Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Virology ; 569: 13-28, 2022 04.
Article in English | MEDLINE | ID: covidwho-1740261

ABSTRACT

Emerging mutations in the SARS-CoV-2 genome pose a challenge for vaccine development and antiviral therapy. The antiviral efficacy of Azadirachta indica bark extract (NBE) was assessed against SARS-CoV-2 and m-CoV-RSA59 infection. Effects of in vivo intranasal or oral NBE administration on viral load, inflammatory response, and histopathological changes were assessed in m-CoV-RSA59-infection. NBE administered inhibits SARS-CoV-2 and m-CoV-RSA59 infection and replication in vitro, reducing Envelope and Nucleocapsid gene expression. NBE ameliorates neuroinflammation and hepatitis in vivo by restricting viral replication and spread. Isolated fractions of NBE enriched in Nimbin isomers shows potent inhibition of m-CoV-RSA59 infection in vitro. In silico studies revealed that NBE could target Spike and RdRp of m-CoV and SARS-CoV-2 with high affinity. NBE has a triterpenoids origin that may allow them to competitively target panoply of viral proteins to inhibit mouse and different strains of human coronavirus infections, suggesting its potential as an antiviral against pan-ß-Coronaviruses.


Subject(s)
Azadirachta , COVID-19 , Animals , Antiviral Agents/pharmacology , COVID-19/drug therapy , Limonins , Mice , Plant Bark , Plant Extracts/pharmacology , SARS-CoV-2 , Virus Replication
2.
Comput Biol Med ; 144: 105367, 2022 05.
Article in English | MEDLINE | ID: covidwho-1712540

ABSTRACT

On November 24, 2021, the SARS-CoV-2 Omicron variant (B.1.1.529) was first identified in South Africa. The World Health Organization (WHO) declared the Omicron as a variant of concern (VoC) because of the unexpected and large numbers of mutations occurred in the genome, higher viral transmission and immune evasions. The present study was performed to explore the interactions of SARS-CoV-2 spike glycoprotein receptor-binding domain (SGp RBD) of the three variants (Omicron, Delta, and WT) with the receptor hACE2. The structural changes occurred in Omicron due to the mutations at key positions improved the ability to mediate SARS-CoV-2 viral infection compared to other VoCs. The phytochemicals limonin and glycyrrhizic acid were docked with the SGp RBD of the variants WT, Delta and Omicron. The computed dock score revealed that limonin and glycyrrhizic acid binds effectively at the SGp RBD of all three variants, and showed almost similar binding affinity at the binding interface of ACE2. Therefore, despite the multiple mutations occurred in Omicron and its viral transmission is comparatively high, the computed binding affinity of the phytochemicals limonin and glycyrrhizic acid supported that the traditional medicines can be useful in formulating adjuvant therapies to fight against the SARS-CoV-2 Omicron.


Subject(s)
COVID-19 , Glycyrrhizic Acid , Angiotensin-Converting Enzyme 2 , COVID-19/drug therapy , Glycyrrhizic Acid/pharmacology , Humans , Limonins , Mutation , SARS-CoV-2
3.
Nanomedicine ; 33: 102351, 2021 04.
Article in English | MEDLINE | ID: covidwho-1009771

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a deadly respiratory illness associated with refractory hypoxemia and pulmonary edema. The recent pandemic outbreak of COVID-19 is associated with severe pneumonia and inflammatory cytokine storm in the lungs. The anti-inflammatory phytomedicine nimbolide (NIM) may not be feasible for clinical translation due to poor pharmacokinetic properties and lack of suitable delivery systems. To overcome these barriers, we have developed nimbolide liposomes conjugated with iRGD peptide (iRGD-NIMLip) for targeting lung inflammation. It was observed that iRGD-NIMLip treatment significantly inhibited oxidative stress and cytokine storm compared to nimbolide free-drug (f-NIM), nimbolide liposomes (NIMLip), and exhibited superior activity compared to dexamethasone (DEX). iRGD-NIMLip abrogated the LPS induced p65 NF-κB, Akt, MAPK, Integrin ß3 and ß5, STAT3, and DNMT1 expression. Collectively, our results demonstrate that iRGD-NIMLip could be a promising novel drug delivery system to target severe pathological consequences observed in ARDS and COVID-19 associated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Limonins/administration & dosage , Liposomes/chemistry , Oligopeptides/chemistry , Respiratory Distress Syndrome/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Cell Line , Drug Delivery Systems , Endotoxins , Humans , Limonins/chemistry , Limonins/therapeutic use , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/pathology
4.
Comput Biol Med ; 124: 103936, 2020 09.
Article in English | MEDLINE | ID: covidwho-679767

ABSTRACT

Virtual screening of phytochemicals was performed through molecular docking, simulations, in silico ADMET and drug-likeness prediction to identify the potential hits that can inhibit the effects of SARS-CoV-2. Considering the published literature on medicinal importance, 154 phytochemicals with analogous structure from limonoids and triterpenoids were selected to search potential inhibitors for the five therapeutic protein targets of SARS-CoV-2, i.e., 3CLpro (main protease), PLpro (papain-like protease), SGp-RBD (spike glycoprotein-receptor binding domain), RdRp (RNA dependent RNA polymerase) and ACE2 (angiotensin-converting enzyme 2). The in silico computational results revealed that the phytochemicals such as glycyrrhizic acid, limonin, 7-deacetyl-7-benzoylgedunin, maslinic acid, corosolic acid, obacunone and ursolic acid were found to be effective against the target proteins of SARS-CoV-2. The protein-ligand interaction study revealed that these phytochemicals bind with the amino acid residues at the active site of the target proteins. Therefore, the core structure of these potential hits can be used for further lead optimization to design drugs for SARS-CoV-2. Also, the medicinal plants containing these phytochemicals like licorice, neem, tulsi, citrus and olives can be used to formulate suitable therapeutic approaches in traditional medicines.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Limonins/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Triterpenes/pharmacology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , COVID-19 , Computational Biology , Computer Simulation , Coronavirus RNA-Dependent RNA Polymerase , Drug Evaluation, Preclinical , Host Microbial Interactions/drug effects , Humans , Limonins/chemistry , Limonins/pharmacokinetics , Molecular Docking Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/drug effects , Phytochemicals/chemistry , Phytochemicals/pharmacokinetics , Phytochemicals/pharmacology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/drug effects , Triterpenes/chemistry , Triterpenes/pharmacokinetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/drug effects , Viral Proteins/chemistry , Viral Proteins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL