Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add filters

Document Type
Year range
1.
ACS Appl Mater Interfaces ; 14(1): 191-200, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1616941

ABSTRACT

At present, the most powerful new drugs for COVID-19 are antibody proteins. In addition, there are some star small molecule drugs. However, there are few studies on nanomaterials. Here, we study the intact graphene (IG), defective graphene (DG), and graphene oxide (GO) interacting with COVID-19 protein. We find that they show progressive inhibition of COVID-19 protein. By using molecular dynamics simulations, we study the interactions between SARS-CoV-2 3CL Mpro and graphene-related materials (GRMs): IG, DG, and GO. The results show that Mpro can be absorbed onto the surfaces of investigated materials. DG and GO interacted with Mpro more intensely, causing the decisive part of Mpro to become more flexible. Further analysis shows that compared to IG and GO, DG can inactivate Mpro and inhibit its expression effectively by destroying the active pocket of Mpro. Our work not only provides detailed and reliable theoretical guidance for the application of GRMs in treating with SARS-CoV-2 but also helps in developing new graphene-based anti-COVID-19 materials.


Subject(s)
Coronavirus 3C Proteases/chemistry , Graphite/chemistry , Molecular Dynamics Simulation , SARS-CoV-2/metabolism , Adsorption , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Coronavirus 3C Proteases/metabolism , Graphite/metabolism , Humans , Ligands , SARS-CoV-2/isolation & purification
2.
Appl Biochem Biotechnol ; 194(1): 291-301, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1605778

ABSTRACT

Corona virus pandemic outbreak also known as COVID-19 has created an imbalance in this world. Scientists have adopted the use of natural or alternative medicines which are consumed mostly as dietary supplements to boost the immune system as herbal remedies. India is famous for traditional medicinal formulations which includes 'Trikadu'-a combination of three acrids, namely Zingiber officinale, Piper nigrum and Piper longum which have antioxidant properties that boost our immune system hence acting as a strong preventive measure. In this study, AutoDock 4.0 was used to study interaction between the phytocompounds of Trikadu with RNA-dependent polymerase protein and enveloped protein of the SARS-CoV-2 virus. Analysis of the results showed that coumarin, coumaperine and bisdemethoxycurcumin showed strong bonding interactions with both the proteins. We can conclude that Trikadu has the potential molecules; hence, it can be incorporated in the diet to boost the immune system as a preventive measure against the virus.


Subject(s)
COVID-19/drug therapy , COVID-19/immunology , Phytotherapy , Plant Preparations/therapeutic use , SARS-CoV-2 , Antioxidants/isolation & purification , Antioxidants/therapeutic use , COVID-19/virology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase/chemistry , Coronavirus RNA-Dependent RNA Polymerase/drug effects , Dietary Supplements , Ginger/chemistry , Humans , Immune System/drug effects , India , Ligands , Medicine, Traditional , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Piper/chemistry , Piper nigrum/chemistry , Plant Preparations/isolation & purification , Plants, Medicinal/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects
3.
J Am Soc Mass Spectrom ; 33(1): 181-188, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1596214

ABSTRACT

Affinity selection-mass spectrometry, which includes magnetic microbead affinity selection-screening (MagMASS), is ideal for the discovery of ligands in complex mixtures that bind to pharmacological targets. Therapeutic agents are needed to prevent or treat COVID-19, which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infection of human cells by SARS-CoV-2 involves binding of the virus spike protein subunit 1 (S1) to the human cell receptor angiotensin converting enzyme-2 (ACE2). Like antibodies, small molecules have the potential to block the interaction of the viral S1 protein with human ACE2 and prevent SARS-CoV-2 infection. Therefore, a MagMASS assay was developed for the discovery of ligands to the S1 protein. Unlike previous MagMASS approaches, this new assay used robotics for 5-fold enhancement of throughput and sensitivity. The assay was validated using the SBP-1 peptide, which is identical to the ACE2 amino acid sequence recognized by the S1 protein, and then applied to the discovery of natural ligands from botanical extracts. Small molecule ligands to the S1 protein were discovered in extracts of the licorice species, Glycyrrhiza inflata. In particular, the licorice ligand licochalcone A was identified through dereplication and comparison with standards using HPLC with high-resolution tandem mass spectrometry.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Discovery/methods , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Binding Sites/drug effects , COVID-19/metabolism , Chalcones/chemistry , Chalcones/pharmacology , Drug Evaluation, Preclinical/methods , Fabaceae/chemistry , Humans , Ligands , Mass Spectrometry/methods , Molecular Docking Simulation , Protein Binding/drug effects , SARS-CoV-2/metabolism
4.
Anal Methods ; 14(2): 156-164, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1585754

ABSTRACT

For the design of novel potent molecules against therapeutic protein targets produced in a low quantity or that are very expensive, the development of miniaturized analytical techniques is of crucial importance. One challenging target is the receptor binding domain (RBD) of the SARS-CoV-2-spike protein (S), which mediates the binding of the virus to host cells. In the present study, the RBD protein was thus immobilized on polymethacrylate monoliths prepared in a miniaturized capillary column (25 µm internal diameter; 70 mm length) by in situ polymerization, which could offer low backpressure in Nano LC at 30 nL min-1. The immobilized quantity of the expensive RBD protein on the organic monolith was very low, in the submicrogram range, i.e., 0.060 µg. The immobilization method reduced non-selective interactions between the ligand and the organic monolith matrix and maintained the functionality of RBD due to the high activity rate (96%). The performance of this miniaturized affinity capillary column was demonstrated for the rapid evaluation of a recognition assay induced by 1,2,3,4,6-pentagalloyl glucose (PGG), a known ligand of RBD, and by five other molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to reveal the existence of only one type of binding site for three ligands of RBD, namely carbenoxolone, simeprevir and irinotecan. All these results showed the potential of our analytical miniaturized affinity system for the determination of interactions between potential ligands and immobilized RBD of SARS-CoV-2 to aid in the battle against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Methacrylates , Protein Binding
5.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1518621

ABSTRACT

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.


Subject(s)
Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , Biological Products/metabolism , Biological Products/therapeutic use , COVID-19/drug therapy , COVID-19/pathology , Density Functional Theory , Humans , Ligands , Molecular Docking Simulation , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/isolation & purification , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Vidarabine/chemistry , Vidarabine/metabolism , Vidarabine/therapeutic use , Viral Regulatory and Accessory Proteins/metabolism
6.
ACS Synth Biol ; 10(11): 3209-3235, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1504658

ABSTRACT

SARS-CoV-2 triggered a worldwide pandemic disease, COVID-19, for which an effective treatment has not yet been settled. Among the most promising targets to fight this disease is SARS-CoV-2 main protease (Mpro), which has been extensively studied in the last few months. There is an urgency for developing effective computational protocols that can help us tackle these key viral proteins. Hence, we have put together a robust and thorough pipeline of in silico protein-ligand characterization methods to address one of the biggest biological problems currently plaguing our world. These methodologies were used to characterize the interaction of SARS-CoV-2 Mpro with an α-ketoamide inhibitor and include details on how to upload, visualize, and manage the three-dimensional structure of the complex and acquire high-quality figures for scientific publications using PyMOL (Protocol 1); perform homology modeling with MODELLER (Protocol 2); perform protein-ligand docking calculations using HADDOCK (Protocol 3); run a virtual screening protocol of a small compound database of SARS-CoV-2 candidate inhibitors with AutoDock 4 and AutoDock Vina (Protocol 4); and, finally, sample the conformational space at the atomic level between SARS-CoV-2 Mpro and the α-ketoamide inhibitor with Molecular Dynamics simulations using GROMACS (Protocol 5). Guidelines for careful data analysis and interpretation are also provided for each Protocol.


Subject(s)
Antiviral Agents/chemistry , COVID-19/drug therapy , Databases, Protein , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Antiviral Agents/therapeutic use , Humans , Ligands
7.
J Chem Inf Model ; 61(11): 5508-5523, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1500412

ABSTRACT

The lack of conformational sampling in virtual screening projects can lead to inefficient results because many of the potential drugs may not be able to bind to the target protein during the static docking simulations. Here, we performed ensemble docking for around 2000 United States Food and Drug Administration (FDA)-approved drugs with the RNA-dependent RNA polymerase (RdRp) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a target. The representative protein structures were generated by clustering classical molecular dynamics trajectories, which were evolved using three solvent scenarios, namely, pure water, benzene/water and phenol/water mixtures. The introduction of dynamic effects in the theoretical model showed improvement in docking results in terms of the number of strong binders and binding sites in the protein. Some of the discovered pockets were found only for the cosolvent simulations, where the nonpolar probes induced local conformational changes in the protein that lead to the opening of transient pockets. In addition, the selection of the ligands based on a combination of the binding free energy and binding free energy gap between the best two poses for each ligand provided more suitable binders than the selection of ligands based solely on one of the criteria. The application of cosolvent molecular dynamics to enhance the sampling of the configurational space is expected to improve the efficacy of virtual screening campaigns of future drug discovery projects.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase , United States
8.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1495789

ABSTRACT

To explore how the immune system controls clearance of SARS-CoV-2, we used a single-cell, mass cytometry-based proteomics platform to profile the immune systems of 21 patients who had recovered from SARS-CoV-2 infection without need for admission to an intensive care unit or for mechanical ventilation. We focused on receptors involved in interactions between immune cells and virus-infected cells. We found that the diversity of receptor repertoires on natural killer (NK) cells was negatively correlated with the viral clearance rate. In addition, NK subsets expressing the receptor DNAM1 were increased in patients who more rapidly recovered from infection. Ex vivo functional studies revealed that NK subpopulations with high DNAM1 expression had cytolytic activities in response to target cell stimulation. We also found that SARS-CoV-2 infection induced the expression of CD155 and nectin-4, ligands of DNAM1 and its paired coinhibitory receptor TIGIT, which counterbalanced the cytolytic activities of NK cells. Collectively, our results link the cytolytic immune responses of NK cells to the clearance of SARS-CoV-2 and show that the DNAM1 pathway modulates host-pathogen interactions during SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/virology , Killer Cells, Natural/immunology , Receptors, Natural Killer Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Adhesion Molecules/immunology , Cohort Studies , Cytotoxicity, Immunologic , Female , Heterografts , Host Microbial Interactions/immunology , Humans , Immunophenotyping , In Vitro Techniques , Ligands , Male , Mice , Mice, SCID , Middle Aged , NK Cell Lectin-Like Receptor Subfamily D/immunology , Pandemics , Receptors, Immunologic/immunology , Receptors, Virus/immunology , Viral Load , Young Adult
9.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488678

ABSTRACT

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Computer Simulation , Coronavirus Papain-Like Proteases/drug effects , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
10.
Int J Mol Sci ; 22(21)2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1488615

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received global attention due to the serious threat it poses to public health. Since the outbreak in December 2019, millions of people have been affected and its rapid global spread has led to an upsurge in the search for treatment. To discover hit compounds that can be used alone or in combination with repositioned drugs, we first analyzed the pharmacokinetic and toxicological properties of natural products from Brazil's semiarid region. After, we analyzed the site prediction and druggability of the SARS-CoV-2 main protease (Mpro), followed by docking and molecular dynamics simulation. The best SARS-CoV-2 Mpro complexes revealed that other sites were accessed, confirming that our approach could be employed as a suitable starting protocol for ligand prioritization, reinforcing the importance of catalytic cysteine-histidine residues and providing new structural data that could increase the antiviral development mainly against SARS-CoV-2. Here, we selected 10 molecules that could be in vitro assayed in response to COVID-19. Two compounds (b01 and b02) suggest a better potential for interaction with SARS-CoV-2 Mpro and could be further studied.


Subject(s)
Biological Products/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/drug effects , Drug Design , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Drug Discovery/methods , Drug Repositioning , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/drug effects
11.
J Nat Prod ; 84(11): 3001-3007, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1483081

ABSTRACT

The pressing need for SARS-CoV-2 controls has led to a reassessment of strategies to identify and develop natural product inhibitors of zoonotic, highly virulent, and rapidly emerging viruses. This review article addresses how contemporary approaches involving computational chemistry, natural product (NP) and protein databases, and mass spectrometry (MS) derived target-ligand interaction analysis can be utilized to expedite the interrogation of NP structures while minimizing the time and expense of extraction, purification, and screening in BioSafety Laboratories (BSL)3 laboratories. The unparalleled structural diversity and complexity of NPs is an extraordinary resource for the discovery and development of broad-spectrum inhibitors of viral genera, including Betacoronavirus, which contains MERS, SARS, SARS-CoV-2, and the common cold. There are two key technological advances that have created unique opportunities for the identification of NP prototypes with greater efficiency: (1) the application of structural databases for NPs and target proteins and (2) the application of modern MS techniques to assess protein-ligand interactions directly from NP extracts. These approaches, developed over years, now allow for the identification and isolation of unique antiviral ligands without the immediate need for BSL3 facilities. Overall, the goal is to improve the success rate of NP-based screening by focusing resources on source materials with a higher likelihood of success, while simultaneously providing opportunities for the discovery of novel ligands to selectively target proteins involved in viral infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Biological Products/pharmacology , Drug Discovery , Computational Biology , Databases, Chemical , Databases, Protein , Ligands , Mass Spectrometry , Protein Interaction Mapping , SARS-CoV-2/drug effects
12.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1470936

ABSTRACT

The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Triazoles/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Benzocycloheptenes/chemistry , Benzocycloheptenes/metabolism , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Databases, Chemical , Half-Life , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Binding , Quantitative Structure-Activity Relationship , SARS-CoV-2/isolation & purification , Triazoles/metabolism , Triazoles/therapeutic use
13.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470800

ABSTRACT

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Subject(s)
COVID-19/immunology , Epithelium/immunology , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Alarmins , Animals , Cellular Senescence , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunity , Inflammation/metabolism , Ligands , Necroptosis , Necrosis/pathology , Pulmonary Disease, Chronic Obstructive , SARS-CoV-2 , Signal Transduction
14.
Immunopharmacol Immunotoxicol ; 43(6): 633-643, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1467231

ABSTRACT

The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Purinergic Antagonists/therapeutic use , Receptors, Purinergic/drug effects , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Host-Pathogen Interactions , Humans , Ligands , Molecular Targeted Therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/prevention & control , Multiple Organ Failure/virology , Purinergic Antagonists/adverse effects , Receptors, Purinergic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction
15.
J Chem Inf Model ; 61(9): 4733-4744, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1467035

ABSTRACT

Covalent inhibitors are assuming central importance in drug discovery projects, especially in this pandemic scenario. Many research groups have focused their attention on inhibiting viral proteases or human proteases such as cathepsin L (hCatL). The inhibition of these critical enzymes may impair viral replication. However, molecular modeling of covalent ligands is challenging since covalent and noncovalent ligand-bound states must be considered in the binding process. In this work, we evaluated the suitability of free energy perturbation (FEP) calculations as a tool for predicting the binding affinity of reversible covalent inhibitors of hCatL. Our strategy relies on the relative free energy calculated for both covalent and noncovalent complexes and the free energy changes have been compared with experimental data for eight nitrile-based inhibitors, including three new inhibitors of hCatL. Our results demonstrate that the covalent complex can be employed to properly rank the inhibitors. Nevertheless, a comparison of the free energy changes in both noncovalent and covalent states is valuable to interpret the effect triggered by the formation of the covalent bond on the interactions played by functional groups distant from the warhead. Overall, FEP can be employed as a powerful predictor tool in developing and understanding the activity of reversible covalent inhibitors.


Subject(s)
Drug Discovery , Entropy , Humans , Ligands , Models, Molecular , Thermodynamics
16.
Molecules ; 26(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1463775

ABSTRACT

In continuation of our previous effort, different in silico selection methods were applied to 310 naturally isolated metabolites that exhibited antiviral potentialities before. The applied selection methods aimed to pick the most relevant inhibitor of SARS-CoV-2 nsp10. At first, a structural similarity study against the co-crystallized ligand, S-Adenosyl Methionine (SAM), of SARS-CoV-2 nonstructural protein (nsp10) (PDB ID: 6W4H) was carried out. The similarity analysis culled 30 candidates. Secondly, a fingerprint study against SAM preferred compounds 44, 48, 85, 102, 105, 182, 220, 221, 282, 284, 285, 301, and 302. The docking studies picked 48, 182, 220, 221, and 284. While the ADMET analysis expected the likeness of the five candidates to be drugs, the toxicity study preferred compounds 48 and 182. Finally, a density-functional theory (DFT) study suggested vidarabine (182) to be the most relevant SARS-Cov-2 nsp10 inhibitor.


Subject(s)
Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/antagonists & inhibitors , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , Biological Products/metabolism , Biological Products/therapeutic use , COVID-19/drug therapy , COVID-19/pathology , Density Functional Theory , Humans , Ligands , Molecular Docking Simulation , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , SARS-CoV-2/isolation & purification , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/therapeutic use , Vidarabine/chemistry , Vidarabine/metabolism , Vidarabine/therapeutic use , Viral Regulatory and Accessory Proteins/metabolism
17.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1463715

ABSTRACT

G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of key cellular processes, such as transcription and replication. Since their discovery, G4s have been mainly investigated for their role in cancer and as targets in anticancer therapy. More recently, exploration of the presence and role of G4s in viral genomes has led to the discovery of G4-regulated key viral pathways. In this context, employment of selective G4 ligands has helped to understand the complexity of G4-mediated mechanisms in the viral life cycle, and highlighted the possibility to target viral G4s as an emerging antiviral approach. Research in this field is growing at a fast pace, providing increasing evidence of the antiviral activity of old and new G4 ligands. This review aims to provide a punctual update on the literature on G4 ligands exploited in virology. Different classes of G4 binders are described, with emphasis on possible antiviral applications in emerging diseases, such as the current COVID-19 pandemic. Strengths and weaknesses of G4 targeting in viruses are discussed.


Subject(s)
Antiviral Agents/chemistry , G-Quadruplexes , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , DNA, Viral/chemistry , DNA, Viral/metabolism , Humans , Ligands , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/isolation & purification , Virus Diseases/drug therapy , Virus Diseases/pathology
18.
Sci Rep ; 11(1): 19481, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447330

ABSTRACT

The pandemic infectious disease (Covid-19) caused by the coronavirus (SARS-CoV2) is spreading rapidly around the world. Covid-19 does an irreparable harm to the health and life of people. It also has a negative financial impact on the economies of most countries of the world. In this regard, the issue of creating drugs aimed at combating this disease is especially acute. In this work, molecular docking was used to study the docking of 23 compounds with QRF3a SARS-CoV2. The performed in silico modeling made it possible to identify leading compounds capable of exerting a potential inhibitory and virucidal effect. The leading compounds include chlorin (a drug used in PDT), iron(III)protoporphyrin (endogenous porphyrin), and tetraanthraquinone porphyrazine (an exogenous substance). Having taken into consideration the localization of ligands in the QRF3a SARS-CoV2, we have made an assumption about their influence on the pathogenesis of Covid-19. The interaction of chlorin, iron(III)protoporphyrin and protoporphyrin with the viral protein ORF3a were studied by fluorescence and UV-Vis spectroscopy. The obtained experimental results confirm the data of molecular docking. The results showed that a viral protein binds to endogenous porphyrins and chlorins, moreover, chlorin is a competitive ligand for endogenous porphyrins. Chlorin should be considered as a promising drug for repurposing.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/metabolism , Heterocyclic Compounds/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/metabolism , Binding Sites , COVID-19/drug therapy , Drug Repositioning , Heterocyclic Compounds/metabolism , Ligands , Molecular Docking Simulation , Porphyrins/chemistry , Porphyrins/metabolism , Protoporphyrins/chemistry , Protoporphyrins/metabolism , SARS-CoV-2/drug effects , Viroporin Proteins/antagonists & inhibitors
19.
Int J Biol Macromol ; 191: 1114-1125, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1442393

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), also known as peptidyl-dipeptidase A, belongs to the dipeptidyl carboxydipeptidases family has emerged as a potential antiviral drug target against SARS-CoV-2. Most of the ACE2 inhibitors discovered till now are chemical synthesis; suffer from many limitations related to stability and adverse side effects. However, natural, and selective ACE2 inhibitors that possess strong stability and low side effects can be replaced instead of those chemicals' inhibitors. To envisage structurally diverse natural entities as an ACE2 inhibitor with better efficacy, a 3D structure-based-pharmacophore model (SBPM) has been developed and validated by 20 known selective inhibitors with their correspondence 1166 decoy compounds. The validated SBPM has excellent goodness of hit score and good predictive ability, which has been appointed as a query model for further screening of 11,295 natural compounds. The resultant 23 hits compounds with pharmacophore fit score 75.31 to 78.81 were optimized using in-silico ADMET and molecular docking analysis. Four potential natural inhibitory molecules namely D-DOPA (Amb17613565), L-Saccharopine (Amb6600091), D-Phenylalanine (Amb3940754), and L-Mimosine (Amb21855906) have been selected based on their binding affinity (-7.5, -7.1, -7.1, and -7.0 kcal/mol), respectively. Moreover, 250 ns molecular dynamics (MD) simulations confirmed the structural stability of the ligands within the protein. Additionally, MM/GBSA approach also used to support the stability of molecules to the binding site of the protein that also confirm the stability of the selected four natural compounds. The virtual screening strategy used in this study demonstrated four natural compounds that can be utilized for designing a future class of potential natural ACE2 inhibitor that will block the spike (S) protein dependent entry of SARS-CoV-2 into the host cell.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Biological Products/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Binding Sites , Biological Products/pharmacokinetics , Biological Products/toxicity , Computer Simulation , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
20.
J Mol Graph Model ; 109: 108023, 2021 12.
Article in English | MEDLINE | ID: covidwho-1433553

ABSTRACT

The development of open computational pipelines to accelerate the discovery of treatments for emerging diseases allows finding novel solutions in shorter periods of time. Consensus molecular docking is one of these approaches, and its main purpose is to increase the detection of real actives within virtual screening campaigns. Here we present dockECR, an open consensus docking and ranking protocol that implements the exponential consensus ranking method to prioritize molecular candidates. The protocol uses four open source molecular docking programs: AutoDock Vina, Smina, LeDock and rDock, to rank the molecules. In addition, we introduce a scoring strategy based on the average RMSD obtained from comparing the best poses from each single program to complement the consensus ranking with information about the predicted poses. The protocol was benchmarked using 15 relevant protein targets with known actives and decoys, and applied using the main protease of the SARS-CoV-2 virus. For the application, different crystal structures of the protease, and frames obtained from molecular dynamics simulations were used to dock a library of 79 molecules derived from previously co-crystallized fragments. The ranking obtained with dockECR was used to prioritize eight candidates, which were evaluated in terms of the interactions generated with key residues from the protease. The protocol can be implemented in any virtual screening campaign involving proteins as molecular targets. The dockECR code is publicly available at: https://github.com/rochoa85/dockECR.


Subject(s)
COVID-19 , SARS-CoV-2 , Consensus , Humans , Ligands , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...