Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Int Immunopharmacol ; 100: 108125, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401542


Mucosal barrier alterations may play a role in the pathogenesis of several diseases, including COVID-19. In this study we evaluate the association between bacterial translocation markers and systemic inflammation at the earliest time-point after hospitalization and at the last 72 h of hospitalization in survivors and non-survivors COVID-19 patients. Sixty-six SARS-CoV-2 RT-PCR positive patients and nine non-COVID-19 pneumonia controls were admitted in this study. Blood samples were collected at hospital admission (T1) (Controls and COVID-19 patients) and 0-72 h before hospital discharge (T2, alive or dead) to analyze systemic cytokines and chemokines, lipopolysaccharide (LPS) concentrations and soluble CD14 (sCD14) levels. THP-1 human monocytic cell line was incubated with plasma from survivors and non-survivors COVID-19 patients and their phenotype, activation status, TLR4, and chemokine receptors were analyzed by flow cytometry. COVID-19 patients presented higher IL-6, IFN-γ, TNF-α, TGF-ß1, CCL2/MCP-1, CCL4/MIP-1ß, and CCL5/RANTES levels than controls. Moreover, LPS and sCD14 were higher at hospital admission in SARS-CoV-2-infected patients. Non-survivors COVID-19 patients had increased LPS levels concomitant with higher IL-6, TNF-α, CCL2/MCP-1, and CCL5/RANTES levels at T2. Increased expression of CD16 and CCR5 were identified in THP-1 cells incubated with the plasma of survivor patients obtained at T2. The incubation of THP-1 with T2 plasma of non-survivors COVID-19 leads to higher TLR4, CCR2, CCR5, CCR7, and CD69 expression. In conclusion, the coexistence of increased microbial translocation and hyperinflammation in patients with severe COVID-19 may lead to higher monocyte activation, which may be associated with worsening outcomes, such as death.

COVID-19/immunology , Inflammation/etiology , Lipopolysaccharides/blood , Monocytes/physiology , SARS-CoV-2 , Aged , Aged, 80 and over , Bacterial Translocation , COVID-19/mortality , Female , Hospitalization , Humans , Inflammation Mediators/blood , Male , Middle Aged , Severity of Illness Index , THP-1 Cells
Science ; 369(6508): 1210-1220, 2020 09 04.
Article in English | MEDLINE | ID: covidwho-704393


Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.

Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , COVID-19 , Cytokines/blood , DNA, Bacterial/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Flow Cytometry , HLA-DR Antigens/analysis , Humans , Immunity , Immunity, Innate , Immunoglobulins/blood , Immunoglobulins/immunology , Inflammation Mediators/blood , Interferon Type I/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/blood , Male , Myeloid Cells/immunology , Myeloid Cells/metabolism , Pandemics , SARS-CoV-2 , Signal Transduction , Single-Cell Analysis , Systems Biology , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Transcriptome