Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
J Am Heart Assoc ; 11(1): e023371, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1622137

ABSTRACT

Background Systemic inflammation and male hypogonadism are 2 increasingly recognized "nonconventional" risk factors for long-QT syndrome and torsades de pointes (TdP). Specifically, inflammatory cytokines prolong, while testosterone shortens the heart rate-corrected QT interval (QTc) via direct electrophysiological effects on cardiomyocytes. Moreover, several studies demonstrated important interplays between inflammation and reduced gonad function in men. We hypothesized that, during inflammatory activation in men, testosterone levels decrease and that this enhances TdP risk by contributing to the overall prolonging effect of inflammation on QTc. Methods and Results We investigated (1) the levels of sex hormones and their relationship with inflammatory markers and QTc in male patients with different types of inflammatory diseases, during active phase and recovery; and (2) the association between inflammatory markers and sex hormones in a cohort of male patients who developed extreme QTc prolongation and TdP, consecutively collected over 10 years. In men with active inflammatory diseases, testosterone levels were significantly reduced, but promptly normalized in association with the decrease in C-reactive protein and interleukin-6 levels. Reduction of testosterone levels, which also inversely correlated with 17-ß estradiol over time, significantly contributed to inflammation-induced QTc prolongation. In men with TdP, both active systemic inflammation and hypogonadism were frequently present, with significant correlations between C-reactive protein, testosterone, and 17-ß estradiol levels; in these patients, increased C-reactive protein and reduced testosterone were associated with a worse short-term outcome of the arrhythmia. Conclusions During systemic inflammatory activation, interleukin-6 elevation is associated with reduced testosterone levels in males, possibly deriving from an enhanced androgen-to-estrogen conversion. While transient, inflammatory hypotestosteronemia is significantly associated with an increased long-QT syndrome/TdP risk in men.


Subject(s)
Hypogonadism , Long QT Syndrome , Torsades de Pointes , C-Reactive Protein , DNA-Binding Proteins , Electrocardiography , Estradiol , Gonadal Steroid Hormones , Heart Rate , Humans , Hypogonadism/complications , Hypogonadism/diagnosis , Inflammation/complications , Interleukin-6 , Long QT Syndrome/chemically induced , Male , Risk Factors , Testosterone , Torsades de Pointes/chemically induced , Torsades de Pointes/diagnosis
2.
Clin Infect Dis ; 73(11): e4031-e4038, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1559750

ABSTRACT

BACKGROUND: Prolonged QTc intervals and life-threatening arrhythmias (LTA) are potential drug-induced complications previously reported with antimalarials, antivirals, and antibiotics. Our objective was to evaluate the prevalence and predictors of QTc interval prolongation and incidences of LTA during hospitalization for coronavirus disease 2019 (COVID-19) among patients with normal admission QTc. METHODS: We enrolled 110 consecutive patients in a multicenter international registry. A 12-lead electrocardiograph was performed at admission, after 7, and at 14 days; QTc values were analyzed. RESULTS: After 7 days, 15 (14%) patients developed a prolonged QTc (pQTc; mean QTc increase 66 ± 20 msec; +16%; P < .001); these patients were older and had higher basal heart rates, higher rates of paroxysmal atrial fibrillation, and lower platelet counts. The QTc increase was inversely proportional to the baseline QTc level and leukocyte count and directly proportional to the basal heart rate (P < .01).We conducted a multivariate stepwise analysis including age, male gender, paroxysmal atrial fibrillation, basal QTc values, basal heart rate, and dual antiviral therapy; age (odds ratio [OR], 1.06; 95% confidence interval [CI], 1.00-1.13; P < .05), basal heart rate (OR, 1.07; 95% CI, 1.02-1.13; P < .01), and dual antiviral therapy (OR, 12.46; 95% CI, 2.09-74.20; P < .1) were independent predictors of QT prolongation.The incidence rate of LTA during hospitalization was 3.6%. There was 1 patient who experienced cardiac arrest and 3 with nonsustained ventricular tachycardia. LTAs were recorded after a median of 9 days from hospitalization and were associated with 50% of the mortality rate. CONCLUSIONS: After 7 days of hospitalization, 14% of patients with COVID-19 developed pQTc; age, basal heart rate, and dual antiviral therapy were found to be independent predictors of pQTc. Life-threatening arrhythmias have an incidence rate of 3.6%, and were associated with a poor outcome.


Subject(s)
COVID-19 , Long QT Syndrome , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Electrocardiography , Hospitalization , Humans , Male , Registries , SARS-CoV-2
3.
J Int Med Res ; 49(11): 3000605211056834, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1546700

ABSTRACT

OBJECTIVE: To evaluate the association of a prolonged corrected QT (QTc) interval in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its association with in-patient mortality. METHODS: A cohort of 745 patients were recruited from a single center between 1 March 2020 and 31 May 2020. We analyzed the factors associated with a prolonged QTc and mortality. RESULTS: A prolonged QTc interval >450 ms was found in 27% of patients admitted with SARS-CoV-2 infection. These patients were predominantly older, on a ventilator, and had hypertension, diabetes mellitus, or ischemic heart disease. They also had high troponin and D-dimer concentrations. A prolonged QTc interval had a significant association with the requirement of ventilator support and was associated with an increased odds of mortality. Patients who died were older than 55 years, and had high troponin, D-dimer, creatinine, procalcitonin, and ferritin concentrations, a high white blood cell count, and abnormal potassium concentrations (hypo- or hyperkalemia). CONCLUSIONS: A prolonged QTc interval is common in patients with SARS-CoV-2 infection and it is associated with worse outcomes. Older individuals and those with comorbidities should have an electrocardiogram performed, which is noninvasive and easily available, on admission to hospital to identify high-risk patients.


Subject(s)
COVID-19 , Long QT Syndrome , Electrocardiography , Humans , Long QT Syndrome/diagnosis , Retrospective Studies , Risk Factors , SARS-CoV-2 , United Arab Emirates/epidemiology
4.
J Clin Pharmacol ; 62(5): 646-655, 2022 May.
Article in English | MEDLINE | ID: covidwho-1525452

ABSTRACT

This study aimed to characterize adverse drug reactions (ADRs) to hydroxychloroquine in the setting of COVID-19, occurring in Italy in the period March to May 2020. The analysis of the combination therapy with azithromycin or/and lopinavir/ritonavir as well as a comparison with ADRs reported throughout 2019 was performed. ADRs collected by the Italian National Network of Pharmacovigilance were analyzed for their incidence, seriousness, outcome, coadministered drugs, and Medical Dictionary for Regulatory Activities classification. A total of 306 reports were gathered for the quarter of 2020: 54% nonserious and 46% serious, and half of the latter required either the hospitalization or its prolongation. However, most of them were either completely recovered (26%) or in the process of recovery (45%), except for 9 fatal cases. Throughout 2019, 38 reports were collected, 53% nonserious and 47% serious, but no deaths had been reported. Diarrhea, prolonged QT interval, and hypertransaminasemia were the most frequently ADRs reported in 2020, significantly higher than 2019 and specific for COVID-19 subjects treated with hydroxychloroquine. The logistic regression analyses demonstrated that the likelihood of serious ADRs, QT prolongation, and diarrhea significantly increased with hydroxychloroquine dosage. Coadministration of lopinavir/ritonavir and hydroxychloroquine showed a positive correlation with diarrhea and hypertransaminasemia and a negative relationship with the ADR seriousness. The combination therapy with azithromycin was another independent predictor of a serious ADR. Off-label use of hydroxychloroquine for COVID-19, alone or in combination regimens, was associated with increased incidence and/or seriousness of specific ADRs in patients with additional risk factors caused by the infection.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Long QT Syndrome , Azithromycin/adverse effects , COVID-19/drug therapy , Diarrhea/chemically induced , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Lopinavir/adverse effects , Off-Label Use , Pharmacovigilance , Ritonavir/adverse effects
6.
Inflammopharmacology ; 29(6): 1795-1805, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505910

ABSTRACT

Hydroxychloroquine has attracted attention in the treatment of COVID-19. Many conflicting findings have been reported regarding the efficacy and safety of this drug, which has been used safely in the rheumatological diseases for years. However, these studies lacked measurement methods that allow accurate assessment of hydroxychloroquine and its metabolite levels. The aim of this study was to measure hydroxychloroquine and its metabolite levels in whole blood samples of patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjogren's syndrome (SS) and scleroderma (Scl) by a robust, simple and accurate validated tandem mass spectrometric method, and to investigate the relationship between these levels with drug-related adverse effects and disease activity scores. The validated LC-MS/MS method was applied to measure blood hydroxychloroquine and its metabolite levels of patients with RA, SLE, SS, Scl. Various haematological and biochemical parameters were measured with Beckman-Coulter AU 5800 and Beckman Coulter LH 780 analyzers, respectively. QTc intervals were calculated with Bazett's formula, and the patients were followed up by clinicians in terms of clinical findings and adverse effects. Hydroxychloroquine levels of patients were similar to previous studies. There was a negative correlation between disease activity scores and hydroxychloroquine levels, while the highest correlation was between QTc interval, creatinine and GFR levels with desethylchloroquine. Bidetylchloroquine had the highest correlation with RBC count and liver function tests. Our findings showed that hydroxychloroquine and its metabolite levels were associated with disease activity scores, renal, hepatic function, QTc prolongation, and hematological parameters.


Subject(s)
Antimalarials/adverse effects , Antimalarials/blood , COVID-19/complications , Connective Tissue Diseases/complications , Hydroxychloroquine/adverse effects , Hydroxychloroquine/blood , Adult , Aged , Chromatography, High Pressure Liquid , Creatinine/blood , Electrocardiography , Erythrocyte Count , Female , Glomerular Filtration Rate/drug effects , Humans , Kidney Function Tests , Liver Function Tests , Long QT Syndrome/chemically induced , Male , Middle Aged , Tandem Mass Spectrometry , Young Adult
7.
Immunol Res ; 70(1): 129-133, 2022 02.
Article in English | MEDLINE | ID: covidwho-1504961

ABSTRACT

Azithromycin is a macrolide antibiotic. Recent evidence has demonstrated in vitro activity against a wide variety of respiratory tract viruses, including SARS-CoV-2 responsible for the current global pandemic COVID-19. A mechanism of action acting on different phases of the viral cycle is assumed. In addition to its in vitro antiviral properties, some evidence also suggests immunomodulatory and antifibrotic activity. These properties of azithromycin could be useful in the treatment of viral respiratory tract infections such as COVID-19. However, clinical data on the antiviral efficacy of azithromycin in the treatment of respiratory tract infections are inconsistent, both when used as monotherapy and in polypharmacological combination. In addition, cases of azithromycin-induced QT long and malignant arrhythmias are reported. In this short review, we attempt to determine the role of azithromycin in the treatment of viral respiratory tract infections such as COVID-19, therapeutic efficacy, or inefficacy?


Subject(s)
Antiviral Agents/administration & dosage , Azithromycin/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/metabolism , Antiviral Agents/adverse effects , Azithromycin/adverse effects , COVID-19/metabolism , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/metabolism
8.
Pan Afr Med J ; 40: 67, 2021.
Article in English | MEDLINE | ID: covidwho-1497893

ABSTRACT

Adverse consequences of the coronavirus disease 2019 (COVID-19) vaccination which have been reported in scientific papers are varied. One possible but rare consequence is myocarditis, which may have a diversity of clinical manifestations. We report a case of a 70-year-old man who presented to the hospital for some syncope, 3 days after his first COVID-19 AstraZeneca Vaccination. Initial electrocardiogram (ECG) showed a long QT interval (QTc = 600 milliseconds). Laboratory tests revealed elevated troponin and lack of evidence of viral infection. Further investigations revealed the vaccine-induced myocarditis and arrhythmias linked to it. Within one week of magnesium treatment, the QT interval was completely corrected, and the patient discharged with no typical syncope attacks. This case like the previous reported one confirms that myocarditis is a complication of COVID-19 vaccine, but implies its clinical manifestations may be varied and even may happen after the single dose of vaccination.


Subject(s)
COVID-19 Vaccines/adverse effects , Long QT Syndrome/etiology , Syncope/etiology , Aged , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Electrocardiography , Humans , Long QT Syndrome/diagnosis , Long QT Syndrome/drug therapy , Magnesium/administration & dosage , Male , Myocarditis/diagnosis , Myocarditis/etiology , Syncope/diagnosis , Vaccination/adverse effects , Vaccination/methods
9.
Medicine (Baltimore) ; 100(28): e26538, 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1494086

ABSTRACT

ABSTRACT: Corrected QT (QTc) interval prolongation has been associated with poor patient prognosis. In this study, we assessed the effects of different drugs and cardiac injury on QTc interval prolongation in patients with coronavirus disease 2019 (COVID-19).The study cohort consisted of 395 confirmed COVID-19 cases from the Wuhan Union Hospital West Campus. All hospitalized patients were treated with chloroquine/hydroxychloroquine (CQ/HCQ), lopinavir/ritonavir (LPV/r), quinolones, interferon, Arbidol, or Qingfei Paidu decoction (QPD) and received at least 1 electrocardiogram after drug administration.Fifty one (12.9%) patients exhibited QTc prolongation (QTc ≥ 470 ms). QTc interval prolongation was associated with COVID-19 severity and mortality (both P < .001). Administration of CQ/HCQ (odds ratio [OR], 2.759; 95% confidence interval [CI], 1.318-5.775; P = .007), LPV/r (OR, 2.342; 95% CI, 1.152-4.760; P = .019), and quinolones (OR, 2.268; 95% CI, 1.171-4.392; P = .015) increased the risk of QTc prolongation. In contrast, the administration of Arbidol, interferon, or QPD did not increase the risk of QTc prolongation. Notably, patients treated with QPD had a shorter QTc duration than those without QPD treatment (412.10 [384.39-433.77] vs 420.86 [388.19-459.58]; P = .042). The QTc interval was positively correlated with the levels of cardiac biomarkers (creatine kinase-MB fraction [rho = 0.14, P = .016], high-sensitivity troponin I [rho = .22, P < .001], and B-type natriuretic peptide [rho = 0.27, P < .001]).In conclusion, QTc prolongation was associated with COVID-19 severity and mortality. The risk of QTc prolongation was higher in patients receiving CQ/HCQ, LPV/r, and quinolones. QPD had less significant effects on QTc prolongation than other antiviral agents.


Subject(s)
Antiviral Agents/adverse effects , COVID-19/drug therapy , COVID-19/mortality , Long QT Syndrome/mortality , SARS-CoV-2 , Aged , COVID-19/virology , Chloroquine/adverse effects , Drug Therapy, Combination , Drugs, Chinese Herbal/adverse effects , Electrocardiography , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Hydroxychloroquine/adverse effects , Indoles/adverse effects , Interferons/adverse effects , Long QT Syndrome/chemically induced , Lopinavir/adverse effects , Male , Middle Aged , Odds Ratio , Quinolones/adverse effects , Retrospective Studies , Ritonavir/adverse effects , Severity of Illness Index
10.
Card Electrophysiol Clin ; 14(1): 95-104, 2022 03.
Article in English | MEDLINE | ID: covidwho-1487631

ABSTRACT

While looking for a solution to treat COVID-19, the massive off-label use of several drugs in COVID-19 has generated concerns in the early phase of the pandemic because of possible arrhythmogenic effects in relation to QTc interval prolongation. Indeed, some of these drugs have been historically associated with QT prolongation and Torsade de Point, a potentially lethal ventricular arrhythmia, and their first-time use on a very large scale has raised several concerns in the scientific community. This work aims to summarize the underlying arrhythmogenic mechanisms related to the use of potentially QT-prolonging drugs used during the pandemic to treat COVID-19.


Subject(s)
Arrhythmias, Cardiac , COVID-19 , Long QT Syndrome , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/virology , Azithromycin/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Electrocardiography , Humans , Hydroxychloroquine/therapeutic use , Long QT Syndrome/chemically induced , Risk Factors , SARS-CoV-2
12.
PLoS Med ; 18(9): e1003766, 2021 09.
Article in English | MEDLINE | ID: covidwho-1470656

ABSTRACT

BACKGROUND: Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS: Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS: While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.


Subject(s)
Amodiaquine/adverse effects , Antimalarials/adverse effects , Bradycardia/chemically induced , Heart Conduction System/drug effects , Heart Rate/drug effects , Long QT Syndrome/chemically induced , Adolescent , Adult , Bradycardia/diagnosis , Bradycardia/physiopathology , Cardiotoxicity , Child , Child, Preschool , Female , Heart Conduction System/physiopathology , Humans , Infant , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Male , Middle Aged , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Young Adult
13.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
14.
Int J Antimicrob Agents ; 56(6): 106212, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385672

ABSTRACT

Introduction Hydroxychloroquine (HCQ) has been proposed as a SARS-CoV-2 treatment but the frequency of long QT (LQT) during use is unknown. Objective To conduct a meta-analysis of the frequency of LQT in patients with SARS-CoV-2 infection treated with HCQ. Data Sources PubMed, EMBASE, Google Scholar, the Cochrane Database of Systematic Reviews and preprint servers (medRxiv, Research Square) were searched for studies published between December 2019 and June 30, 2020. Methods Effect statistics were pooled using random effects. The quality of observational studies and randomized controlled trials was appraised with STROBE and the Cochrane Risk of Bias Assessment tools, respectively. Outcomes Critical LQT was defined as: (1) maximum QT corrected (QTc)≥500 ms (if QRS<120 ms) or QTc≥550 ms (if QRS≥120 ms), and (2) QTc increase ≥60 ms. Results In the 28 studies included (n=9124), the frequency of LQT during HCQ treatment was 6.7% (95% confidence interval [CI]: 3.7-10.2). In 20 studies (n=7825), patients were also taking other QT-prolonging drugs. The frequency of LQT in the other 8 studies (n=1299) was 1.7% (95% CI: 0.3-3.9). Twenty studies (n=6869) reported HCQ discontinuation due to LQT, with a frequency of 3.7% (95% CI: 1.5-6.6). The frequency of ventricular arrhythmias during HCQ treatment was 1.68% (127/7539) and that of arrhythmogenic death was 0.69% (39/5648). Torsades de Pointes occurred in 0.06% (3/5066). Patients aged >60 years were at highest risk of HCQ-associated LQT (P<0.001). Conclusions HCQ-associated cardiotoxicity in SARS-CoV-2 patients is uncommon but requires ECG monitoring, particularly in those aged >60 years and/or taking other QT-prolonging drugs.


Subject(s)
COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , SARS-CoV-2 , Aged , Electrocardiography/drug effects , Female , Humans , Male , Middle Aged
15.
Medicine (Baltimore) ; 100(31): e26787, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-1354339

ABSTRACT

BACKGROUND: Lopinavir, ritonavir, atazanavir, and saquinavir had been reportedly used or suggested for coronavirus disease 2019 (COVID-19) treatment. They may cause electrocardiography changes. We aim to evaluate risk of PR prolongation, QRS widening, and QT prolongation from lopinavir, ritonavir, atazanavir, and saquinavir. METHODS: In accordance with preferred reporting items for systematic reviews and meta-analyses guidelines, our search was conducted in PubMed Central, PubMed, EBSCOhost, and ProQuest from inception to June 25, 2020. Titles and abstracts were reviewed for relevance. Cochrane Risk of Bias Tool 2.0 and Downs and Black criteria was used to evaluate quality of studies. RESULTS: We retrieved 9 articles. Most randomized controlled trials have low risk of biases while all quasi-experimental studies have a positive rating. Four studies reporting PR prolongation however only 2 studies with PR interval >200 ms. One of which, reported its association after treatment with ritonavir-boosted saquinavir treatment while another, during treatment with ritonavir-boosted atazanavir. No study reported QRS widening >120 ms with treatment. Four studies reporting QT prolongation, with only one study reaching QT interval >450 ms after ritonavir-boosted saquinavir treatment on healthy patients. There is only one study on COVID-19 patients reporting QT prolongation in 1 out of 95 patients after ritonavir-boosted lopinavir treatment. CONCLUSION: Limited evidence suggests that lopinavir, ritonavir, atazanavir, and saquinavir could cause PR prolongation, QRS widening, and QT prolongation. Further trials with closer monitoring and assessment of electrocardiography are needed to ascertain usage safety of antivirals in COVID-19 era.


Subject(s)
Atazanavir Sulfate/adverse effects , Long QT Syndrome/etiology , Lopinavir/adverse effects , Ritonavir/adverse effects , Saquinavir/adverse effects , Adult , Atazanavir Sulfate/therapeutic use , Cytochrome P-450 CYP3A Inhibitors/adverse effects , Drug Therapy, Combination/methods , Drug Therapy, Combination/standards , Electrocardiography/methods , Humans , Lopinavir/therapeutic use , Ritonavir/therapeutic use , Saquinavir/therapeutic use
16.
18.
Br J Clin Pharmacol ; 88(3): 1054-1062, 2022 03.
Article in English | MEDLINE | ID: covidwho-1334431

ABSTRACT

AIMS: Hydroxychloroquine has been suggested as possible treatment for severe acute respiratory syndrome-coronavirus-2. Studies reported an increased risk of QTcF-prolongation after treatment with hydroxychloroquine. The aim of this study was to analyse the concentration-dependent effects of hydroxychloroquine on the ventricular repolarization, including QTcF-duration and T-wave morphology. METHODS: Twenty young (≤30 y) and 20 elderly (65-75 y) healthy male subjects were included. Subjects were randomized to receive either a total dose of 2400 mg hydroxychloroquine over 5 days, or placebo (ratio 1:1). Follow-up duration was 28 days. Electrocardiograms (ECGs) were recorded as triplicate at baseline and 4 postdose single recordings, followed by hydroxychloroquine concentration measurements. ECG intervals (RR, QRS, PR, QTcF, J-Tpc, Tp-Te) and T-wave morphology, measured with the morphology combination score, were analysed with a prespecified linear mixed effects concentration-effect model. RESULTS: There were no significant associations between hydroxychloroquine concentrations and ECG characteristics, including RR-, QRS- and QTcF-interval (P = .09, .34, .25). Mean ΔΔQTcF-interval prolongation did not exceed 5 ms and the upper limit of the 90% confidence interval did not exceed 10 ms at the highest measured concentrations (200 ng/mL). There were no associations between hydroxychloroquine concentration and the T-wave morphology (P = .34 for morphology combination score). There was no significant effect of age group on ECG characteristics. CONCLUSION: In this study, hydroxychloroquine did not affect ventricular repolarization, including the QTcF-interval and T-wave morphology, at plasma concentrations up to 200 ng/mL. Based on this analysis, hydroxychloroquine does not appear to increase the risk of QTcF-induced arrhythmias.


Subject(s)
COVID-19 , Long QT Syndrome , Aged , COVID-19/drug therapy , Electrocardiography , Heart Rate , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Male , SARS-CoV-2
19.
J Interv Card Electrophysiol ; 63(2): 441-448, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1320113

ABSTRACT

PURPOSE: Systemic inflammation has been associated with corrected QT (QTc) interval prolongation. The role of inflammation on QTc prolongation in COVID-19 patients was investigated. METHODS: Patients with a laboratory-confirmed SARS-CoV-2 infection admitted to IRCCS San Raffaele Scientific Institute (Milan, Italy) between March 14, 2020, and March 30, 2020 were included. QTc-I was defined as the QTc interval by Bazett formula in the first ECG performed during the hospitalization, before any new drug treatment; QTc-II was the QTc in the ECG performed after the initiation of hydroxychloroquine drug treatment. RESULTS: QTc-I was long in 45 patients (45%) and normal in 55 patients (55%). Patients with long QTc-I were older and more frequently males. C-Reactive protein (CRP) and white blood cell (WBC) count at hospitalization were higher in patients with long QTc-I and long QTc-II. QTc-I was significantly correlated with CRP levels at hospitalization. After a median follow-up of 83 days, 14 patients (14%) died. There were no deaths attributed to ventricular arrhythmias. Patients with long QTc-I and long QTc-II had a shorter survival, compared with normal QTc-I and QTc-II patients, respectively. In Cox multivariate analysis, independent predictors of mortality were age (HR = 1.1, CI 95% 1.04-1.18, p = 0.002) and CRP at ECG II (HR 1.1, CI 95% 1.0-1.1, p = 0.02). CONCLUSIONS: QTc at hospitalization is a simple risk marker of mortality risk in COVID-19 patients and reflects the myocardial inflammatory status.


Subject(s)
COVID-19 , Long QT Syndrome , Electrocardiography , Humans , Inflammation , Long QT Syndrome/diagnosis , Male , SARS-CoV-2
20.
Bratisl Lek Listy ; 122(8): 598-604, 2021.
Article in English | MEDLINE | ID: covidwho-1318440

ABSTRACT

AIM: The aim of the current study was to evaluate the index of Cardiac Electrophysiological Balance (iCEB) in hospitalized COVID-19 patients receiving Hydroxychloroquine / azithromycin (HCQ / AZ) combination therapy to determine the susceptibility to ventricular arrhythmia among these patients. METHOD: Sixty-seven COVID-19 patients admitted to the ward were included in the study. Electrocardiograms (ECGs) were obtained from all patients before the initiation of treatment and on treatment day 5. QT/QRS (iCEB) and QTc/QRS (iCEBc) ratios were calculated. RESULTS: QRS, QT and QTc intervals were significantly prolonged on day 5 measurements compared to pre-treatment period (p <0.05). Overall, mean iCEB was 3.6±0.4 before treatment and 3.8±0.4 on day 5 in the study population (p <0.001). Considering the iCEBc values, a significant increase was observed in patients receiving HCQ/AZ treatment compared to pre-treatment period (4.1±0.5 vs 4.4±0.6; p <0.001). CONCLUSIONS: To the best of our knowledge, this was the first study to investigate iCEB and iCEBc parameters in patients with COVID-19 on HCQ/AZ therapy. In this study, we demonstrated significantly increased iCEB and iCEBc values following HCQ/AZ treatment in COVID-19 patients. iCEB and iCEBc may serve as a noninvasive, simple, and novel biomarker for detecting increased pro-arrhythmia risk in COVID-19 patients (Tab. 3, Fig. 3, Ref. 36).


Subject(s)
COVID-19 , Long QT Syndrome , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/diagnosis , Azithromycin , Electrocardiography , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL