolides/pharmacology , Madin Darby Canine Kidney Cells , Receptors, Virus/metabolism
3.
J Med Chem ; 65(4): 2971-2987, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1616927

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most common complications in COVID-19. Elastase has been recognized as an important target to prevent ALI/ARDS in the patient of COVID-19. Cyclotheonellazole A (CTL-A) is a natural macrocyclic peptide reported to be a potent elastase inhibitor. Herein, we completed the first total synthesis of CTL-A in 24 linear steps. The key reactions include three-component MAC reactions and two late-stage oxidations. We also provided seven CTL-A analogues and elucidated preliminary structure-activity relationships. The in vivo ALI mouse model further suggested that CTL-A alleviated acute lung injury with reductions in lung edema and pathological deterioration, which is better than sivelestat, one approved elastase inhibitor. The activity of CTL-A against elastase, along with its cellular safety and well-established synthetic route, warrants further investigation of CTL-A as a candidate against COVID-19 pathogeneses.


Subject(s)
Acute Lung Injury/drug therapy , Leukocyte Elastase/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Respiratory Distress Syndrome/drug therapy , Serine Proteinase Inhibitors/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Bleomycin , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/pathology , Cell Line , Disease Models, Animal , Humans , Leukocyte Elastase/metabolism , Male , Mice , Mice, Inbred C57BL , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry
4.
Int Immunopharmacol ; 104: 108516, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1611782

ABSTRACT

Coronavirus disease 2019 (Covid-19) is a worldwide infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2). In severe SARS-CoV-2 infection, there is severe inflammatory reactions due to neutrophil recruitments and infiltration in the different organs with the formation of neutrophil extracellular traps (NETs), which involved various complications of SARS-CoV-2 infection. Therefore, the objective of the present review was to explore the potential role of NETs in the pathogenesis of SARS-CoV-2 infection and to identify the targeting drugs against NETs in Covid-19 patients. Different enzyme types are involved in the formation of NETs, such as neutrophil elastase (NE), which degrades nuclear protein and release histones, peptidyl arginine deiminase type 4 (PADA4), which releases chromosomal DNA and gasdermin D, which creates pores in the NTs cell membrane that facilitating expulsion of NT contents. Despite of the beneficial effects of NETs in controlling of invading pathogens, sustained formations of NETs during respiratory viral infections are associated with collateral tissue injury. Excessive development of NETs in SARS-CoV-2 infection is linked with the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) due to creation of the NETs-IL-1ß loop. Also, aberrant NTs activation alone or through NETs formation may augment SARS-CoV-2-induced cytokine storm (CS) and macrophage activation syndrome (MAS) in patients with severe Covid-19. Furthermore, NETs formation in SARS-CoV-2 infection is associated with immuno-thrombosis and the development of ALI/ARDS. Therefore, anti-NETs therapy of natural or synthetic sources may mitigate SARS-CoV-2 infection-induced exaggerated immune response, hyperinflammation, immuno-thrombosis, and other complications.


Subject(s)
Acute Lung Injury/immunology , Anti-Inflammatory Agents/pharmacology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Extracellular Traps/immunology , Acute Lung Injury/prevention & control , Acute Lung Injury/virology , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Humans , Immunity, Innate/drug effects , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Neutrophil Infiltration/drug effects , Phosphate-Binding Proteins/antagonists & inhibitors , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/antagonists & inhibitors , Pore Forming Cytotoxic Proteins/metabolism , Protein-Arginine Deiminase Type 4/antagonists & inhibitors , Protein-Arginine Deiminase Type 4/metabolism , SARS-CoV-2/immunology
5.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: covidwho-1390702

ABSTRACT

Human neutrophil elastase (HNE) is a uniquely destructive serine protease with the ability to unleash a wave of proteolytic activity by destroying the inhibitors of other proteases. Although this phenomenon forms an important part of the innate immune response to invading pathogens, it is responsible for the collateral host tissue damage observed in chronic conditions such as chronic obstructive pulmonary disease (COPD), and in more acute disorders such as the lung injuries associated with COVID-19 infection. Previously, a combinatorially selected activity-based probe revealed an unexpected substrate preference for oxidised methionine, which suggests a link to oxidative pathogen clearance by neutrophils. Here we use oxidised model substrates and inhibitors to confirm this observation and to show that neutrophil elastase is specifically selective for the di-oxygenated methionine sulfone rather than the mono-oxygenated methionine sulfoxide. We also posit a critical role for ordered solvent in the mechanism of HNE discrimination between the two oxidised forms methionine residue. Preference for the sulfone form of oxidised methionine is especially significant. While both host and pathogens have the ability to reduce methionine sulfoxide back to methionine, a biological pathway to reduce methionine sulfone is not known. Taken together, these data suggest that the oxidative activity of neutrophils may create rapidly cleaved elastase "super substrates" that directly damage tissue, while initiating a cycle of neutrophil oxidation that increases elastase tissue damage and further neutrophil recruitment.


Subject(s)
Immunity, Innate , Leukocyte Elastase/metabolism , Methionine/analogs & derivatives , Neutrophils/immunology , Biocatalysis , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Catalytic Domain/genetics , Enzyme Assays , Host-Pathogen Interactions/immunology , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/genetics , Lung/immunology , Lung/pathology , Lung/virology , Methionine/metabolism , Molecular Dynamics Simulation , Neutrophil Infiltration , Neutrophils/enzymology , Oxidation-Reduction/drug effects , Proteolysis/drug effects , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/pathology , SARS-CoV-2/immunology , Substrate Specificity/immunology
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: covidwho-1345645

ABSTRACT

Alum, used as an adjuvant in injected vaccines, promotes T helper 2 (Th2) and serum antibody (Ab) responses. However, it fails to induce secretory immunoglobulin (Ig) A (SIgA) in mucosal tissues and is poor in inducing Th1 and cell-mediated immunity. Alum stimulates interleukin 1 (IL-1) and the recruitment of myeloid cells, including neutrophils. We investigated whether neutrophil elastase regulates the adjuvanticity of alum, and whether a strategy targeting neutrophil elastase could improve responses to injected vaccines. Mice coadministered a pharmacological inhibitor of elastase, or lacking elastase, developed high-affinity serum IgG and IgA antibodies after immunization with alum-adsorbed protein vaccines, including the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). These mice also developed broader antigen-specific CD4+ T cell responses, including high Th1 and T follicular helper (Tfh) responses. Interestingly, in the absence of elastase activity, mucosal SIgA responses were induced after systemic immunization with alum as adjuvant. Importantly, lack or suppression of elastase activity enhanced the magnitude of anti-SARS-CoV-2 spike subunit 1 (S1) antibodies, and these antibodies reacted with the same epitopes of spike 1 protein as sera from COVID-19 patients. Therefore, suppression of neutrophil elastase could represent an attractive strategy for improving the efficacy of alum-based injected vaccines for the induction of broad immunity, including mucosal immunity.


Subject(s)
Adjuvants, Immunologic/pharmacology , Alum Compounds/pharmacology , COVID-19/immunology , COVID-19/therapy , Enzyme Inhibitors/pharmacology , Leukocyte Elastase/antagonists & inhibitors , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/drug effects , COVID-19/drug therapy , COVID-19/metabolism , HEK293 Cells , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Leukocyte Elastase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Swine , Th1 Cells/immunology
7.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: covidwho-1259548

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
8.
J Enzyme Inhib Med Chem ; 36(1): 1016-1028, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1226495

ABSTRACT

Elastase is a proteolytic enzyme belonging to the family of hydrolases produced by human neutrophils, monocytes, macrophages, and endothelial cells. Human neutrophil elastase is known to play multiple roles in the human body, but an increase in its activity may cause a variety of diseases. Elastase inhibitors may prevent the development of psoriasis, chronic kidney disease, respiratory disorders (including COVID-19), immune disorders, and even cancers. Among polyphenolic compounds, some flavonoids and their derivatives, which are mostly found in herbal plants, have been revealed to influence elastase release and its action on human cells. This review focuses on elastase inhibitors that have been discovered from natural sources and are biochemically characterised as flavonoids. The inhibitory activity on elastase is a characteristic of flavonoid aglycones and their glycoside and methylated, acetylated and hydroxylated derivatives. The presented analysis of structure-activity relationship (SAR) enables the determination of the chemical groups responsible for evoking an inhibitory effect on elastase. Further study especially of the in vivo efficacy and safety of the described natural compounds is of interest in order to gain better understanding of their health-promoting potential.


Subject(s)
Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Leukocyte Elastase/antagonists & inhibitors , Neutrophils/enzymology , COVID-19/drug therapy , COVID-19/metabolism , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Humans , Leukocyte Elastase/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neutrophils/drug effects , Structure-Activity Relationship
9.
Infect Genet Evol ; 90: 104760, 2021 06.
Article in English | MEDLINE | ID: covidwho-1065476

ABSTRACT

SARS-CoV-2 was first reported from China. Within three months, it evolved to 10 additional subtypes. Two evolved subtypes (A2 and A2a) carry a non-synonymous Spike protein mutation (D614G). We conducted phylodynamic analysis of over 70,000 SARS-CoV-2 coronaviruses worldwide, sequenced until July2020, and found that the mutant subtype (614G) outcompeted the pre-existing type (614D), significantly faster in Europe and North-America than in East Asia. Bioinformatically and computationally, we identified a novel neutrophil elastase (ELANE) cleavage site introduced in the G-mutant, near the S1-S2 junction of the Spike protein. We hypothesised that elevation of neutrophil elastase level at the site of infection will enhance the activation of Spike protein thus facilitating host cell entry for 614G, but not the 614D, subtype. The level of neutrophil elastase in the lung is modulated by its inhibitor α1-antitrypsin (AAT). AAT prevents lung tissue damage by elastase. However, many individuals exhibit genotype-dependent deficiency of AAT. AAT deficiency eases host-cell entry of the 614G virus, by retarding inhibition of neutrophil elastase and consequently enhancing activation of the Spike protein. AAT deficiency is highly prevalent in European and North-American populations, but much less so in East Asia. Therefore, the 614G subtype is able to infect and spread more easily in populations of the former regions than in the latter region. Our analyses provide a molecular biological and evolutionary model for the higher observed virulence of the 614G subtype, in terms of causing higher morbidity in the host (higher infectivity and higher viral load), than the non-mutant 614D subtype.


Subject(s)
COVID-19/etiology , COVID-19/metabolism , Genome, Viral , Leukocyte Elastase/metabolism , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , alpha 1-Antitrypsin/genetics , Amino Acid Sequence , Binding Sites , COVID-19/epidemiology , Computational Biology , Disease Susceptibility , Genotype , Global Health , Host-Pathogen Interactions , Humans , Leukocyte Elastase/chemistry , Models, Biological , Models, Molecular , Models, Theoretical , Phylogeny , Protein Binding , Proteolysis , Public Health Surveillance , RNA, Viral , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL