Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Front Immunol ; 13: 798712, 2022.
Article in English | MEDLINE | ID: covidwho-1779939

ABSTRACT

The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.


Subject(s)
Fishes/genetics , Fishes/immunology , Leukocytes/immunology , Leukocytes/metabolism , RNA-Seq , Single-Cell Analysis , Animals , Immunity , Single-Cell Analysis/methods
2.
Front Immunol ; 12: 774776, 2021.
Article in English | MEDLINE | ID: covidwho-1581334

ABSTRACT

Both RNA N6-methyladenosine (m6A) modification of SARS-CoV-2 and immune characteristics of the human body have been reported to play an important role in COVID-19, but how the m6A methylation modification of leukocytes responds to the virus infection remains unknown. Based on the RNA-seq of 126 samples from the GEO database, we disclosed that there is a remarkably higher m6A modification level of blood leukocytes in patients with COVID-19 compared to patients without COVID-19, and this difference was related to CD4+ T cells. Two clusters were identified by unsupervised clustering, m6A cluster A characterized by T cell activation had a higher prognosis than m6A cluster B. Elevated metabolism level, blockage of the immune checkpoint, and lower level of m6A score were observed in m6A cluster B. A protective model was constructed based on nine selected genes and it exhibited an excellent predictive value in COVID-19. Further analysis revealed that the protective score was positively correlated to HFD45 and ventilator-free days, while negatively correlated to SOFA score, APACHE-II score, and crp. Our works systematically depicted a complicated correlation between m6A methylation modification and host lymphocytes in patients infected with SARS-CoV-2 and provided a well-performing model to predict the patients' outcomes.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Leukocytes/immunology , RNA, Viral/genetics , SARS-CoV-2/physiology , Adenosine/metabolism , Cluster Analysis , Computational Biology/methods , Disease Susceptibility/immunology , Gene Expression Profiling , Humans , Leukocytes/metabolism , RNA, Viral/metabolism , ROC Curve
3.
Viruses ; 13(11)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1512696

ABSTRACT

Survivors of severe SARS-CoV-2 infections frequently suffer from a range of post-infection sequelae. Whether survivors of mild or asymptomatic infections can expect any long-term health consequences is not yet known. Herein we investigated lasting changes to soluble inflammatory factors and cellular immune phenotype and function in individuals who had recovered from mild SARS-CoV-2 infections (n = 22), compared to those that had recovered from other mild respiratory infections (n = 11). Individuals who had experienced mild SARS-CoV-2 infections had elevated levels of C-reactive protein 1-3 months after symptom onset, and changes in phenotype and function of circulating T-cells that were not apparent in individuals 6-9 months post-symptom onset. Markers of monocyte activation, and expression of adherence and chemokine receptors indicative of altered migratory capacity, were also higher at 1-3 months post-infection in individuals who had mild SARS-CoV-2, but these were no longer elevated by 6-9 months post-infection. Perhaps most surprisingly, significantly more T-cells could be activated by polyclonal stimulation in individuals who had recently experienced a mild SARS-CoV-2, infection compared to individuals with other recent respiratory infections. These data are indicative of prolonged immune activation and systemic inflammation that persists for at least three months after mild or asymptomatic SARS-CoV-2 infections.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cytokines/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Respiratory Tract Infections/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral , Biomarkers , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/virology , Cytokines/immunology , Female , Humans , Immunophenotyping/methods , Inflammation/metabolism , Inflammation/virology , Lymphocyte Activation , Male , Middle Aged , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus/immunology , Survivors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
4.
Physiol Rep ; 9(20): e15075, 2021 10.
Article in English | MEDLINE | ID: covidwho-1485552

ABSTRACT

Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.


Subject(s)
Exercise/physiology , Influenza A virus/immunology , Leukocytes/immunology , Lung/immunology , Nasal Lavage Fluid/immunology , Neutrophils/immunology , Adolescent , Adult , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Gene Expression , Humans , Leukocytes/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Nasal Lavage/methods , Nasal Lavage Fluid/cytology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Neutrophils/metabolism , Time Factors , Young Adult
5.
Pak J Biol Sci ; 24(9): 920-927, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1431004

ABSTRACT

<b>Background and Objective:</b> COVID-19 is a fast-spreading worldwide pandemic caused by SARS-CoV-2. The World Health Organization recommended wearing face masks. Masks have become an urgent necessity throughout the pandemic, the study's goal was to track the impact of wearing masks on immunological responses. <b>Materials and Methods:</b> This study was conducted on 40 healthy people who were working in health care at Nineveh Governorate Hospitals from September-December, 2020. They wore face masks at work for more than 8 months for an average of 6 hrs a day. The control sample included 40 healthy individuals, who wore masks for very short periods. All samples underwent immunological and physiological tests to research the effects of wearing masks for extended periods within these parameters. <b>Results:</b> The results showed a significant decrease in total White Blood Count and the absolute number of neutrophils, lymphocytes, monocytes and phagocytic activity. However, there was a significant increase in the absolute number of eosinophils in participants compared with the control. The results also suggested there were no significant differences in IgE, haemoglobin concentration and blood O<sub>2 </sub>saturation in participants who wore masks for more than 6 hrs compared to the control group. The results showed a significant increase in pulse rate in participants who wore masks for more than 6 hrs compared to the control group. The results also showed a strong correlation coefficient between the time of wearing masks and some immunological, haematological parameters. <b>Conclusion:</b> Wearing masks for long periods alters immunological parameters that initiate the immune response, making the body weaker in its resistance to infectious agents.


Subject(s)
COVID-19/prevention & control , Inhalation Exposure/prevention & control , Leukocytes/immunology , Masks , Occupational Exposure/prevention & control , Phagocytes/immunology , SARS-CoV-2/pathogenicity , Adult , Biomarkers/blood , COVID-19/transmission , Case-Control Studies , Female , Heart Rate , Hemoglobins/metabolism , Humans , Immunoglobulin E/blood , Inhalation Exposure/adverse effects , Leukocyte Count , Male , Masks/adverse effects , Middle Aged , Occupational Exposure/adverse effects , Occupational Health , Oxygen/blood , Personnel, Hospital , Phagocytosis , Time Factors
7.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1346516

ABSTRACT

We recently developed a molecule (GT-73) that blocked leukocyte transendothelial migration from blood to the peripheral tissues, supposedly by affecting the platelet endothelial cell adhesion molecule (PECAM-1) function. GT-73 was tested in an LPS-induced acute respiratory distress syndrome (ARDS) mouse model. The rationale for this is based on the finding that the mortality of COVID-19 patients is partly caused by ARDS induced by a massive migration of leukocytes to the lungs. In addition, the role of tert-butyl and methyl ester moieties in the biological effect of GT-73 was investigated. A human leukocyte, transendothelial migration assay was applied to validate the blocking effect of GT-73 derivatives. Finally, a mouse model of LPS-induced ARDS was used to evaluate the histological and biochemical effects of GT-73. The obtained results showed that GT-73 has a unique structure that is responsible for its biological activity; two of its chemical moieties (tert-butyl and a methyl ester) are critical for this effect. GT-73 is a prodrug, and its lipophilic tail covalently binds to PECAM-1 via Lys536. GT-73 significantly decreased the number of infiltrating leukocytes in the lungs and reduced the inflammation level. Finally, GT-73 reduced the levels of IL-1ß, IL-6, and MCP-1 in bronchoalveolar lavage fluid (BALF). In summary, we concluded that GT-73, a blocker of white blood cell transendothelial migration, has a favorable profile as a drug candidate for the treatment of ARDS in COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Leukocytes/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/antagonists & inhibitors , Pyrimidines/pharmacology , Respiratory Distress Syndrome/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Animals , COVID-19/pathology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Movement/drug effects , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Leukocytes/immunology , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred BALB C , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Pyrimidines/chemistry , Respiratory Distress Syndrome/chemically induced , SARS-CoV-2
8.
Methods Mol Biol ; 2099: 195-204, 2020.
Article in English | MEDLINE | ID: covidwho-1292553

ABSTRACT

Innate immune cells play a vital role in mounting an effective host response to a variety of pathogen challenges. Myeloid cells such as neutrophils and monocyte-macrophages are major innate leukocytes that orchestrate protective immunity to viral lung infections. However, a dysregulated cytokine response can promote excessive infiltration and robust pro-inflammatory activity of neutrophils and monocyte-macrophages, leading to fatal disease. Following virus infection, the beneficial or deleterious role of infiltrating neutrophils and monocyte-macrophages is determined largely by their ability to secrete inflammatory cytokines and chemokines. A majority of studies use the total number of infiltrating cells and their activation status as measures to demonstrate their role during an infection. Consequently, the ability of neutrophils and Inflammatory Monocyte Macrophages (IMMs) to secrete inflammatory cytokines and chemokines, and its correlation with the disease severity, is not well defined. In this chapter, we report useful markers to identify lung infiltrating innate immune cells and define their activation status. We also describe a simple method to measure intracellular cytokine production to evaluate the inflammatory activity of neutrophils and IMMs in a mouse model of human coronavirus infection.


Subject(s)
Chemokines/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Inflammation/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Myeloid Cells/immunology , SARS Virus/immunology , Animals , Coronavirus Infections/virology , Disease Models, Animal , Humans , Immunity, Innate , Leukocytes/immunology , Lung/immunology , Macrophages/immunology , Mice , Mice, Inbred BALB C , Monocytes/immunology , Neutrophils/immunology
9.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253058

ABSTRACT

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Subject(s)
COVID-19/blood , COVID-19/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Adult , Aged , Cytokines/immunology , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
11.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1186423

ABSTRACT

Dysregulated immune profiles have been described in symptomatic patients infected with SARS-CoV-2. Whether the reported immune alterations are specific to SARS-CoV-2 infection or also triggered by other acute illnesses remains unclear. We performed flow cytometry analysis on fresh peripheral blood from a consecutive cohort of (a) patients hospitalized with acute SARS-CoV-2 infection, (b) patients of comparable age and sex hospitalized for another acute disease (SARS-CoV-2 negative), and (c) healthy controls. Using both data-driven and hypothesis-driven analyses, we found several dysregulations in immune cell subsets (e.g., decreased proportion of T cells) that were similarly associated with acute SARS-CoV-2 infection and non-COVID-19-related acute illnesses. In contrast, we identified specific differences in myeloid and lymphocyte subsets that were associated with SARS-CoV-2 status (e.g., elevated proportion of ICAM-1+ mature/activated neutrophils, ALCAM+ monocytes, and CD38+CD8+ T cells). A subset of SARS-CoV-2-specific immune alterations correlated with disease severity, disease outcome at 30 days, and mortality. Our data provide an understanding of the immune dysregulation specifically associated with SARS-CoV-2 infection among acute care hospitalized patients. Our study lays the foundation for the development of specific biomarkers to stratify SARS-CoV-2-positive patients at risk of unfavorable outcomes and to uncover candidate molecules to investigate from a therapeutic perspective.


Subject(s)
COVID-19/immunology , Leukocytes/classification , Leukocytes/immunology , SARS-CoV-2 , Acute Disease , Adult , Aged , B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/mortality , Case-Control Studies , Cohort Studies , Female , Hospitalization , Humans , Lymphocyte Activation , Male , Middle Aged , Models, Immunological , Monocytes/immunology , Multivariate Analysis , Neutrophils/immunology , Pandemics , Prognosis , Prospective Studies , Quebec/epidemiology , Risk Factors , SARS-CoV-2/immunology , Severity of Illness Index
12.
Life Sci ; 277: 119503, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1185151

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is characterized by an unpredictable disease course, with variable presentations of different organ systems. The clinical manifestations of COVID-19 are highly variable ranging from mild presentations to severe, life-threatening symptoms and the wide individual variability may be due to the broad heterogeneity in the underlying pathologies. There is no doubt that early management may have a major influence on the outcome. This led the scientists to search for ways to monitor disease progression or to predict outcomes in COVID-19. Although it is not yet possible to predict who will progress to the severe forms or in what time, numerous prospective and longitudinal studies represent the evidence for determining the potential immunological risk factors of COVID-19 critical disease and death. The kinetics and breadth of immune responses during COVID-19 appear to follow a trend which is consistent to the predominant pathological alterations. Recent publications have used these biomarkers to help identify patients who will develop the severe acute COVID-19. Of particular interest is the relationship between the kinetics of peripheral leukocytes and clinical progress of the disease in COVID-19. Although research is ongoing in this area, we present details about the current status of the evaluation. Understanding of the COVID-19 related alterations of the innate and adaptive immune responses may help to promote the vaccine development and immunological interventions.


Subject(s)
COVID-19/immunology , Leukocytes/immunology , SARS-CoV-2/immunology , COVID-19/etiology , COVID-19/pathology , COVID-19/therapy , Disease Progression , Humans , Immunity, Cellular , Immunity, Innate , Immunotherapy , Leukocyte Count , Leukocytes/pathology , Macrophages/immunology , Macrophages/pathology , Risk Factors , SARS-CoV-2/isolation & purification , T-Lymphocytes/immunology , T-Lymphocytes/pathology
13.
Genomics ; 113(3): 1219-1233, 2021 05.
Article in English | MEDLINE | ID: covidwho-1118728

ABSTRACT

Sepsis is a leading cause of mortality in intensive care unit worldwide, it's accompanied by immune cell dysfunction induced by multiple factors. However, little is known about the specific alterations in immune cells in the dynamic pathogenesis of sepsis secondary to bacterial pneumonia. Here, we used single cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) in a healthy control and two patients with sepsis secondary to bacterial pneumonia, including acute, stable and recovery stage. We analyzed the quantity and function of immune cells. During disease course, interferon gamma response was upregulated; T/NK cell subtypes presented activation and exhaustion properties, which might be driven by monocytes through IL-1ß signaling pathways; The proportion of plasma cells was increased, which might be driven by NK cells through IFN signaling pathways; Additionally, interferon gamma response was upregulated to a greater degree in sepsis secondary to pneumonia induced by SARS-COV-2 compared with that induced by influenza virus and bacteria.


Subject(s)
Pneumonia, Bacterial , Sepsis , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Aged , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , Case-Control Studies , Cells, Cultured , Female , Humans , Influenza, Human/complications , Influenza, Human/genetics , Influenza, Human/immunology , Leukocytes/immunology , Leukocytes/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/immunology , RNA-Seq , SARS-CoV-2/immunology , Sepsis/genetics , Sepsis/immunology , Sepsis/microbiology , Sepsis/virology
14.
Signal Transduct Target Ther ; 6(1): 110, 2021 03 06.
Article in English | MEDLINE | ID: covidwho-1118799

ABSTRACT

The 2019 coronavirus disease (COVID-19) outbreak caused by the SARS-CoV-2 virus is an ongoing global health emergency. However, the virus' pathogenesis remains unclear, and there is no cure for the disease. We investigated the dynamic changes of blood immune response in patients with COVID-19 at different stages by using 5' gene expression, T cell receptor (TCR), and B cell receptors (BCR) V(D)J transcriptome analysis at a single-cell resolution. We obtained single-cell mRNA sequencing (scRNA-seq) data of 341,420 peripheral blood mononuclear cells (PBMCs) and 185,430 clonotypic T cells and 28,802 clonotypic B cells from 25 samples of 16 patients with COVID-19 for dynamic studies. In addition, we used three control samples. We found expansion of dendritic cells (DCs), CD14+ monocytes, and megakaryocytes progenitor cells (MP)/platelets and a reduction of naïve CD4+ T lymphocytes in patients with COVID-19, along with a significant decrease of CD8+ T lymphocytes, and natural killer cells (NKs) in patients in critical condition. The type I interferon (IFN-I), mitogen-activated protein kinase (MAPK), and ferroptosis pathways were activated while the disease was active, and recovered gradually after patient conditions improved. Consistent with this finding, the mRNA level of IFN-I signal-induced gene IFI27 was significantly increased in patients with COVID-19 compared with that of the controls in a validation cohort that included 38 patients and 35 controls. The concentration of interferon-α (IFN-α) in the serum of patients with COVID-19 increased significantly compared with that of the controls in an additional cohort of 215 patients with COVID-19 and 106 controls, further suggesting the important role of the IFN-I pathway in the immune response of COVID-19. TCR and BCR sequences analyses indicated that patients with COVID-19 developed specific immune responses against SARS-CoV-2 antigens. Our study reveals a dynamic landscape of human blood immune responses to SARS-CoV-2 infection, providing clues for therapeutic potentials in treating COVID-19.


Subject(s)
COVID-19/immunology , Leukocytes/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Single-Cell Analysis , Adult , COVID-19/genetics , Female , Ferroptosis/genetics , Ferroptosis/immunology , Humans , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Male , Middle Aged , RNA-Seq , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/genetics
15.
Rev Alerg Mex ; 67(4): 338-349, 2020.
Article in Spanish | MEDLINE | ID: covidwho-1106727

ABSTRACT

The clinical manifestations of COVID-19 are reminiscent of those of acute respiratory distress syndrome induced by cytokine release syndrome and secondary hemophagocytic lymphohistiocytosis that is observed in patients with other coronaviruses such as SARS-CoV and MERS-CoV. Neurologists face the challenge of assessing patients with pre-existing neurological diseases who have contracted SARS-CoV-2, patients with COVID-19 who present neurological emergencies, and patients who are carriers of the virus and have developed secondary neurological complications, either during the course of the disease or after it. Some authors and recent literature reports suggest that the presence of neurological manifestations in patients who are carriers of SARS-CoV-2 may be associated with a greater severity of the disease.


Las manifestaciones clínicas de COVID-19 recuerdan las del síndrome de insuficiencia respiratoria aguda inducido por el síndrome de liberación de citocinas y la linfohistiocitosis hemofagocitica observada en pacientes con otros coronavirus como SARS-CoV y MERS-CoV. Los neurólogos tienen el reto de evaluar pacientes con enfermedades neurológicas preexistentes que contraen SARS-CoV-2, pacientes con COVID-19 que presentan emergencias neurológicas y pacientes portadores del virus que desarrollan complicaciones neurológicas secundarias, durante el curso de la enfermedad o posterior a la misma. Algunos autores y reportes en la literatura recientes sugieren que las manifestaciones neurológicas en pacientes portadores de SARS-CoV-2 pueden asociarse con mayor gravedad de la enfermedad.


Subject(s)
COVID-19/complications , Cytokine Release Syndrome/etiology , Lymphohistiocytosis, Hemophagocytic/etiology , Nervous System Diseases/etiology , SARS-CoV-2 , Adaptive Immunity , Anosmia/etiology , Blood-Brain Barrier , Brain Ischemia/etiology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Encephalitis, Viral/etiology , Headache/etiology , Humans , Immunity, Innate , Leukocytes/immunology , Organ Specificity , Viral Tropism
16.
Nat Rev Immunol ; 21(1): 49-64, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065885

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Cell Movement/immunology , Influenza, Human/immunology , Leukocytes/immunology , Lung/immunology , SARS-CoV-2/immunology , Animals , COVID-19/epidemiology , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Epidemics , Humans , Influenza, Human/virology , Leukocytes/metabolism , Lung/metabolism , Lung/virology , SARS-CoV-2/physiology
17.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1065205

ABSTRACT

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Subject(s)
COVID-19/immunology , Monocytes/immunology , Nervous System Diseases/immunology , T-Lymphocytes/immunology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/pathology , Cell Differentiation , Cerebrospinal Fluid/immunology , Encephalitis, Viral/cerebrospinal fluid , Encephalitis, Viral/immunology , Gene Expression Profiling , Humans , Interferons/genetics , Interferons/immunology , Leukocytes/immunology , Lymphocyte Activation , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Nervous System Diseases/pathology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis
18.
Cytometry A ; 99(5): 446-461, 2021 05.
Article in English | MEDLINE | ID: covidwho-1047149

ABSTRACT

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Subject(s)
COVID-19/diagnosis , Cell Separation , Flow Cytometry , Immunophenotyping , Leukocytes/immunology , SARS-CoV-2/immunology , Workflow , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Female , High-Throughput Screening Assays , Host-Pathogen Interactions , Humans , Leukocytes/metabolism , Leukocytes/virology , Male , Middle Aged , Predictive Value of Tests , SARS-CoV-2/pathogenicity , Severity of Illness Index , Young Adult
19.
Immunity ; 53(3): 510-523, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-761744

ABSTRACT

Integrated immunometabolic responses link dietary intake, energy utilization, and storage to immune regulation of tissue function and is therefore essential for the maintenance and restoration of homeostasis. Adipose-resident leukocytes have non-traditional immunological functions that regulate organismal metabolism by controlling insulin action, lipolysis, and mitochondrial respiration to control the usage of substrates for production of heat versus ATP. Energetically expensive vital functions such as immunological responses might have thus evolved to respond accordingly to dietary surplus and deficit of macronutrient intake. Here, we review the interaction of dietary intake of macronutrients and their metabolism with the immune system. We discuss immunometabolic checkpoints that promote healthspan and highlight how dietary fate and regulation of glucose, fat, and protein metabolism might affect immunity.


Subject(s)
Adipose Tissue/metabolism , Diet , Energy Metabolism/physiology , Immune System/physiology , Immunity/physiology , Caloric Restriction , Dietary Fats , Glucose/metabolism , Humans , Leukocytes/immunology , Macrophages/immunology , Obesity/pathology
20.
Eur J Clin Invest ; 51(5): e13485, 2021 May.
Article in English | MEDLINE | ID: covidwho-1003974

ABSTRACT

The new coronavirus (SARS-CoV-2) appearance in Wuhan, China, did rise the new virus disease (COVID-19), which spread globally in a short time, leading the World Health Organization to declare a new global pandemic. To contain and mitigate the spread of SARS-CoV-2, specific public health procedures were implemented in virtually all countries, with a significant impact on society, making it difficult to keep the regular practice of physical activity. It is widely accepted that an active lifestyle contributes to the improvement of general health and preservation of cardiovascular, respiratory, osteo-muscular and immune system capacities. The positive effects of regular physical activity on the immune system have emerged as a pivotal trigger of general health, underlying the beneficial effects of physical activity on multiple physiological systems. Accordingly, recent studies have already pointed out the negative impact of physical inactivity caused by the social isolation imposed by the public sanitary authorities due to COVID-19. Nevertheless, there are still no current narrative reviews evaluating the real impact of COVID-19 on active lifestyle or even discussing the possible beneficial effects of exercise-promoted immune upgrade against the severity or progression of COVID-19. Based on the consensus in the scientific literature, in this review, we discuss how an exercise adherence could adequately improve immune responses in times of the 'COVID-19 Era and beyond'.


Subject(s)
COVID-19 , Exercise/physiology , Immunity/immunology , Inflammation/immunology , Leukocytes/immunology , Communicable Disease Control , Cytokines/immunology , Gonadal Steroid Hormones/immunology , Humans , Hydrocortisone/immunology , Killer Cells, Natural/immunology , Neutrophils/immunology , Patient Compliance , Phagocytosis/immunology , Public Policy , SARS-CoV-2 , Sedentary Behavior , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL