Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Platelets ; 33(2): 200-207, 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1788406

ABSTRACT

Evolving evidence demonstrates that platelets have major roles in viral syndromes through previously unrecognized viral sensing and effector functions. Activated platelets and increased platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The mechanisms and outcomes of platelet-leukocyte interactions depend on the interacting leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss the mechanisms involved in platelet interactions with leukocytes and its functions during viral infections. We focus on the contributions of human platelet-leukocyte interactions to pathophysiological and protective responses during viral infections of major global health relevance, including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.


Subject(s)
Blood Platelets/metabolism , Leukocytes/metabolism , Virus Diseases/blood , Humans
2.
Front Immunol ; 13: 798712, 2022.
Article in English | MEDLINE | ID: covidwho-1779939

ABSTRACT

The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.


Subject(s)
Fishes/genetics , Fishes/immunology , Leukocytes/immunology , Leukocytes/metabolism , RNA-Seq , Single-Cell Analysis , Animals , Immunity , Single-Cell Analysis/methods
3.
Cell Death Dis ; 13(2): 137, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1683990

ABSTRACT

Acute respiratory distress syndrome (ARDS) is triggered by various aetiological factors such as trauma, sepsis and respiratory viruses including SARS-CoV-2 and influenza A virus. Immune profiling of severe COVID-19 patients has identified a complex pattern of cytokines including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-5, which are significant mediators of viral-induced hyperinflammation. This strong response has prompted the development of therapies that block GM-CSF and other cytokines individually to limit inflammation related pathology. The common cytokine binding site of the human common beta (ßc) receptor signals for three inflammatory cytokines: GM-CSF, IL-5 and IL-3. In this study, ßc was targeted with the monoclonal antibody (mAb) CSL311 in engineered mice devoid of mouse ßc and ßIL-3 and expressing human ßc (hßcTg mice). Direct pulmonary administration of lipopolysaccharide (LPS) caused ARDS-like lung injury, and CSL311 markedly reduced lung inflammation and oedema, resulting in improved oxygen saturation levels in hßcTg mice. In a separate model, influenza (HKx31) lung infection caused viral pneumonia associated with a large influx of myeloid cells into the lungs of hßcTg mice. The therapeutic application of CSL311 potently decreased accumulation of monocytes/macrophages, neutrophils, and eosinophils without altering lung viral loads. Furthermore, CSL311 treatment did not limit the viral-induced expansion of NK and NKT cells, or the tissue expression of type I/II/III interferons needed for efficient viral clearance. Simultaneously blocking GM-CSF, IL-5 and IL-3 signalling with CSL311 may represent an improved and clinically applicable strategy to reducing hyperinflammation in the ARDS setting.


Subject(s)
Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/physiology , Respiratory Distress Syndrome/immunology , Animals , Antibodies, Monoclonal/immunology , Cytokine Receptor Common beta Subunit/immunology , Cytokines , Eosinophils/immunology , Female , Humans , Immunity/genetics , Immunity/physiology , Inflammation/immunology , Leukocytes/metabolism , Male , Mice , Mice, Transgenic , Neutrophils/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Receptors, Interleukin-3 , Receptors, Interleukin-5 , Respiratory Distress Syndrome/physiopathology
4.
Adv Protein Chem Struct Biol ; 129: 163-188, 2022.
Article in English | MEDLINE | ID: covidwho-1653881

ABSTRACT

Selectin enzymes are glycoproteins and are an important adhesion molecule in the mammalian immune system, especially in the inflammatory response and the healing process of tissues. Selectins play an important role in a variety of biological processes, including the rolling of leukocytes in endothelial cells, a process known as the adhesion cascade. It has recently been discovered and reported that the selectin mechanism plays a role in cancer and thrombosis disease. This process begins with non-covalent interactions-based selectin-ligand binding and the glycans play a role as a connector between cancer cells and the endothelium in this process. The selectin mechanism is critical for the immune system, but it is also involved in disease mechanisms, earning the selectins the nickname "Selectins-The Two Dr. Jekyll and Mr. Hyde Faces". As a result, the drug for selectins should have a multifaceted role and be a dynamic molecule that targets the disease mechanism specifically. This chapter explores the role of selectins in the disease mechanism at the mechanism level that provides the impact for identifying the selectin inhibitors. Overall, this chapter provides the molecular level insights on selectins, their ligands, involvement in normal and disease mechanisms.


Subject(s)
Endothelial Cells , Selectins , Animals , Endothelial Cells/metabolism , Humans , Leukocytes/metabolism , Ligands , Mammals/metabolism , Selectins/metabolism
5.
J Mol Med (Berl) ; 100(4): 569-584, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653410

ABSTRACT

For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.


Subject(s)
COVID-19 , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Connexins , Humans , Leukocytes/metabolism , Nerve Tissue Proteins , Signal Transduction
6.
Front Immunol ; 12: 774776, 2021.
Article in English | MEDLINE | ID: covidwho-1581334

ABSTRACT

Both RNA N6-methyladenosine (m6A) modification of SARS-CoV-2 and immune characteristics of the human body have been reported to play an important role in COVID-19, but how the m6A methylation modification of leukocytes responds to the virus infection remains unknown. Based on the RNA-seq of 126 samples from the GEO database, we disclosed that there is a remarkably higher m6A modification level of blood leukocytes in patients with COVID-19 compared to patients without COVID-19, and this difference was related to CD4+ T cells. Two clusters were identified by unsupervised clustering, m6A cluster A characterized by T cell activation had a higher prognosis than m6A cluster B. Elevated metabolism level, blockage of the immune checkpoint, and lower level of m6A score were observed in m6A cluster B. A protective model was constructed based on nine selected genes and it exhibited an excellent predictive value in COVID-19. Further analysis revealed that the protective score was positively correlated to HFD45 and ventilator-free days, while negatively correlated to SOFA score, APACHE-II score, and crp. Our works systematically depicted a complicated correlation between m6A methylation modification and host lymphocytes in patients infected with SARS-CoV-2 and provided a well-performing model to predict the patients' outcomes.


Subject(s)
Adenosine/analogs & derivatives , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions/immunology , Leukocytes/immunology , RNA, Viral/genetics , SARS-CoV-2/physiology , Adenosine/metabolism , Cluster Analysis , Computational Biology/methods , Disease Susceptibility/immunology , Gene Expression Profiling , Humans , Leukocytes/metabolism , RNA, Viral/metabolism , ROC Curve
7.
Viruses ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: covidwho-1572672

ABSTRACT

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , COVID-19/mortality , Leukocytes/metabolism , Matrix Metalloproteinase 8/metabolism , Severity of Illness Index , Triggering Receptor Expressed on Myeloid Cells-1/blood , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Humans , Inflammation , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Leukocyte Count , Male , Middle Aged , Neutrophils/metabolism , Prospective Studies , SARS-CoV-2 , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Young Adult
8.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: covidwho-1572660

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
9.
Int J Mol Sci ; 22(22)2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1534087

ABSTRACT

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Subject(s)
Antineoplastic Agents/pharmacology , Apolipoproteins E/genetics , Bexarotene/pharmacology , Leukocytes/drug effects , Nicotinic Acids/pharmacology , Retinoid X Receptor alpha/agonists , Animals , Antineoplastic Agents/chemical synthesis , Apolipoproteins E/metabolism , Bexarotene/analogs & derivatives , Bexarotene/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Gene Expression , Humans , Leukocytes/metabolism , Leukocytes/pathology , Nicotinic Acids/chemical synthesis , Retinoid X Receptor alpha/genetics , Retinoid X Receptor alpha/metabolism , Structure-Activity Relationship
10.
Viruses ; 13(11)2021 11 08.
Article in English | MEDLINE | ID: covidwho-1512696

ABSTRACT

Survivors of severe SARS-CoV-2 infections frequently suffer from a range of post-infection sequelae. Whether survivors of mild or asymptomatic infections can expect any long-term health consequences is not yet known. Herein we investigated lasting changes to soluble inflammatory factors and cellular immune phenotype and function in individuals who had recovered from mild SARS-CoV-2 infections (n = 22), compared to those that had recovered from other mild respiratory infections (n = 11). Individuals who had experienced mild SARS-CoV-2 infections had elevated levels of C-reactive protein 1-3 months after symptom onset, and changes in phenotype and function of circulating T-cells that were not apparent in individuals 6-9 months post-symptom onset. Markers of monocyte activation, and expression of adherence and chemokine receptors indicative of altered migratory capacity, were also higher at 1-3 months post-infection in individuals who had mild SARS-CoV-2, but these were no longer elevated by 6-9 months post-infection. Perhaps most surprisingly, significantly more T-cells could be activated by polyclonal stimulation in individuals who had recently experienced a mild SARS-CoV-2, infection compared to individuals with other recent respiratory infections. These data are indicative of prolonged immune activation and systemic inflammation that persists for at least three months after mild or asymptomatic SARS-CoV-2 infections.


Subject(s)
Asymptomatic Infections , COVID-19/immunology , Cytokines/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Respiratory Tract Infections/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral , Biomarkers , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/virology , Cytokines/immunology , Female , Humans , Immunophenotyping/methods , Inflammation/metabolism , Inflammation/virology , Lymphocyte Activation , Male , Middle Aged , Respiratory Tract Infections/virology , Spike Glycoprotein, Coronavirus/immunology , Survivors , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
11.
Physiol Rep ; 9(20): e15075, 2021 10.
Article in English | MEDLINE | ID: covidwho-1485552

ABSTRACT

Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.


Subject(s)
Exercise/physiology , Influenza A virus/immunology , Leukocytes/immunology , Lung/immunology , Nasal Lavage Fluid/immunology , Neutrophils/immunology , Adolescent , Adult , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Gene Expression , Humans , Leukocytes/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Nasal Lavage/methods , Nasal Lavage Fluid/cytology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Neutrophils/metabolism , Time Factors , Young Adult
12.
BMJ Open Respir Res ; 7(1)2020 11.
Article in English | MEDLINE | ID: covidwho-1388517

ABSTRACT

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is the major cause of mortality in patients with SARS-CoV-2 pneumonia. It appears that development of 'cytokine storm' in patients with SARS-CoV-2 pneumonia precipitates progression to ARDS. However, severity scores on admission do not predict severity or mortality in patients with SARS-CoV-2 pneumonia. Our objective was to determine whether patients with SARS-CoV-2 ARDS are clinically distinct, therefore requiring alternative management strategies, compared with other patients with ARDS. We report a single-centre retrospective study comparing the characteristics and outcomes of patients with ARDS with and without SARS-CoV-2. METHODS: Two intensive care unit (ICU) cohorts of patients at the Queen Elizabeth Hospital Birmingham were analysed: SARS-CoV-2 patients admitted between 11 March and 21 April 2020 and all patients with community-acquired pneumonia (CAP) from bacterial or viral infection who developed ARDS between 1 January 2017 and 1 November 2019. All data were routinely collected on the hospital's electronic patient records. RESULTS: A greater proportion of SARS-CoV-2 patients were from an Asian ethnic group (p=0.002). SARS-CoV-2 patients had lower circulating leucocytes, neutrophils and monocytes (p<0.0001), but higher CRP (p=0.016) on ICU admission. SARS-CoV-2 patients required a longer duration of mechanical ventilation (p=0.01), but had lower vasopressor requirements (p=0.016). DISCUSSION: The clinical syndromes and respiratory mechanics of SARS-CoV-2 and CAP-ARDS are broadly similar. However, SARS-CoV-2 patients initially have a lower requirement for vasopressor support, fewer circulating leukocytes and require prolonged ventilation support. Further studies are required to determine whether the dysregulated inflammation observed in SARS-CoV-2 ARDS may contribute to the increased duration of respiratory failure.


Subject(s)
COVID-19/complications , Critical Care/methods , Patient Outcome Assessment , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/etiology , C-Reactive Protein/metabolism , Cohort Studies , Female , Humans , Leukocytes/metabolism , Male , Middle Aged , Monocytes/metabolism , Neutrophils/metabolism , Respiration, Artificial/statistics & numerical data , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Retrospective Studies , SARS-CoV-2 , Time , United Kingdom , Vasoconstrictor Agents/therapeutic use
13.
J Med Virol ; 93(9): 5544-5554, 2021 09.
Article in English | MEDLINE | ID: covidwho-1363695

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global epidemic disease caused by a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing serious adverse effects on human health. In this study, we obtained a blood leukocytes sequencing data set of COVID-19 patients from the GEO database and obtained differentially expressed genes (DEGs). We further analyzed these DEGs by protein-protein interaction analysis and Gene Ontology enrichment analysis and identified the DEGs closely related to SARS-CoV-2 infection. Then, we constructed a six-gene model (comprising IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) by logistic regression analysis and calculated the area under the ROC curve (AUC) for the diagnosis of COVID-19. The AUC values of the training group, testing group, and entire group were 0.930, 0.914, and 0.921, respectively. The six genes were highly expressed in patients with COVID-19 and positively correlated with the expression of SARS-CoV-2 invasion-related genes (ACE2, TMPRSS2, CTSB, and CTSL). The risk score calculated by this model was also positively correlated with the expression of TMPRSS2, CTSB, and CTSL, indicating that the six genes were closely related to SARS-CoV-2 infection. In conclusion, we comprehensively analyzed the functions of DEGs in the blood leukocytes of patients with COVID-19 and constructed a six-gene model that may contribute to the development of new diagnostic and therapeutic ideas for COVID-19. Moreover, these six genes may be therapeutic targets for COVID-19.


Subject(s)
COVID-19/metabolism , Gene Expression Regulation, Viral , Leukocytes/metabolism , Leukocytes/virology , SARS-CoV-2/metabolism , 2',5'-Oligoadenylate Synthetase , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , COVID-19/genetics , Female , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins , Logistic Models , Male , Membrane Proteins , Middle Aged , Neoplasm Proteins , SARS-CoV-2/genetics , Ubiquitin Thiolesterase
14.
J Virol ; 95(17): e0079421, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1350003

ABSTRACT

Increased mortality in COVID-19 cases is often associated with microvascular complications. We have recently shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein promotes an inflammatory cytokine interleukin 6 (IL-6)/IL-6R-induced trans signaling response and alarmin secretion. Virus-infected or spike-transfected human epithelial cells exhibited an increase in senescence, with a release of senescence-associated secretory phenotype (SASP)-related inflammatory molecules. Introduction of the bromodomain-containing protein 4 (BRD4) inhibitor AZD5153 to senescent epithelial cells reversed this effect and reduced SASP-related inflammatory molecule release in TMNK-1 or EAhy926 (representative human endothelial cell lines), when cells were exposed to cell culture medium (CM) derived from A549 cells expressing SARS-CoV-2 spike protein. Cells also exhibited a senescence phenotype with enhanced p16, p21, and senescence-associated ß-galactosidase (SA-ß-Gal) expression and triggered SASP pathways. Inhibition of IL-6 trans signaling by tocilizumab and inhibition of inflammatory receptor signaling by the Bruton's tyrosine kinase (BTK) inhibitor zanubrutinib, prior to exposure of CM to endothelial cells, inhibited p21 and p16 induction. We also observed an increase in reactive oxygen species (ROS) in A549 spike-transfected and endothelial cells exposed to spike-transfected CM. ROS generation in endothelial cell lines was reduced after treatment with tocilizumab and zanubrutinib. Cellular senescence was associated with an increased level of the endothelial adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), which have in vitro leukocyte attachment potential. Inhibition of senescence or SASP function prevented VCAM-1/ICAM-1 expression and leukocyte attachment. Taken together, we identified that human endothelial cells exposed to cell culture supernatant derived from SARS-CoV-2 spike protein expression displayed cellular senescence markers, leading to enhanced leukocyte adhesion. IMPORTANCE The present study was aimed at examining the underlying mechanism of extrapulmonary manifestations of SARS-CoV-2 spike protein-associated pathogenesis, with the notion that infection of the pulmonary epithelium can lead to mediators that drive endothelial dysfunction. We utilized SARS-CoV-2 spike protein expression in cultured human hepatocytes (Huh7.5) and pneumocytes (A549) to generate conditioned culture medium (CM). Endothelial cell lines (TMNK-1 or EAhy926) treated with CM exhibited an increase in cellular senescence markers by a paracrine mode and led to leukocyte adhesion. Overall, the link between these responses in endothelial cell senescence and a potential contribution to microvascular complication in productively SARS-CoV-2-infected humans is implicated. Furthermore, the use of inhibitors (BTK, IL-6, and BRD4) showed a reverse effect in the senescent cells. These results may support the selection of potential adjunct therapeutic modalities to impede SARS-CoV-2-associated pathogenesis.


Subject(s)
Cellular Senescence , Endothelial Cells/metabolism , Leukocytes/metabolism , Paracrine Communication , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Cell Adhesion , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Leukocytes/pathology , Leukocytes/virology , Piperazines/pharmacology , Pyrazoles , Pyridazines , Reactive Oxygen Species/metabolism , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
15.
Int J Mol Sci ; 22(15)2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1325684

ABSTRACT

In severe COVID-19, which is characterized by blood clots and neutrophil-platelet aggregates in the circulating blood and different tissues, an increased incidence of cardiovascular complications and venous thrombotic events has been reported. The inflammatory storm that characterizes severe infections may act as a driver capable of profoundly disrupting the complex interplay between platelets, endothelium, and leukocytes, thus contributing to the definition of COVID-19-associated coagulopathy. In this frame, P-selectin represents a key molecule expressed on endothelial cells and on activated platelets, and contributes to endothelial activation, leucocyte recruitment, rolling, and tissue migration. Briefly, we describe the current state of knowledge about P-selectin involvement in COVID-19 pathogenesis, its possible use as a severity marker and as a target for host-directed therapeutic intervention.


Subject(s)
Blood Coagulation Disorders/blood , COVID-19/complications , P-Selectin/blood , Blood Coagulation Disorders/etiology , Blood Platelets/metabolism , Endothelial Cells/metabolism , Humans , Leukocytes/metabolism
16.
Platelets ; 33(2): 200-207, 2022 Feb 17.
Article in English | MEDLINE | ID: covidwho-1309547

ABSTRACT

Evolving evidence demonstrates that platelets have major roles in viral syndromes through previously unrecognized viral sensing and effector functions. Activated platelets and increased platelet-leukocyte aggregates are observed in clinical and experimental viral infections. The mechanisms and outcomes of platelet-leukocyte interactions depend on the interacting leukocyte as well as on the pathogen and pathological conditions. In this review, we discuss the mechanisms involved in platelet interactions with leukocytes and its functions during viral infections. We focus on the contributions of human platelet-leukocyte interactions to pathophysiological and protective responses during viral infections of major global health relevance, including acquired immunodeficiency syndrome (AIDS), dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), influenza pneumonia, and COVID-19.


Subject(s)
Blood Platelets/metabolism , Leukocytes/metabolism , Virus Diseases/blood , Humans
17.
PLoS One ; 16(6): e0253894, 2021.
Article in English | MEDLINE | ID: covidwho-1286873

ABSTRACT

OBJECTIVE: To describe the laboratory parameters and biomarkers of the cytokine storm syndrome associated with severe and fatal COVID-19 cases. METHODS: A search with standardized descriptors and synonyms was performed on November 28th, 2020 of the MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, LILACS, and IBECS to identify studies of interest. Grey literature searches and snowballing techniques were additionally utilized to identify yet-unpublished works and related citations. Two review authors independently screened the retrieved titles and abstracts, selected eligible studies for inclusion, extracted data from the included studies, and then assessed the risk of bias using the Newcastle-Ottawa Scale. Eligible studies were those including laboratory parameters-including serum interleukin-6 levels-from mild, moderate, or severe COVID-19 cases. Laboratory parameters, such as interleukin-6, ferritin, hematology, C-Reactive Protein, procalcitonin, lactate dehydrogenase, aspartate aminotransferase, creatinine, and D-dimer, were extracted from the studies. Meta-analyses were conducted using the laboratory data to estimate mean differences with associated 95% confidence intervals. DATA SYNTHESIS: The database search yielded 9,620 records; 40 studies (containing a total of 9,542 patients) were included in the final analysis. Twenty-one studies (n = 4,313) assessed laboratory data related to severe COVID-19 cases, eighteen studies (n = 4,681) assessed predictors for fatal COVID-19 cases and one study (n = 548) assessed laboratory biomarkers related to severe and fatal COVID-19 cases. Lymphopenia, thrombocytopenia, and elevated levels of interleukin-6, ferritin, D-dimer, aspartate aminotransferase, C-Reactive-Protein, procalcitonin, creatinine, neutrophils and leucocytes were associated with severe and fatal COVID-19 cases. CONCLUSIONS: This review points to interleukin-6, ferritin, leukocytes, neutrophils, lymphocytes, platelets, C-Reactive Protein, procalcitonin, lactate dehydrogenase, aspartate aminotransferase, creatinine, and D-dimer as important biomarkers of cytokine storm syndrome. Elevated levels of interleukin-6 and hyperferritinemia should be considered as red flags of systemic inflammation and poor prognosis in COVID-19.


Subject(s)
Biomarkers/blood , COVID-19/pathology , Cytokine Release Syndrome/diagnosis , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Cytokine Release Syndrome/etiology , Ferritins/blood , Humans , Interleukin-6/blood , Leukocytes/cytology , Leukocytes/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index
18.
Int Immunopharmacol ; 97: 107828, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1253058

ABSTRACT

In various pathological conditions, cellular immunity plays an important role in immune responses. Amongimmunecells, T lymphocytes pdomotecellular and humoralresponses as well as innate immunity. Therefore, careful investigation of these cells has a significant impact on accurate knowledge in COVID-19diseasepathogenesis. In current research, the frequency and function of various T lymphocytes involved in immune responses examined in SARS-CoV-2 patients with various disease severity compared to normal subjects. In order to make an accurate comparison among patients with various disease severity, this study was performed on asymptomatic recovered cases (n = 20), ICU hospitalized patients (n = 30), non-ICU hospitalized patients (n = 30), and normal subjects (n = 20). To precisely evaluate T cells activity following purification, their cytokine secretion activity was examined. Similarly, immediately after purification of Treg cells, their inhibitory activity on T cells was investigated. The results showed that COVID-19 patients with severe disease (ICU hospitalized patients) not only had a remarkable increase in Th1 and Th17 but also a considerable decrease in Th2 and Treg cells. More importantly, as the IL-17 and IFN-γ secretion was sharply increased in severe disease, the secretion of IL-10 and IL-4 was decreased. Furthermore, the inhibitory activity of Treg cells was reduced in severe disease patients in comparison to other groups. In severe COVID-19 disease, current findings indicate when the inflammatory arm of cellular immunity is significantly increased, a considerable reduction in anti-inflammatory and regulatory arm occurred.


Subject(s)
COVID-19/blood , COVID-19/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/virology , Adult , Aged , Cytokines/immunology , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Immunity, Cellular , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-17/metabolism , Interleukin-4/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Middle Aged , Severity of Illness Index , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Young Adult
20.
Clin Infect Dis ; 71(16): 2035-2041, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-1153140

ABSTRACT

BACKGROUND: The ongoing pandemic of coronavirus disease 2019 (COVID-19) has caused serious concerns about its potential adverse effects on pregnancy. There are limited data on maternal and neonatal outcomes of pregnant women with COVID-19 pneumonia. METHODS: We conducted a case-control study to compare clinical characteristics and maternal and neonatal outcomes of pregnant women with and without COVID-19 pneumonia. RESULTS: During the period 24 January-29 February 2020, there were 16 pregnant women with confirmed COVID-19 pneumonia and 18 suspected cases who were admitted to labor in the third trimester. Two had vaginal delivery and the rest were cesarean delivery. Few patients presented respiratory symptoms (fever and cough) on admission, but most had typical chest computed tomographic images of COVID-19 pneumonia. Compared to the controls, patients with COVID-19 pneumonia had lower counts of white blood cells (WBCs), neutrophils, C-reactive protein (CRP), and alanine aminotransferase on admission. Increased levels of WBCs, neutrophils, eosinophils, and CRP were found in postpartum blood tests of pneumonia patients. Three (18.8%) of the mothers with confirmed COVID-19 pneumonia and 3 (16.7%) with suspected COVID-19 pneumonia had preterm delivery due to maternal complications, which were significantly higher than in the control group. None experienced respiratory failure during their hospital stay. COVID-19 infection was not found in the newborns, and none developed severe neonatal complications. CONCLUSIONS: Severe maternal and neonatal complications were not observed in pregnant women with COVID-19 pneumonia who had vaginal or cesarean delivery. Mild respiratory symptoms of pregnant women with COVID-19 pneumonia highlight the need of effective screening on admission.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Alanine Transaminase/metabolism , C-Reactive Protein/metabolism , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Female , Humans , Infant, Newborn , Leukocytes/metabolism , Neutrophils/metabolism , Pneumonia, Viral/virology , Pregnancy , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , Pregnancy Outcome , Premature Birth/pathology
SELECTION OF CITATIONS
SEARCH DETAIL