Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add filters

Document Type
Year range
2.
J Virol ; 95(22): e0127621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1494956

ABSTRACT

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Subject(s)
Coronavirus Infections/pathology , Disease Models, Animal , Lung/pathology , Murine hepatitis virus/pathogenicity , Animals , Cell Line , Containment of Biohazards , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Inflammation , Liver/pathology , Liver/virology , Lung/virology , Mice , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Virus Replication/drug effects
3.
Front Immunol ; 12: 715023, 2021.
Article in English | MEDLINE | ID: covidwho-1477819

ABSTRACT

Emerging evidence has unveiled the secondary infection as one of the mortal causes of post-SARS-CoV-2 infection, but the factors related to secondary bacterial or fungi infection remains largely unexplored. We here systematically investigated the factors that might contribute to secondary infection. By clinical examination index analysis of patients, combined with the integrative analysis with RNA-seq analysis in the peripheral blood mononuclear cell isolated shortly from initial infection, this study showed that the antibiotic catabolic process and myeloid cell homeostasis were activated while the T-cell response were relatively repressed in those with the risk of secondary infection. Further monitoring analysis of immune cell and liver injury analysis showed that the risk of secondary infection was accompanied by severe lymphocytopenia at the intermediate and late stages and liver injury at the early stages of SARS-CoV-2. Moreover, the metagenomics analysis of bronchoalveolar lavage fluid and the microbial culture analysis, to some extent, showed that the severe pneumonia-related bacteria have already existed in the initial infection.


Subject(s)
Bacterial Infections/epidemiology , COVID-19/pathology , Coinfection/epidemiology , Coinfection/mortality , Mycoses/epidemiology , Adult , Aged , Aged, 80 and over , Bacterial Infections/mortality , Bronchoalveolar Lavage Fluid/microbiology , CD4 Lymphocyte Count , Female , Humans , Leukocytes, Mononuclear/immunology , Liver/injuries , Liver/virology , Lymphopenia/immunology , Male , Middle Aged , Mycoses/mortality , Retrospective Studies , Risk Factors , SARS-CoV-2/immunology , T-Lymphocytes/immunology
4.
BMC Infect Dis ; 21(1): 818, 2021 Aug 16.
Article in English | MEDLINE | ID: covidwho-1477280

ABSTRACT

BACKGROUND: Liver injuries have been reported in patients with coronavirus disease 2019 (COVID-19). This study aimed to investigate the clinical role played by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: In this multicentre, retrospective study, the parameters of liver function tests in COVID-19 inpatients were compared between various time-points in reference to SARS-CoV-2 shedding, and 3 to 7 days before the first detection of viral shedding was regarded as the reference baseline. RESULTS: In total, 70 COVID-19 inpatients were enrolled. Twenty-two (31.4%) patients had a self-medication history after illness. At baseline, 10 (14.3%), 7 (10%), 9 (12.9%), 2 (2.9%), 15 (21.4%), and 4 (5.7%) patients already had abnormal alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), albumin, and total bilirubin (TBIL) values, respectively. ALT and AST abnormal rates and levels did not show any significant dynamic changes during the full period of viral shedding (all p > 0.05). The GGT abnormal rate (p = 0.008) and level (p = 0.033) significantly increased on day 10 of viral shedding. Meanwhile, no simultaneous significant increases in abnormal ALP rates and levels were observed. TBIL abnormal rates and levels significantly increased on days 1 and 5 of viral shedding (all p < 0.05). Albumin abnormal decrease rates increased, and levels decreased consistently from baseline to SARS-CoV-2 clearance day (all p < 0.05). Thirteen (18.6%) patients had chronic liver disease, two of whom died. The ALT and AST abnormal rates and levels did not increase in patients with chronic liver disease during SARS-CoV-2 shedding. CONCLUSIONS: SARS-CoV-2 does not directly lead to elevations in ALT and AST but may result in elevations in GGT and TBIL; albumin decreased extraordinarily even when SARS-CoV-2 shedding ended.


Subject(s)
COVID-19/complications , Liver/virology , Adult , Aged , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Biomarkers/blood , COVID-19/blood , COVID-19/epidemiology , Female , Humans , Liver/pathology , Liver Function Tests/methods , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
5.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-1448237

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
6.
Sci Rep ; 11(1): 19458, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447326

ABSTRACT

Efficacious therapeutics for Ebola virus disease are in great demand. Ebola virus infections mediated by mucosal exposure, and aerosolization in particular, present a novel challenge due to nontypical massive early infection of respiratory lymphoid tissues. We performed a randomized and blinded study to compare outcomes from vehicle-treated and remdesivir-treated rhesus monkeys in a lethal model of infection resulting from aerosolized Ebola virus exposure. Remdesivir treatment initiated 4 days after exposure was associated with a significant survival benefit, significant reduction in serum viral titer, and improvements in clinical pathology biomarker levels and lung histology compared to vehicle treatment. These observations indicate that remdesivir may have value in countering aerosol-induced Ebola virus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Ebolavirus/drug effects , Hemorrhagic Fever, Ebola/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacology , Administration, Intravenous , Aerosols , Alanine/administration & dosage , Alanine/pharmacology , Animals , Antiviral Agents/administration & dosage , Disease Models, Animal , Female , Hemorrhagic Fever, Ebola/blood , Kaplan-Meier Estimate , Liver/drug effects , Liver/virology , Lung/pathology , Lung/virology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/virology , Macaca mulatta , Male , Random Allocation , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/virology , Viral Load/drug effects , Viremia/drug therapy
7.
Int J Legal Med ; 135(6): 2347-2349, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1391863

ABSTRACT

Due to the development of novel functionalities, distinct SARS-CoV-2 variants such as B.1.1.7 fuel the current pandemic. B.1.1.7 is not only more transmissible, but may also cause an increased mortality compared to previous SARS-CoV-2 variants. Human tissue analysis of the SARS-CoV-2 lineage B.1.1.7 is urgently needed, and we here present autopsy data from 7 consecutive SARS-CoV-2 B.1.1.7 cases. The initial RT-qPCR analyses from nasopharyngeal swabs taken post mortem included typing assays for B.1.1.7. We quantitated SARS-CoV-2 B.1.1.7 viral load in autopsy tissue of multiple organs. Highest levels of SARS-CoV-2 B.1.1.7 copies normalized to ß-globin were detected in the respiratory system (lung and pharynx), followed by the liver and heart. Importantly, SARS-CoV-2 lineage B.1.1.7 was found in 100% of cases in the lungs and in 85.7% in pharynx tissue. Detection also in the kidney and brain highlighting a pronounced organ tropism. Comparison of the given results to a former cohort of SARS-CoV-2 deaths during the first wave in spring 2020 showed resembling organ tropism. Our results indicate that also SARS-CoV-2 B.1.1.7 has a relevant organ tropism beyond the respiratory tract. We speculate that B.1.1.7 spike protein's affinity to human ACE2 facilitates transmission, organ tropism, and ultimately morbidity and mortality. Further studies and larger cohorts are obligatory to proof this link.


Subject(s)
SARS-CoV-2/physiology , Viral Load , Viral Tropism , Aged , Autopsy , Female , Heart/virology , Humans , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Pharynx/virology
8.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1388432

ABSTRACT

Using AI, we identified baricitinib as having antiviral and anticytokine efficacy. We now show a 71% (95% CI 0.15 to 0.58) mortality benefit in 83 patients with moderate-severe SARS-CoV-2 pneumonia with few drug-induced adverse events, including a large elderly cohort (median age, 81 years). An additional 48 cases with mild-moderate pneumonia recovered uneventfully. Using organotypic 3D cultures of primary human liver cells, we demonstrate that interferon-α2 increases ACE2 expression and SARS-CoV-2 infectivity in parenchymal cells by greater than fivefold. RNA-seq reveals gene response signatures associated with platelet activation, fully inhibited by baricitinib. Using viral load quantifications and superresolution microscopy, we found that baricitinib exerts activity rapidly through the inhibition of host proteins (numb-associated kinases), uniquely among antivirals. This reveals mechanistic actions of a Janus kinase-1/2 inhibitor targeting viral entry, replication, and the cytokine storm and is associated with beneficial outcomes including in severely ill elderly patients, data that incentivize further randomized controlled trials.


Subject(s)
Antiviral Agents/pharmacology , Azetidines/pharmacology , COVID-19/mortality , Enzyme Inhibitors/pharmacology , Janus Kinases/antagonists & inhibitors , Liver/virology , Purines/pharmacology , Pyrazoles/pharmacology , SARS-CoV-2/pathogenicity , Sulfonamides/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Cytokine Release Syndrome , Cytokines/metabolism , Drug Evaluation, Preclinical , Female , Gene Expression Profiling , Humans , Interferon alpha-2/metabolism , Italy , Janus Kinases/metabolism , Liver/drug effects , Male , Middle Aged , Patient Safety , Platelet Activation , Proportional Hazards Models , RNA-Seq , Spain , Virus Internalization/drug effects
10.
Viruses ; 13(8)2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367923

ABSTRACT

Strategies to combat COVID-19 require multiple ways to protect vulnerable people from infection. SARS-CoV-2 is an airborne pathogen and the nasal cavity is a primary target of infection. The K18-hACE2 mouse model was used to investigate the anti-SARS-CoV-2 efficacy of astodrimer sodium formulated in a mucoadhesive nasal spray. Animals received astodrimer sodium 1% nasal spray or PBS intranasally, or intranasally and intratracheally, for 7 days, and they were infected intranasally with SARS-CoV-2 after the first product administration on Day 0. Another group was infected intranasally with SARS-CoV-2 that had been pre-incubated with astodrimer sodium 1% nasal spray or PBS for 60 min before the neutralisation of test product activity. Astodrimer sodium 1% significantly reduced the viral genome copies (>99.9%) and the infectious virus (~95%) in the lung and trachea vs. PBS. The pre-incubation of SARS-CoV-2 with astodrimer sodium 1% resulted in a significant reduction in the viral genome copies (>99.9%) and the infectious virus (>99%) in the lung and trachea, and the infectious virus was not detected in the brain or liver. Astodrimer sodium 1% resulted in a significant reduction of viral genome copies in nasal secretions vs. PBS on Day 7 post-infection. A reduction in the viral shedding from the nasal cavity may result in lower virus transmission rates. Viraemia was low or undetectable in animals treated with astodrimer sodium 1% or infected with treated virus, correlating with the lack of detectable viral replication in the liver. Similarly, low virus replication in the nasal cavity after treatment with astodrimer sodium 1% potentially protected the brain from infection. Astodrimer sodium 1% significantly reduced the pro-inflammatory cytokines IL-6, IL-1α, IL-1ß, TNFα and TGFß and the chemokine MCP-1 in the serum, lung and trachea vs. PBS. Astodrimer sodium 1% nasal spray blocked or reduced SARS-CoV-2 replication and its sequelae in K18-hACE2 mice. These data indicate a potential role for the product in preventing SARS-CoV-2 infection or for reducing the severity of COVID-19.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/drug therapy , Dendrimers/administration & dosage , Nasal Cavity/virology , Nasal Sprays , Polylysine/administration & dosage , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/therapeutic use , Brain/virology , COVID-19/prevention & control , COVID-19/virology , Dendrimers/therapeutic use , Disease Models, Animal , Female , Liver/virology , Male , Mice , Mice, Transgenic , Polylysine/therapeutic use , Respiratory System/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Viral Load/drug effects , Viremia , Virus Replication/drug effects
13.
Am J Clin Pathol ; 155(6): 802-814, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1272956

ABSTRACT

OBJECTIVES: The novel coronavirus, severe acute respiratory syndrome coronavirus 2, causing coronavirus disease 2019 (COVID-19) remains a global health threat and a significant source of human morbidity and mortality. While the virus primarily induces lung injury, it also has been reported to cause hepatic sequelae. METHODS: We aimed to detect the virus in formalin-fixed tissue blocks and document the liver injury patterns in patients with COVID-19 compared with a control group. RESULTS: We were able to detect viral RNA in the bronchioalveolar cell blocks (12/12, 100%) and formalin-fixed, paraffin-embedded tissue of the lung (8/8, 100%) and liver (4/9, 44%) of patients with COVID-19. Although the peak values of the main liver enzymes and bilirubin were higher in the patients with COVID-19 compared with the control group, the differences were not significant. The main histologic findings were minimal to focal mild portal tract chronic inflammation (7/8, 88%, P < .05) and mild focal lobular activity (6/8, 75%, P = .06). CONCLUSIONS: We found that most patients who died of COVID-19 had evidence of mild focal hepatitis clinically and histologically; however, the virus was detected in less than half of the cases.


Subject(s)
COVID-19/virology , Formaldehyde , Liver/pathology , SARS-CoV-2/pathogenicity , Tissue Fixation , Adult , Aged , Aged, 80 and over , Female , Humans , Inflammation/pathology , Liver/virology , Lung/pathology , Lung/virology , Male , Middle Aged , RNA, Viral/genetics , Tissue Fixation/methods
15.
Gastroenterol Hepatol ; 43(8): 472-480, 2020 Oct.
Article in English, Spanish | MEDLINE | ID: covidwho-1235898

ABSTRACT

The SARS-CoV-2 pandemic has proven to be a serious challenge for the Spanish healthcare system. The impact of the virus on the liver is not well known, but in patients with chronic liver disease, mostly in advanced stages, it can critically compromise survival and trigger decompensation. Treatment in this subpopulation is complex due to the potential hepatotoxicity of some of the medicinal products used. Moreover, the pandemic has also negatively impacted patients with liver disease who have not contracted COVID-19, since the reallocation of human and material resources to the care of patients with the virus has resulted in a decrease in the treatment, diagnosis and follow-up of patients with liver disease, which will surely have negative consequences in the near future. Efficient reorganization of hepatology units is a priority to minimise the impact of the pandemic on a population as vulnerable as liver disease patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Liver Diseases/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Age Factors , Alanine/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Bile Ducts/virology , COVID-19 , Chemical and Drug Induced Liver Injury/etiology , Chronic Disease , Comorbidity , Coronavirus Infections/drug therapy , Disease Susceptibility , Gastroenterology/organization & administration , Health Resources/supply & distribution , Hepatitis, Chronic/drug therapy , Hepatitis, Chronic/epidemiology , Humans , Immunosuppressive Agents/adverse effects , Liver/drug effects , Liver/pathology , Liver/virology , Liver Function Tests , Liver Transplantation , Obesity/epidemiology , Resource Allocation , Risk Factors , SARS-CoV-2
16.
Ann Pathol ; 41(1): 9-22, 2021 Feb.
Article in French | MEDLINE | ID: covidwho-1226268

ABSTRACT

The infection due to the SARS-CoV-2 leads lesions mainly observed at the respiratory tract level, but not exclusively. The analyses of these lesions benefited from different autopsy studies. Thus, these lesions were observed in different organs, tissues and cells. These observations allowed us to rapidly improve the knowledge of the pathophysiological mechanisms associated with this emergent infectious disease. The virus can be detected in formalin fixed paraffin embedded tissues using immunohistochemistry, in situ hybridization, molecular biology and/or electron microscopy approaches. However, many uncertainties are still present concerning the direct role of the SARS-CoV-2 on the different lesions observed in different organs, outside the lung, such as the heart, the brain, the liver, the gastrointestinal tract, the kidney and the skin. In this context, it is pivotal to keep going to increase the different tissue and cellular studies in the COVID-19 positive patients aiming to better understanding the consequences of this new infectious disease, notably considering different epidemiological and co-morbidities associated factors. This could participate to the development of new therapeutic strategies too. The purpose of this review is to describe the main histological and cellular lesions associated with the infection due to the SARS-CoV-2.


Subject(s)
COVID-19/pathology , Autopsy , COVID-19/virology , Fibrosis/pathology , Fibrosis/virology , Histocytochemistry , Humans , Immunohistochemistry , In Situ Hybridization , Kidney/pathology , Kidney/virology , Liver/pathology , Liver/virology , Lung/pathology , Lung/virology , SARS-CoV-2/pathogenicity , Skin/pathology , Skin/virology , Thrombosis/pathology , Thrombosis/virology
17.
Hum Pathol ; 114: 110-119, 2021 08.
Article in English | MEDLINE | ID: covidwho-1213257

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although viral infection is known to trigger inflammatory processes contributing to tissue injury and organ failure, it is unclear whether direct viral damage is needed to sustain cellular injury. An understanding of pathogenic mechanisms has been handicapped by the absence of optimized methods to visualize the presence and distribution of SARS-CoV-2 in damaged tissues. We first developed a positive control cell line (Vero E6) to validate SARS-CoV-2 detection assays. We then evaluated multiple organs (lungs, kidneys, heart, liver, brain, intestines, lymph nodes, and spleen) from fourteen COVID-19 autopsy cases using immunohistochemistry (IHC) for the spike and the nucleoprotein proteins, and RNA in situ hybridization (RNA ISH) for the spike protein mRNA. Tissue detection assays were compared with quantitative polymerase chain reaction (qPCR)-based detection. SARS-CoV-2 was histologically detected in the Vero E6 positive cell line control, 1 of 14 (7%) lungs, and none (0%) of the other 59 organs. There was perfect concordance between the IHC and RNA ISH results. qPCR confirmed high viral load in the SARS-CoV-2 ISH-positive lung tissue, and absent or low viral load in all ISH-negative tissues. In patients who die of COVID-19-related organ failure, SARS-CoV-2 is largely not detectable using tissue-based assays. Even in lungs showing widespread injury, SARS-CoV-2 viral RNA or proteins were detected in only a small minority of cases. This observation supports the concept that viral infection is primarily a trigger for multiple-organ pathogenic proinflammatory responses. Direct viral tissue damage is a transient phenomenon that is generally not sustained throughout disease progression.


Subject(s)
COVID-19/pathology , Liver/virology , Lung/virology , SARS-CoV-2/pathogenicity , Animals , Autopsy/methods , COVID-19/virology , Chlorocebus aethiops , Disease Progression , Humans , Immunohistochemistry/methods , Liver/chemistry , Liver/pathology , Lung/pathology , RNA, Viral/metabolism , Vero Cells/virology , Viral Load/methods
18.
Am J Clin Pathol ; 155(6): 802-814, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1207252

ABSTRACT

OBJECTIVES: The novel coronavirus, severe acute respiratory syndrome coronavirus 2, causing coronavirus disease 2019 (COVID-19) remains a global health threat and a significant source of human morbidity and mortality. While the virus primarily induces lung injury, it also has been reported to cause hepatic sequelae. METHODS: We aimed to detect the virus in formalin-fixed tissue blocks and document the liver injury patterns in patients with COVID-19 compared with a control group. RESULTS: We were able to detect viral RNA in the bronchioalveolar cell blocks (12/12, 100%) and formalin-fixed, paraffin-embedded tissue of the lung (8/8, 100%) and liver (4/9, 44%) of patients with COVID-19. Although the peak values of the main liver enzymes and bilirubin were higher in the patients with COVID-19 compared with the control group, the differences were not significant. The main histologic findings were minimal to focal mild portal tract chronic inflammation (7/8, 88%, P < .05) and mild focal lobular activity (6/8, 75%, P = .06). CONCLUSIONS: We found that most patients who died of COVID-19 had evidence of mild focal hepatitis clinically and histologically; however, the virus was detected in less than half of the cases.


Subject(s)
COVID-19/virology , Formaldehyde , Liver/pathology , SARS-CoV-2/pathogenicity , Tissue Fixation , Adult , Aged , Aged, 80 and over , Female , Humans , Inflammation/pathology , Liver/virology , Lung/pathology , Lung/virology , Male , Middle Aged , RNA, Viral/genetics , Tissue Fixation/methods
19.
Nature ; 595(7865): 107-113, 2021 07.
Article in English | MEDLINE | ID: covidwho-1207148

ABSTRACT

COVID-19, which is caused by SARS-CoV-2, can result in acute respiratory distress syndrome and multiple organ failure1-4, but little is known about its pathophysiology. Here we generated single-cell atlases of 24 lung, 16 kidney, 16 liver and 19 heart autopsy tissue samples and spatial atlases of 14 lung samples from donors who died of COVID-19. Integrated computational analysis uncovered substantial remodelling in the lung epithelial, immune and stromal compartments, with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor cells. Viral RNAs were enriched in mononuclear phagocytic and endothelial lung cells, which induced specific host programs. Spatial analysis in lung distinguished inflammatory host responses in lung regions with and without viral RNA. Analysis of the other tissue atlases showed transcriptional alterations in multiple cell types in heart tissue from donors with COVID-19, and mapped cell types and genes implicated with disease severity based on COVID-19 genome-wide association studies. Our foundational dataset elucidates the biological effect of severe SARS-CoV-2 infection across the body, a key step towards new treatments.


Subject(s)
COVID-19/pathology , COVID-19/virology , Kidney/pathology , Liver/pathology , Lung/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atlases as Topic , Autopsy , Biological Specimen Banks , COVID-19/genetics , COVID-19/immunology , Endothelial Cells , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Fibroblasts , Genome-Wide Association Study , Heart/virology , Humans , Inflammation/pathology , Inflammation/virology , Kidney/virology , Liver/virology , Lung/virology , Male , Middle Aged , Organ Specificity , Phagocytes , Pulmonary Alveoli/pathology , Pulmonary Alveoli/virology , RNA, Viral/analysis , Regeneration , SARS-CoV-2/immunology , Single-Cell Analysis , Viral Load
20.
PLoS One ; 16(4): e0250708, 2021.
Article in English | MEDLINE | ID: covidwho-1206200

ABSTRACT

BACKGROUND: Coronavirus disease (COVID-19) is the pandemic caused by SARS-CoV-2 that has caused more than 2.2 million deaths worldwide. We summarize the reported pathologic findings on biopsy and autopsy in patients with severe/fatal COVID-19 and documented the presence and/or effect of SARS-CoV-2 in all organs. METHODS AND FINDINGS: A systematic search of the PubMed, Embase, MedRxiv, Lilacs and Epistemonikos databases from January to August 2020 for all case reports and case series that reported histopathologic findings of COVID-19 infection at autopsy or tissue biopsy was performed. 603 COVID-19 cases from 75 of 451 screened studies met inclusion criteria. The most common pathologic findings were lungs: diffuse alveolar damage (DAD) (92%) and superimposed acute bronchopneumonia (27%); liver: hepatitis (21%), heart: myocarditis (11.4%). Vasculitis was common only in skin biopsies (25%). Microthrombi were described in the placenta (57.9%), lung (38%), kidney (20%), Central Nervous System (CNS) (18%), and gastrointestinal (GI) tract (2%). Injury of endothelial cells was common in the lung (18%) and heart (4%). Hemodynamic changes such as necrosis due to hypoxia/hypoperfusion, edema and congestion were common in kidney (53%), liver (48%), CNS (31%) and GI tract (18%). SARS-CoV-2 viral particles were demonstrated within organ-specific cells in the trachea, lung, liver, large intestine, kidney, CNS either by electron microscopy, immunofluorescence, or immunohistochemistry. Additional tissues were positive by Polymerase Chain Reaction (PCR) tests only. The included studies were from numerous countries, some were not peer reviewed, and some studies were performed by subspecialists, resulting in variable and inconsistent reporting or over statement of the reported findings. CONCLUSIONS: The main pathologic findings of severe/fatal COVID-19 infection are DAD, changes related to coagulopathy and/or hemodynamic compromise. In addition, according to the observed organ damage myocarditis may be associated with sequelae.


Subject(s)
COVID-19/metabolism , COVID-19/physiopathology , Autopsy/methods , Biopsy/methods , Central Nervous System/virology , Endothelial Cells/virology , Female , Gastrointestinal Tract/virology , Heart/virology , Humans , Kidney/virology , Liver/virology , Lung/virology , Pandemics/statistics & numerical data , Placenta/virology , Pregnancy , SARS-CoV-2/pathogenicity , Staining and Labeling/methods , Trachea/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...