Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Virol ; 96(9): e0038022, 2022 May 11.
Article in English | MEDLINE | ID: covidwho-1794532

ABSTRACT

Crossing the endothelium from the entry site and spreading in the bloodstream are crucial but obscure steps in the pathogenesis of many emerging viruses. Previous studies confirmed that porcine epidemic diarrhea virus (PEDV) caused intestinal infection by intranasal inoculation. However, the role of the nasal endothelial barrier in PEDV translocation remains unclear. Here, we demonstrated that PEDV infection causes nasal endothelial dysfunction to favor viral dissemination. Intranasal inoculation with PEDV compromised the integrity of endothelial cells (ECs) in nasal microvessels. The matrix metalloproteinase 7 (MMP-7) released from the PEDV-infected nasal epithelial cells (NECs) contributed to the destruction of endothelial integrity by degrading the tight junctions, rather than direct PEDV infection. Moreover, the proinflammatory cytokines released from PEDV-infected NECs activated ECs to upregulate ICAM-1 expression, which favored peripheral blood mononuclear cells (PBMCs) migration. PEDV could further exploit migrated cells to favor viral dissemination. Together, our results reveal the mechanism by which PEDV manipulates the endothelial dysfunction to favor viral dissemination and provide novel insights into how coronavirus interacts with the endothelium. IMPORTANCE The endothelial barrier is the last but vital defense against systemic viral transmission. Porcine epidemic diarrhea virus (PEDV) can cause severe atrophic enteritis and acute viremia. However, the mechanisms by which the virus crosses the endothelial barrier and causes viremia are poorly understood. In this study, we revealed the mechanisms of endothelial dysfunction in PEDV infection. The viral infection activates NECs and causes the upregulation of MMP-7 and proinflammatory cytokines. Using NECs, ECs, and PBMCs as in vitro models, we determined that the released MMP-7 contributed to the destruction of endothelial barrier, and the released proinflammatory cytokines activated ECs to facilitate PBMCs migration. Moreover, the virus further exploited the migrated cells to promote viral dissemination. Thus, our results provide new insights into the mechanisms underlying endothelial dysfunction induced by coronavirus infection.


Subject(s)
Coronavirus Infections , Endothelium , Porcine epidemic diarrhea virus , Swine Diseases , Virus Shedding , Animals , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cytokines , Endothelium/virology , Intercellular Adhesion Molecule-1/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Matrix Metalloproteinase 7/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/transmission , Swine Diseases/virology , Viremia
2.
Science ; 374(6571): 1127-1133, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1723460

ABSTRACT

Humans differ in their susceptibility to infectious disease, partly owing to variation in the immune response after infection. We used single-cell RNA sequencing to quantify variation in the response to influenza infection in peripheral blood mononuclear cells from European- and African-ancestry males. Genetic ancestry effects are common but highly cell type specific. Higher levels of European ancestry are associated with increased type I interferon pathway activity in early infection, which predicts reduced viral titers at later time points. Substantial population-associated variation is explained by cis-expression quantitative trait loci that are differentiated by genetic ancestry. Furthermore, genetic ancestry­associated genes are enriched among genes correlated with COVID-19 disease severity, suggesting that the early immune response contributes to ancestry-associated differences for multiple viral infection outcomes.


Subject(s)
African Americans/genetics , COVID-19/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Leukocytes, Mononuclear/virology , /genetics , Adult , Aged , COVID-19/immunology , COVID-19/physiopathology , Disease Susceptibility , Gene Expression Regulation , Genetic Variation , Humans , Influenza A Virus, H1N1 Subtype/physiology , Interferon Type I/immunology , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Quantitative Trait Loci , Severity of Illness Index , Single-Cell Analysis , Transcription, Genetic , Viral Load , Young Adult
3.
Cell Rep ; 38(2): 110235, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1634873

ABSTRACT

We have analyzed BNT162b2 vaccine-induced immune responses in naive subjects and individuals recovered from coronavirus disease 2019 (COVID-19), both soon after (14 days) and later after (almost 8 months) vaccination. Plasma spike (S)-specific immunoglobulins peak after one vaccine shot in individuals recovered from COVID-19, while a second dose is needed in naive subjects, although the latter group shows reduced levels all along the analyzed period. Despite how the neutralization capacity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mirrors this behavior early after vaccination, both groups show comparable neutralizing antibodies and S-specific B cell levels late post-vaccination. When studying cellular responses, naive individuals exhibit higher SARS-CoV-2-specific cytokine production, CD4+ T cell activation, and proliferation than do individuals recovered from COVID-19, with patent inverse correlations between humoral and cellular variables early post-vaccination. However, almost 8 months post-vaccination, SARS-CoV-2-specific responses are comparable between both groups. Our data indicate that a previous history of COVID-19 differentially determines the functional T and B cell-mediated responses to BNT162b2 vaccination over time.


Subject(s)
/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Vaccines, Synthetic/immunology , /immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/virology , Chlorocebus aethiops , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Lymphocyte Activation/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vero Cells
4.
Phytother Res ; 35(12): 6963-6973, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1596593

ABSTRACT

Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 µg/ml) and garcinoic acid (1.25, 2.5, and 5 µM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1ß, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.


Subject(s)
Benzopyrans/pharmacology , Garcinia kola , Leukocytes, Mononuclear/virology , NF-kappa B , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Cells, Cultured , Garcinia kola/chemistry , Humans , Inflammation/drug therapy
5.
Cell Rep ; 37(13): 110167, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1596401

ABSTRACT

Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.


Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , Cell Culture Techniques , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Viral/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology
6.
Cell Rep ; 38(2): 110214, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588141

ABSTRACT

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology
7.
Phytother Res ; 35(12): 6963-6973, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1482167

ABSTRACT

Symptoms and complications associated with severe SARS-CoV-2 infection such as acute respiratory distress syndrome (ARDS) and organ damage have been linked to SARS-CoV-2 spike protein S1-induced increased production of pro-inflammatory cytokines by immune cells. In this study, the effects of an extract of Garcinia kola seeds and garcinoic acid were investigated in SARS-CoV-2 spike protein S1-stimulated human PBMCs. Results of ELISA experiments revealed that Garcinia kola extract (6.25, 12.5, and 25 µg/ml) and garcinoic acid (1.25, 2.5, and 5 µM) significantly reduced SARS-CoV-2 spike protein S1-induced secretion of TNFα, IL-6, IL-1ß, and IL-8 in PBMCs. In-cell western assays showed that pre-treatment with Garcinia kola extract and garcinoic acid reduced expressions of both phospho-p65 and phospho-IκBα proteins, as well as NF-κB DNA binding capacity and NF-κB-driven luciferase expression following stimulation of PBMCs with spike protein S1. Furthermore, pre-treatment of PBMCs with Garcinia kola extract prior to stimulation with SARS-CoV-2 spike protein S1 resulted in reduced damage to adjacent A549 lung epithelial cells. These results suggest that the seed of Garcinia kola and garcinoic acid are natural products which may possess pharmacological/therapeutic benefits in reducing cytokine storm in severe SARS-CoV-2 and other coronavirus infections.


Subject(s)
Benzopyrans/pharmacology , Garcinia kola , Leukocytes, Mononuclear/virology , NF-kappa B , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Cells, Cultured , Garcinia kola/chemistry , Humans , Inflammation/drug therapy
8.
Microbiol Spectr ; 9(2): e0126021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1455683

ABSTRACT

Severe COVID-19 pneumonia has been associated with the development of intense inflammatory responses during the course of infections with SARS-CoV-2. Given that human endogenous retroviruses (HERVs) are known to be activated during and participate in inflammatory processes, we examined whether HERV dysregulation signatures are present in COVID-19 patients. By comparing transcriptomes of bronchoalveolar lavage fluid (BALF) of COVID-19 patients and healthy controls, and peripheral blood monocytes (PBMCs) from patients and controls, we have shown that HERVs are intensely dysregulated in BALF of COVID-19 patients compared to those in BALF of healthy control patients but not in PBMCs. In particular, upregulation in the expression of specific HERV families was detected in BALF samples of COVID-19 patients, with HERV-FRD being the most highly upregulated family among the families analyzed. In addition, we compared the expression of HERVs in human bronchial epithelial cells (HBECs) without and after senescence induction in an oncogene-induced senescence model in order to quantitatively measure changes in the expression of HERVs in bronchial cells during the process of cellular senescence. This apparent difference of HERV dysregulation between PBMCs and BALF warrants further studies in the involvement of HERVs in inflammatory pathogenetic mechanisms as well as exploration of HERVs as potential biomarkers for disease progression. Furthermore, the increase in the expression of HERVs in senescent HBECs in comparison to that in noninduced HBECs provides a potential link for increased COVID-19 severity and mortality in aged populations. IMPORTANCE SARS-CoV-2 emerged in late 2019 in China, causing a global pandemic. Severe COVID-19 is characterized by intensive inflammatory responses, and older age is an important risk factor for unfavorable outcomes. HERVs are remnants of ancient infections whose expression is upregulated in multiple conditions, including cancer and inflammation, and their expression is increased with increasing age. The significance of this work is that we were able to recognize dysregulated expression of endogenous retroviral elements in BALF samples but not in PBMCs of COVID-19 patients. At the same time, we were able to identify upregulated expression of multiple HERV families in senescence-induced HBECs in comparison to that in noninduced HBECs, a fact that could possibly explain the differences in disease severity among age groups. These results indicate that HERV expression might play a pathophysiological role in local inflammatory pathways in lungs afflicted by SARS-CoV-2 and their expression could be a potential therapeutic target.


Subject(s)
Bronchioles/virology , Bronchoalveolar Lavage Fluid/virology , COVID-19/pathology , Endogenous Retroviruses/growth & development , Respiratory Mucosa/virology , Bronchioles/cytology , Endogenous Retroviruses/isolation & purification , Epithelial Cells/virology , Humans , Inflammation/virology , Leukocytes, Mononuclear/virology , Respiratory Mucosa/cytology , SARS-CoV-2 , Transcriptome/genetics , Up-Regulation
9.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1390778

ABSTRACT

BACKGROUND: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. METHODS: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. RESULTS: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA-CCR7- phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. CONCLUSION: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , Interferon-gamma/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/immunology , Humans , Leukocytes, Mononuclear/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology
10.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: covidwho-1374306

ABSTRACT

The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity, Cellular , Models, Biological , SARS-CoV-2/physiology , Adult , Alveolar Epithelial Cells/virology , COVID-19/blood , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Female , Gene Expression Regulation , Humans , Immunologic Memory/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/virology , Male , Middle Aged , Phenotype , T-Lymphocytes/immunology , Virus Replication/physiology , Young Adult
11.
Viruses ; 13(8)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1335228

ABSTRACT

BACKGROUND: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. METHODS: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. RESULTS: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA-CCR7- phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. CONCLUSION: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunologic Memory , Interferon-gamma/immunology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , COVID-19/virology , Epitopes, T-Lymphocyte/immunology , Humans , Leukocytes, Mononuclear/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , T-Lymphocytes, Cytotoxic/immunology
12.
OMICS ; 25(8): 475-483, 2021 08.
Article in English | MEDLINE | ID: covidwho-1316791

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third virus that caused coronavirus-related outbreaks over the past 20 years. The outbreak was first reported in December 2019 in Wuhan, China, but rapidly progressed into a pandemic of an unprecedented scale since the 1918 flu pandemic. Besides respiratory complications in patients with COVID-19, clinical characterization of severe infection cases showed several other comorbidities, including multiple organ failure, and septic shock. To better understand the systemic pathogenesis of COVID-19, we interrogated the virus's presence in the peripheral blood cells, which might provide a form of trafficking or hiding to the virus. By analyzing >2 billion sequence reads of high-throughput transcriptome sequence data from 180 samples of patients with active SARS-CoV-2 infection or healthy controls collected from 6 studies, we found evidence of traces of SARS-CoV-2 RNA in peripheral blood mononuclear cells in two samples from two independent studies. In contrast, the viral RNA was abundant in bronchoalveolar lavage specimens from the same patients. We also devised a "viral spike-to-actin" RNA normalization as a metric to compare across various samples and minimize errors caused by intersample variability in total human RNA abundance. Our observation suggests immune presentation and discounts the possibility of extensive viral infection of lymphocytes or monocytes.


Subject(s)
Bronchoalveolar Lavage Fluid/virology , COVID-19/virology , Leukocytes, Mononuclear/virology , SARS-CoV-2/genetics , COVID-19/pathology , High-Throughput Nucleotide Sequencing , Humans , Pandemics , RNA, Viral/analysis , SARS-CoV-2/isolation & purification
13.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1309589

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the newly discovered coronavirus, SARS-CoV-2. Increased severity of COVID-19 has been observed in patients with diabetes mellitus (DM). This study aimed to identify common transcriptional signatures, regulators and pathways between COVID-19 and DM. We have integrated human whole-genome transcriptomic datasets from COVID-19 and DM, followed by functional assessment with gene ontology (GO) and pathway analyses. In peripheral blood mononuclear cells (PBMCs), among the upregulated differentially expressed genes (DEGs), 32 were found to be commonly modulated in COVID-19 and type 2 diabetes (T2D), while 10 DEGs were commonly downregulated. As regards type 1 diabetes (T1D), 21 DEGs were commonly upregulated, and 29 DEGs were commonly downregulated in COVID-19 and T1D. Moreover, 35 DEGs were commonly upregulated in SARS-CoV-2 infected pancreas organoids and T2D islets, while 14 were commonly downregulated. Several GO terms were found in common between COVID-19 and DM. Prediction of the putative transcription factors involved in the upregulation of genes in COVID-19 and DM identified RELA to be implicated in both PBMCs and pancreas. Here, for the first time, we have characterized the biological processes and pathways commonly dysregulated in COVID-19 and DM, which could be in the next future used for the design of personalized treatment of COVID-19 patients suffering from DM as comorbidity.


Subject(s)
COVID-19/genetics , Diabetes Mellitus/genetics , SARS-CoV-2/genetics , Transcriptome/genetics , COVID-19/pathology , COVID-19/virology , Computational Biology , Diabetes Mellitus/pathology , Gene Expression Profiling , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Protein Interaction Maps/genetics , SARS-CoV-2/pathogenicity
15.
Cell Res ; 31(8): 836-846, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275907

ABSTRACT

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


Subject(s)
COVID-19/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/virology , China , Cohort Studies , Critical Illness , Female , Fibrosis , Hospitalization , Humans , Kidney/pathology , Kidney/virology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Lung/pathology , Male , Middle Aged , RNA, Viral/metabolism , SARS-CoV-2/genetics , Spleen/pathology , Spleen/virology , Trachea/pathology , Trachea/virology
16.
Cells ; 10(6)2021 06 10.
Article in English | MEDLINE | ID: covidwho-1264420

ABSTRACT

The implications of the microbiome on Coronavirus disease 2019 (COVID-19) prognosis has not been thoroughly studied. In this study we aimed to characterize the lung and blood microbiome and their implication on COVID-19 prognosis through analysis of peripheral blood mononuclear cell (PBMC) samples, lung biopsy samples, and bronchoalveolar lavage fluid (BALF) samples. In all three tissue types, we found panels of microbes differentially abundant between COVID-19 and normal samples correlated to immune dysregulation and upregulation of inflammatory pathways, including key cytokine pathways such as interleukin (IL)-2, 3, 5-10 and 23 signaling pathways and downregulation of anti-inflammatory pathways including IL-4 signaling. In the PBMC samples, six microbes were correlated with worse COVID-19 severity, and one microbe was correlated with improved COVID-19 severity. Collectively, our findings contribute to the understanding of the human microbiome and suggest interplay between our identified microbes and key inflammatory pathways which may be leveraged in the development of immune therapies for treating COVID-19 patients.


Subject(s)
COVID-19/diagnosis , Leukocytes, Mononuclear/microbiology , Lung/microbiology , Microbiota/physiology , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/microbiology , COVID-19/virology , Case-Control Studies , Humans , Leukocytes, Mononuclear/virology , Liquid Biopsy , Lung/pathology , Lung/virology , Microbiota/genetics , Microbiota/immunology , Prognosis , RNA, Bacterial/analysis , RNA, Fungal/analysis , RNA-Seq , SARS-CoV-2/physiology
17.
Front Immunol ; 12: 642860, 2021.
Article in English | MEDLINE | ID: covidwho-1231336

ABSTRACT

Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.


Subject(s)
COVID-19/immunology , Complement Activation , Cytokine Release Syndrome/immunology , Interleukin-10/immunology , Interleukin-6/immunology , Leukocytes, Mononuclear/immunology , Models, Immunological , SARS-CoV-2/immunology , COVID-19/pathology , Complement Factor H/immunology , Cytokine Release Syndrome/pathology , Humans , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology
18.
J Cell Mol Med ; 25(12): 5823-5827, 2021 06.
Article in English | MEDLINE | ID: covidwho-1221608

ABSTRACT

The long non-coding RNAs (lncRNAs) play a critical regulatory role in the host response to the viral infection. However, little is understood about the transcriptome architecture, especially lncRNAs pattern during the SARS-CoV-2 infection. In the present study, using publicly available RNA sequencing data of bronchoalveolar lavage fluid (BALF) and peripheral blood mononuclear cells (PBMC) samples from COVID-19 patients and healthy individuals, three interesting findings highlighted: (a) More than half of the interactions between lncRNAs-PCGs of BALF samples established by three trans-acting lncRNAs (HOTAIRM1, PVT1 and AL392172.1), which also exhibited the high affinity for binding to the SARS-CoV-2 genome, suggesting the major regulatory role of these lncRNAs during the SARS-CoV-2 infection. (b) lncRNAs of MALAT1 and NEAT1 are possibly contributed to the inflammation development in the SARS-CoV-2 infected cells. (c) In contrast to the 3' part of the SARS-CoV-2 genome, the 5' part can interact with many human lncRNAs. Therefore, the mRNA-based vaccines will not show any side effects because of the off-label interactions with the human lncRNAs. Overall, the putative functionalities of lncRNAs can be promising to design the non-coding RNA-based drugs and to inspect the efficiency of vaccines to overcome the current pandemic.


Subject(s)
COVID-19 , RNA, Long Noncoding/metabolism , RNA, Viral/metabolism , SARS-CoV-2/genetics , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/virology , Databases, Nucleic Acid , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology
19.
J Immunol ; 206(9): 2146-2159, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1181676

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients developing severe illness or even death. Disease severity has been associated with increased levels of proinflammatory cytokines and lymphopenia. To elucidate the atlas of peripheral immune response and pathways that might lead to immunopathology during COVID-19 disease course, we performed a peripheral blood RNA sequencing analysis of the same patient's samples collected from symptom onset to full recovery. We found that PBMCs at different disease stages exhibited unique transcriptome characteristics. We observed that SARS-CoV-2 infection caused excessive release of inflammatory cytokines and lipid mediators as well as an aberrant increase of low-density neutrophils. Further analysis revealed an increased expression of RNA sensors and robust IFN-stimulated genes expression but a repressed type I IFN production. SARS-CoV-2 infection activated T and B cell responses during the early onset but resulted in transient adaptive immunosuppression during severe disease state. Activation of apoptotic pathways and functional exhaustion may contribute to the reduction of lymphocytes and dysfunction of adaptive immunity, whereas increase in IL2, IL7, and IL15 may facilitate the recovery of the number and function of lymphocytes. Our study provides comprehensive transcriptional signatures of peripheral blood response in patients with moderate COVID-19.


Subject(s)
COVID-19/blood , Cytokines/blood , Disease Progression , Inflammation Mediators/blood , Leukocytes, Mononuclear/metabolism , RNA-Seq , SARS-CoV-2/metabolism , Adult , Aged , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/virology , Longitudinal Studies , Male , Middle Aged
20.
J Mol Cell Biol ; 13(3): 197-209, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-1145182

ABSTRACT

Although millions of patients have clinically recovered from COVID-19, little is known about the immune status of lymphocytes in these individuals. In this study, the peripheral blood mononuclear cells of a clinically recovered (CR) cohort were comparatively analyzed with those of an age- and sex-matched healthy donor cohort. We found that CD8+ T cells in the CR cohort had higher numbers of effector T cells and effector memory T cells but lower Tc1 (IFN-γ+), Tc2 (IL-4+), and Tc17 (IL-17A+) cell frequencies. The CD4+ T cells of the CR cohort were decreased in frequency, especially the central memory T cell subset. Moreover, CD4+ T cells in the CR cohort showed lower programmed cell death protein 1 (PD-1) expression and had lower frequencies of Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17A+), and circulating follicular helper T (CXCR5+PD-1+) cells. Accordingly, the proportion of isotype-switched memory B cells (IgM-CD20hi) among B cells in the CR cohort showed a significantly lower proportion, although the level of the activation marker CD71 was elevated. For CD3-HLA-DR- lymphocytes in the CR cohort, in addition to lower levels of IFN-γ, granzyme B and T-bet, the correlation between T-bet and IFN-γ was not observed. Additionally, by taking into account the number of days after discharge, all the phenotypes associated with reduced function did not show a tendency toward recovery within 4‒11 weeks. The remarkable phenotypic alterations in lymphocytes in the CR cohort suggest that  severe acute respiratory syndrome coronavirus 2 infection profoundly affects lymphocytes and potentially results in dysfunction even after clinical recovery.


Subject(s)
CD8-Positive T-Lymphocytes/virology , COVID-19/blood , Leukocytes, Mononuclear/virology , SARS-CoV-2/pathogenicity , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Cell Lineage/genetics , Cell Lineage/immunology , Female , Gene Expression Regulation/immunology , Granzymes/genetics , Humans , Interferon-gamma/genetics , Leukocytes, Mononuclear/pathology , Male , Middle Aged , T-Box Domain Proteins/genetics , Th1 Cells/immunology , Th1 Cells/virology , Th17 Cells/immunology , Th17 Cells/virology , Th2 Cells/immunology , Th2 Cells/virology
SELECTION OF CITATIONS
SEARCH DETAIL