Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
BMJ Case Rep ; 15(4)2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1816729

ABSTRACT

Congenital chloride losing diarrhoea (CCLD) is a rare disease caused by mutations in an intestinal chloride/bicarbonate ion exchange channel. Few reports describe CCLD in adults and none has described the impact of a parasitic infection on CCLD. Severe diarrhoea may result in hypokalaemia with QT interval prolongation. Treatment with antiemetics may further increase the QT interval. To raise awareness of this preventable complication, we describe the course of a woman in her 20s with CCLD who developed COVID-19 and a Blastocystis hominis infestation. Treatment with antiemetics and hypokalaemia resulted in prolongation of the QT interval to 640 ms. While, the QT interval normalised with discontinuation of antiemetics and electrolyte replacement, patients with CCLD must take precautions to prevent gastrointestinal infections. Regardless, whenever patients with CCLD present to hospital, the authors recommend monitoring the QT interval and avoiding medications that predispose to torsade de pointes.


Subject(s)
Antiemetics , Blastocystis hominis , COVID-19 , Hypokalemia , Long QT Syndrome , Adult , COVID-19/drug therapy , Chlorides , Diarrhea/chemically induced , Diarrhea/complications , Diarrhea/congenital , Diarrhea/drug therapy , Electrocardiography , Female , Humans , Hypokalemia/complications , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy , Metabolism, Inborn Errors
3.
Clin Exp Rheumatol ; 40(5): 890-896, 2022 May.
Article in English | MEDLINE | ID: covidwho-1780517

ABSTRACT

OBJECTIVES: Antimalarials have been associated with QT prolongation in COVID-19 patients but are generally safe in systemic lupus erythematosus (SLE).We compared the prevalence of QTc prolongation between COVID-19 and SLE patients treated with hydroxychloroquine (HCQ). METHODS: We included patients with SARS-CoV-2 infection confirmed by nasopharyngeal swab and patients taking HCQ for SLE. A prolonged QTc was defined as an increase in QTc intervals >60 ms (compared with baseline) or as a QTc of ≥500 ms. We performed the univariate and multivariate logistic regression to investigate the risk factors for QTc prolongation in COVID-19 patients. RESULTS: We enrolled 58 COVID-19 patients (median age 70.5 years, IQR 25), grouped into group A (patients with HCQ) group B (patients with HCQ + azithromycin) and group C (not received either drug). Fifty (26%) COVID-19 patients presented a QTc prolongation (12 QTc≥500 ms, 3 patients ΔQTc>60 ms). We did not find any differences in QTc prolongation among the three treatment groups. Baseline QTc (OR 111.5) and D-dimer (OR 78.3) were independently associated to QTc prolongation. Compared to the 50 SLE patients (median age 38.5 years, IQR 22), chronically treated with HCQ, COVID-19 patients showed significantly longer QTc (p<0.001). CONCLUSIONS: This is the first study demonstrating that, unlike COVID-19 patients, patients with SLE are not susceptible to HCQ-induced long QT syndrome and arrhythmia. The combined arrhythmogenic effect of SARS-CoV-2 infection and HCQ could account for the excess of QTc prolongation and fatal arrhythmias described in patients with COVID-19.


Subject(s)
COVID-19 , Long QT Syndrome , Lupus Erythematosus, Systemic , Adult , Aged , COVID-19/drug therapy , Case-Control Studies , Electrocardiography , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Long QT Syndrome/epidemiology , Lupus Erythematosus, Systemic/chemically induced , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , SARS-CoV-2
4.
An Pediatr (Engl Ed) ; 96(3): 213-220, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693952

ABSTRACT

INTRODUCTION: Many antiviral agents, such as hydroxychloroquine, have been used to treat COVID-19, without being broadly accepted. QTc prolongation is a worrisome adverse effect, scarcely studied in pediatrics. PATIENTS AND METHODS: Paediatric patients affected from COVID-19 who received antivirals were matched (1:2) with controls not infected nor exposed. Electrocardiograms were prospectively analyzed at baseline, during the first 72 h of treatment and after 72 h. RESULTS: Eleven (22.9%) out of 48 patients admitted due to COVID-19 (March-July 2020) received antiviral therapy. All had underlying diseases: congenital heart disease (4/11; 36.4%) and immunosuppression (3/11; 27.3%) stand out. 5/11 (45.5%) received treatment at baseline with a potential effect on QTc. There where no differences observed in the baseline QTc between cases and controls: 414.8 ms (49.2) vs 416.5 ms (29.4), (P = .716). Baseline long QT was observed in 2/11 cases and 2/22. Among cases, 10/11 (90.9%) received hydroxychloroquine, mainly associated with azithromycin (8/11; 72.7%), 3 received lopinavir/ritonavir and one remdesivir. The median increase in QTc after 72 h under treatment was 28.9 ms [IQR 48.7] (P = .062). 4/11 (36.4%) patients had a long QTc at 72 h, resulting in 3 patients ≥500 ms; treatment was stopped in one (QTc 510 ms) but ventricular arrhythmias were not documented. CONCLUSIONS: The use of antivirals caused an increase on the QTc interval after 72 h of treatment, being the QTc long in 36.3% of the patients, although no arrhythmic events were observed. The use of hydroxychloroquine and antivirals requires active QTc monitoring and it is recommended to discontinue treatment if QTc > 500 ms.


Subject(s)
COVID-19 , Long QT Syndrome , Antiviral Agents/adverse effects , COVID-19/drug therapy , Child , Electrocardiography , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy , SARS-CoV-2
5.
J Am Heart Assoc ; 11(1): e023371, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1622137

ABSTRACT

Background Systemic inflammation and male hypogonadism are 2 increasingly recognized "nonconventional" risk factors for long-QT syndrome and torsades de pointes (TdP). Specifically, inflammatory cytokines prolong, while testosterone shortens the heart rate-corrected QT interval (QTc) via direct electrophysiological effects on cardiomyocytes. Moreover, several studies demonstrated important interplays between inflammation and reduced gonad function in men. We hypothesized that, during inflammatory activation in men, testosterone levels decrease and that this enhances TdP risk by contributing to the overall prolonging effect of inflammation on QTc. Methods and Results We investigated (1) the levels of sex hormones and their relationship with inflammatory markers and QTc in male patients with different types of inflammatory diseases, during active phase and recovery; and (2) the association between inflammatory markers and sex hormones in a cohort of male patients who developed extreme QTc prolongation and TdP, consecutively collected over 10 years. In men with active inflammatory diseases, testosterone levels were significantly reduced, but promptly normalized in association with the decrease in C-reactive protein and interleukin-6 levels. Reduction of testosterone levels, which also inversely correlated with 17-ß estradiol over time, significantly contributed to inflammation-induced QTc prolongation. In men with TdP, both active systemic inflammation and hypogonadism were frequently present, with significant correlations between C-reactive protein, testosterone, and 17-ß estradiol levels; in these patients, increased C-reactive protein and reduced testosterone were associated with a worse short-term outcome of the arrhythmia. Conclusions During systemic inflammatory activation, interleukin-6 elevation is associated with reduced testosterone levels in males, possibly deriving from an enhanced androgen-to-estrogen conversion. While transient, inflammatory hypotestosteronemia is significantly associated with an increased long-QT syndrome/TdP risk in men.


Subject(s)
Hypogonadism , Long QT Syndrome , Torsades de Pointes , C-Reactive Protein , DNA-Binding Proteins , Electrocardiography , Estradiol , Gonadal Steroid Hormones , Heart Rate , Humans , Hypogonadism/complications , Hypogonadism/diagnosis , Inflammation/complications , Interleukin-6 , Long QT Syndrome/chemically induced , Male , Risk Factors , Testosterone , Torsades de Pointes/chemically induced , Torsades de Pointes/diagnosis
6.
J Clin Pharmacol ; 62(5): 646-655, 2022 May.
Article in English | MEDLINE | ID: covidwho-1525452

ABSTRACT

This study aimed to characterize adverse drug reactions (ADRs) to hydroxychloroquine in the setting of COVID-19, occurring in Italy in the period March to May 2020. The analysis of the combination therapy with azithromycin or/and lopinavir/ritonavir as well as a comparison with ADRs reported throughout 2019 was performed. ADRs collected by the Italian National Network of Pharmacovigilance were analyzed for their incidence, seriousness, outcome, coadministered drugs, and Medical Dictionary for Regulatory Activities classification. A total of 306 reports were gathered for the quarter of 2020: 54% nonserious and 46% serious, and half of the latter required either the hospitalization or its prolongation. However, most of them were either completely recovered (26%) or in the process of recovery (45%), except for 9 fatal cases. Throughout 2019, 38 reports were collected, 53% nonserious and 47% serious, but no deaths had been reported. Diarrhea, prolonged QT interval, and hypertransaminasemia were the most frequently ADRs reported in 2020, significantly higher than 2019 and specific for COVID-19 subjects treated with hydroxychloroquine. The logistic regression analyses demonstrated that the likelihood of serious ADRs, QT prolongation, and diarrhea significantly increased with hydroxychloroquine dosage. Coadministration of lopinavir/ritonavir and hydroxychloroquine showed a positive correlation with diarrhea and hypertransaminasemia and a negative relationship with the ADR seriousness. The combination therapy with azithromycin was another independent predictor of a serious ADR. Off-label use of hydroxychloroquine for COVID-19, alone or in combination regimens, was associated with increased incidence and/or seriousness of specific ADRs in patients with additional risk factors caused by the infection.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Long QT Syndrome , Azithromycin/adverse effects , COVID-19/drug therapy , Diarrhea/chemically induced , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Lopinavir/adverse effects , Off-Label Use , Pharmacovigilance , Ritonavir/adverse effects
8.
Inflammopharmacology ; 29(6): 1795-1805, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505910

ABSTRACT

Hydroxychloroquine has attracted attention in the treatment of COVID-19. Many conflicting findings have been reported regarding the efficacy and safety of this drug, which has been used safely in the rheumatological diseases for years. However, these studies lacked measurement methods that allow accurate assessment of hydroxychloroquine and its metabolite levels. The aim of this study was to measure hydroxychloroquine and its metabolite levels in whole blood samples of patients with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjogren's syndrome (SS) and scleroderma (Scl) by a robust, simple and accurate validated tandem mass spectrometric method, and to investigate the relationship between these levels with drug-related adverse effects and disease activity scores. The validated LC-MS/MS method was applied to measure blood hydroxychloroquine and its metabolite levels of patients with RA, SLE, SS, Scl. Various haematological and biochemical parameters were measured with Beckman-Coulter AU 5800 and Beckman Coulter LH 780 analyzers, respectively. QTc intervals were calculated with Bazett's formula, and the patients were followed up by clinicians in terms of clinical findings and adverse effects. Hydroxychloroquine levels of patients were similar to previous studies. There was a negative correlation between disease activity scores and hydroxychloroquine levels, while the highest correlation was between QTc interval, creatinine and GFR levels with desethylchloroquine. Bidetylchloroquine had the highest correlation with RBC count and liver function tests. Our findings showed that hydroxychloroquine and its metabolite levels were associated with disease activity scores, renal, hepatic function, QTc prolongation, and hematological parameters.


Subject(s)
Antimalarials/adverse effects , Antimalarials/blood , COVID-19/complications , Connective Tissue Diseases/complications , Hydroxychloroquine/adverse effects , Hydroxychloroquine/blood , Adult , Aged , Chromatography, High Pressure Liquid , Creatinine/blood , Electrocardiography , Erythrocyte Count , Female , Glomerular Filtration Rate/drug effects , Humans , Kidney Function Tests , Liver Function Tests , Long QT Syndrome/chemically induced , Male , Middle Aged , Tandem Mass Spectrometry , Young Adult
9.
Immunol Res ; 70(1): 129-133, 2022 02.
Article in English | MEDLINE | ID: covidwho-1504961

ABSTRACT

Azithromycin is a macrolide antibiotic. Recent evidence has demonstrated in vitro activity against a wide variety of respiratory tract viruses, including SARS-CoV-2 responsible for the current global pandemic COVID-19. A mechanism of action acting on different phases of the viral cycle is assumed. In addition to its in vitro antiviral properties, some evidence also suggests immunomodulatory and antifibrotic activity. These properties of azithromycin could be useful in the treatment of viral respiratory tract infections such as COVID-19. However, clinical data on the antiviral efficacy of azithromycin in the treatment of respiratory tract infections are inconsistent, both when used as monotherapy and in polypharmacological combination. In addition, cases of azithromycin-induced QT long and malignant arrhythmias are reported. In this short review, we attempt to determine the role of azithromycin in the treatment of viral respiratory tract infections such as COVID-19, therapeutic efficacy, or inefficacy?


Subject(s)
Antiviral Agents/administration & dosage , Azithromycin/therapeutic use , COVID-19/drug therapy , SARS-CoV-2/metabolism , Antiviral Agents/adverse effects , Azithromycin/adverse effects , COVID-19/metabolism , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/metabolism
10.
Medicine (Baltimore) ; 100(28): e26538, 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1494086

ABSTRACT

ABSTRACT: Corrected QT (QTc) interval prolongation has been associated with poor patient prognosis. In this study, we assessed the effects of different drugs and cardiac injury on QTc interval prolongation in patients with coronavirus disease 2019 (COVID-19).The study cohort consisted of 395 confirmed COVID-19 cases from the Wuhan Union Hospital West Campus. All hospitalized patients were treated with chloroquine/hydroxychloroquine (CQ/HCQ), lopinavir/ritonavir (LPV/r), quinolones, interferon, Arbidol, or Qingfei Paidu decoction (QPD) and received at least 1 electrocardiogram after drug administration.Fifty one (12.9%) patients exhibited QTc prolongation (QTc ≥ 470 ms). QTc interval prolongation was associated with COVID-19 severity and mortality (both P < .001). Administration of CQ/HCQ (odds ratio [OR], 2.759; 95% confidence interval [CI], 1.318-5.775; P = .007), LPV/r (OR, 2.342; 95% CI, 1.152-4.760; P = .019), and quinolones (OR, 2.268; 95% CI, 1.171-4.392; P = .015) increased the risk of QTc prolongation. In contrast, the administration of Arbidol, interferon, or QPD did not increase the risk of QTc prolongation. Notably, patients treated with QPD had a shorter QTc duration than those without QPD treatment (412.10 [384.39-433.77] vs 420.86 [388.19-459.58]; P = .042). The QTc interval was positively correlated with the levels of cardiac biomarkers (creatine kinase-MB fraction [rho = 0.14, P = .016], high-sensitivity troponin I [rho = .22, P < .001], and B-type natriuretic peptide [rho = 0.27, P < .001]).In conclusion, QTc prolongation was associated with COVID-19 severity and mortality. The risk of QTc prolongation was higher in patients receiving CQ/HCQ, LPV/r, and quinolones. QPD had less significant effects on QTc prolongation than other antiviral agents.


Subject(s)
Antiviral Agents/adverse effects , COVID-19/drug therapy , COVID-19/mortality , Long QT Syndrome/mortality , SARS-CoV-2 , Aged , COVID-19/virology , Chloroquine/adverse effects , Drug Therapy, Combination , Drugs, Chinese Herbal/adverse effects , Electrocardiography , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Hydroxychloroquine/adverse effects , Indoles/adverse effects , Interferons/adverse effects , Long QT Syndrome/chemically induced , Lopinavir/adverse effects , Male , Middle Aged , Odds Ratio , Quinolones/adverse effects , Retrospective Studies , Ritonavir/adverse effects , Severity of Illness Index
11.
Card Electrophysiol Clin ; 14(1): 95-104, 2022 03.
Article in English | MEDLINE | ID: covidwho-1487631

ABSTRACT

While looking for a solution to treat COVID-19, the massive off-label use of several drugs in COVID-19 has generated concerns in the early phase of the pandemic because of possible arrhythmogenic effects in relation to QTc interval prolongation. Indeed, some of these drugs have been historically associated with QT prolongation and Torsade de Point, a potentially lethal ventricular arrhythmia, and their first-time use on a very large scale has raised several concerns in the scientific community. This work aims to summarize the underlying arrhythmogenic mechanisms related to the use of potentially QT-prolonging drugs used during the pandemic to treat COVID-19.


Subject(s)
Arrhythmias, Cardiac , COVID-19 , Long QT Syndrome , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/virology , Azithromycin/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Electrocardiography , Humans , Hydroxychloroquine/therapeutic use , Long QT Syndrome/chemically induced , Risk Factors , SARS-CoV-2
12.
PLoS Med ; 18(9): e1003766, 2021 09.
Article in English | MEDLINE | ID: covidwho-1470656

ABSTRACT

BACKGROUND: Amodiaquine is a 4-aminoquinoline antimalarial similar to chloroquine that is used extensively for the treatment and prevention of malaria. Data on the cardiovascular effects of amodiaquine are scarce, although transient effects on cardiac electrophysiology (electrocardiographic QT interval prolongation and sinus bradycardia) have been observed. We conducted an individual patient data meta-analysis to characterise the cardiovascular effects of amodiaquine and thereby support development of risk minimisation measures to improve the safety of this important antimalarial. METHODS AND FINDINGS: Studies of amodiaquine for the treatment or prevention of malaria were identified from a systematic review. Heart rates and QT intervals with study-specific heart rate correction (QTcS) were compared within studies and individual patient data pooled for multivariable linear mixed effects regression. The meta-analysis included 2,681 patients from 4 randomised controlled trials evaluating artemisinin-based combination therapies (ACTs) containing amodiaquine (n = 725), lumefantrine (n = 499), piperaquine (n = 716), and pyronaridine (n = 566), as well as monotherapy with chloroquine (n = 175) for uncomplicated malaria. Amodiaquine prolonged QTcS (mean = 16.9 ms, 95% CI: 15.0 to 18.8) less than chloroquine (21.9 ms, 18.3 to 25.6, p = 0.0069) and piperaquine (19.2 ms, 15.8 to 20.5, p = 0.0495), but more than lumefantrine (5.6 ms, 2.9 to 8.2, p < 0.001) and pyronaridine (-1.2 ms, -3.6 to +1.3, p < 0.001). In individuals aged ≥12 years, amodiaquine reduced heart rate (mean reduction = 15.2 beats per minute [bpm], 95% CI: 13.4 to 17.0) more than piperaquine (10.5 bpm, 7.7 to 13.3, p = 0.0013), lumefantrine (9.3 bpm, 6.4 to 12.2, p < 0.001), pyronaridine (6.6 bpm, 4.0 to 9.3, p < 0.001), and chloroquine (5.9 bpm, 3.2 to 8.5, p < 0.001) and was associated with a higher risk of potentially symptomatic sinus bradycardia (≤50 bpm) than lumefantrine (risk difference: 14.8%, 95% CI: 5.4 to 24.3, p = 0.0021) and chloroquine (risk difference: 8.0%, 95% CI: 4.0 to 12.0, p < 0.001). The effect of amodiaquine on the heart rate of children aged <12 years compared with other antimalarials was not clinically significant. Study limitations include the unavailability of individual patient-level adverse event data for most included participants, but no serious complications were documented. CONCLUSIONS: While caution is advised in the use of amodiaquine in patients aged ≥12 years with concomitant use of heart rate-reducing medications, serious cardiac conduction disorders, or risk factors for torsade de pointes, there have been no serious cardiovascular events reported after amodiaquine in widespread use over 7 decades. Amodiaquine and structurally related antimalarials in the World Health Organization (WHO)-recommended dose regimens alone or in ACTs are safe for the treatment and prevention of malaria.


Subject(s)
Amodiaquine/adverse effects , Antimalarials/adverse effects , Bradycardia/chemically induced , Heart Conduction System/drug effects , Heart Rate/drug effects , Long QT Syndrome/chemically induced , Adolescent , Adult , Bradycardia/diagnosis , Bradycardia/physiopathology , Cardiotoxicity , Child , Child, Preschool , Female , Heart Conduction System/physiopathology , Humans , Infant , Long QT Syndrome/diagnosis , Long QT Syndrome/physiopathology , Male , Middle Aged , Randomized Controlled Trials as Topic , Risk Assessment , Risk Factors , Young Adult
13.
Mayo Clin Proc ; 95(6): 1213-1221, 2020 06.
Article in English | MEDLINE | ID: covidwho-1450185

ABSTRACT

As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the "off-label" repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which have the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world's population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.


Subject(s)
Death, Sudden, Cardiac , Hydroxychloroquine , Long QT Syndrome , Lopinavir , Risk Adjustment/methods , Ritonavir , Torsades de Pointes , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Betacoronavirus/drug effects , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Drug Combinations , Drug Monitoring/methods , Drug Repositioning/ethics , Drug Repositioning/methods , Electrocardiography/methods , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/mortality , Long QT Syndrome/therapy , Lopinavir/administration & dosage , Lopinavir/adverse effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Ritonavir/administration & dosage , Ritonavir/adverse effects , SARS-CoV-2 , Torsades de Pointes/chemically induced , Torsades de Pointes/mortality , Torsades de Pointes/therapy
14.
Int J Antimicrob Agents ; 56(6): 106212, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385672

ABSTRACT

Introduction Hydroxychloroquine (HCQ) has been proposed as a SARS-CoV-2 treatment but the frequency of long QT (LQT) during use is unknown. Objective To conduct a meta-analysis of the frequency of LQT in patients with SARS-CoV-2 infection treated with HCQ. Data Sources PubMed, EMBASE, Google Scholar, the Cochrane Database of Systematic Reviews and preprint servers (medRxiv, Research Square) were searched for studies published between December 2019 and June 30, 2020. Methods Effect statistics were pooled using random effects. The quality of observational studies and randomized controlled trials was appraised with STROBE and the Cochrane Risk of Bias Assessment tools, respectively. Outcomes Critical LQT was defined as: (1) maximum QT corrected (QTc)≥500 ms (if QRS<120 ms) or QTc≥550 ms (if QRS≥120 ms), and (2) QTc increase ≥60 ms. Results In the 28 studies included (n=9124), the frequency of LQT during HCQ treatment was 6.7% (95% confidence interval [CI]: 3.7-10.2). In 20 studies (n=7825), patients were also taking other QT-prolonging drugs. The frequency of LQT in the other 8 studies (n=1299) was 1.7% (95% CI: 0.3-3.9). Twenty studies (n=6869) reported HCQ discontinuation due to LQT, with a frequency of 3.7% (95% CI: 1.5-6.6). The frequency of ventricular arrhythmias during HCQ treatment was 1.68% (127/7539) and that of arrhythmogenic death was 0.69% (39/5648). Torsades de Pointes occurred in 0.06% (3/5066). Patients aged >60 years were at highest risk of HCQ-associated LQT (P<0.001). Conclusions HCQ-associated cardiotoxicity in SARS-CoV-2 patients is uncommon but requires ECG monitoring, particularly in those aged >60 years and/or taking other QT-prolonging drugs.


Subject(s)
COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , SARS-CoV-2 , Aged , Electrocardiography/drug effects , Female , Humans , Male , Middle Aged
15.
Br J Clin Pharmacol ; 88(3): 1054-1062, 2022 03.
Article in English | MEDLINE | ID: covidwho-1334431

ABSTRACT

AIMS: Hydroxychloroquine has been suggested as possible treatment for severe acute respiratory syndrome-coronavirus-2. Studies reported an increased risk of QTcF-prolongation after treatment with hydroxychloroquine. The aim of this study was to analyse the concentration-dependent effects of hydroxychloroquine on the ventricular repolarization, including QTcF-duration and T-wave morphology. METHODS: Twenty young (≤30 y) and 20 elderly (65-75 y) healthy male subjects were included. Subjects were randomized to receive either a total dose of 2400 mg hydroxychloroquine over 5 days, or placebo (ratio 1:1). Follow-up duration was 28 days. Electrocardiograms (ECGs) were recorded as triplicate at baseline and 4 postdose single recordings, followed by hydroxychloroquine concentration measurements. ECG intervals (RR, QRS, PR, QTcF, J-Tpc, Tp-Te) and T-wave morphology, measured with the morphology combination score, were analysed with a prespecified linear mixed effects concentration-effect model. RESULTS: There were no significant associations between hydroxychloroquine concentrations and ECG characteristics, including RR-, QRS- and QTcF-interval (P = .09, .34, .25). Mean ΔΔQTcF-interval prolongation did not exceed 5 ms and the upper limit of the 90% confidence interval did not exceed 10 ms at the highest measured concentrations (200 ng/mL). There were no associations between hydroxychloroquine concentration and the T-wave morphology (P = .34 for morphology combination score). There was no significant effect of age group on ECG characteristics. CONCLUSION: In this study, hydroxychloroquine did not affect ventricular repolarization, including the QTcF-interval and T-wave morphology, at plasma concentrations up to 200 ng/mL. Based on this analysis, hydroxychloroquine does not appear to increase the risk of QTcF-induced arrhythmias.


Subject(s)
COVID-19 , Long QT Syndrome , Aged , COVID-19/drug therapy , Electrocardiography , Heart Rate , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Male , SARS-CoV-2
16.
Glob Heart ; 16(1): 42, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1285504

ABSTRACT

Background: QTc prolongation is an adverse effect of COVID-19 therapies. The use of a handheld device in this scenario has not been addressed. Objectives: To evaluate the feasibility of QTc monitoring with a smart device in COVID-19 patients receiving QTc-interfering therapies. Methods: Prospective study of consecutive COVID-19 patients treated with hydroxychloroquine ± azithromycin ± lopinavir-ritonavir. ECG monitoring was performed with 12-lead ECG or with KardiaMobile-6L. Both registries were also sequentially obtained in a cohort of healthy patients. We evaluated differences in QTc in COVID-19 patients between three different monitoring strategies: 12-lead ECG at baseline and follow-up (A), 12-lead ECG at baseline and follow-up with the smart device (B), and fully monitored with handheld 6-lead ECG (group C). Time needed to obtain an ECG registry was also documented. Results: One hundred and eighty-two COVID-19 patients were included (A: 119(65.4%); B: 50(27.5%); C: 13(7.1%). QTc peak during hospitalization did significantly increase in all groups. No differences were observed between the three monitoring strategies in QTc prolongation (p = 0.864). In the control group, all but one ECG registry with the smart device allowed QTc measurement and mean QTc did not differ between both techniques (p = 0.612), displaying a moderate reliability (ICC 0.56 [0.19-0.76]). Time of ECG registry was significantly longer for the 12-lead ECG than for handheld device in both cohorts (p < 0.001). Conclusion: QTc monitoring with KardiaMobile-6L in COVID-19 patients was feasible. Time of ECG registration was significantly lower with the smart device, which may offer an important advantage for prevention of virus dissemination among healthcare providers.


Subject(s)
COVID-19/drug therapy , Electrocardiography/methods , Long QT Syndrome/diagnosis , Aged , Aged, 80 and over , Anti-Bacterial Agents/adverse effects , Antiviral Agents/adverse effects , Azithromycin/adverse effects , Drug Combinations , Electrocardiography/instrumentation , Enzyme Inhibitors/adverse effects , Feasibility Studies , Female , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Lopinavir/adverse effects , Male , Middle Aged , Point-of-Care Systems , Prospective Studies , Reproducibility of Results , Ritonavir/adverse effects , SARS-CoV-2
17.
J Am Heart Assoc ; 9(12): e017144, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-1255736

ABSTRACT

Background Despite a lack of clinical evidence, hydroxychloroquine and azithromycin are being administered widely to patients with verified or suspected coronavirus disease 2019 (COVID-19). Both drugs may increase risk of lethal arrhythmias associated with QT interval prolongation. Methods and Results We analyzed a case series of COVID-19-positive/suspected patients admitted between February 1, 2020, and April 4, 2020, who were treated with azithromycin, hydroxychloroquine, or a combination of both drugs. We evaluated baseline and postmedication QT interval (corrected QT interval [QTc]; Bazett) using 12-lead ECGs. Critical QTc prolongation was defined as follows: (1) maximum QTc ≥500 ms (if QRS <120 ms) or QTc ≥550 ms (if QRS ≥120 ms) and (2) QTc increase of ≥60 ms. Tisdale score and Elixhauser comorbidity index were calculated. Of 490 COVID-19-positive/suspected patients, 314 (64%) received either/both drugs and 98 (73 COVID-19 positive and 25 suspected) met study criteria (age, 62±17 years; 61% men). Azithromycin was prescribed in 28%, hydroxychloroquine in 10%, and both in 62%. Baseline mean QTc was 448±29 ms and increased to 459±36 ms (P=0.005) with medications. Significant prolongation was observed only in men (18±43 ms versus -0.2±28 ms in women; P=0.02). A total of 12% of patients reached critical QTc prolongation. Changes in QTc were highest with the combination compared with either drug, with much greater prolongation with combination versus azithromycin (17±39 ms versus 0.5±40 ms; P=0.07). No patients manifested torsades de pointes. Conclusions Overall, 12% of patients manifested critical QTc prolongation, and the combination caused greater prolongation than either drug alone. The balance between uncertain benefit and potential risk when treating COVID-19 patients should be carefully assessed.


Subject(s)
Azithromycin/therapeutic use , Betacoronavirus , Coronavirus Infections/drug therapy , Electrocardiography/drug effects , Hydroxychloroquine/therapeutic use , Long QT Syndrome/chemically induced , Pandemics , Pneumonia, Viral/drug therapy , Anti-Bacterial Agents/therapeutic use , Antimalarials/therapeutic use , COVID-19 , Coronavirus Infections/complications , Drug Therapy, Combination , Female , Humans , Long QT Syndrome/physiopathology , Male , Middle Aged , Pneumonia, Viral/complications , Prognosis , Risk Factors , SARS-CoV-2
19.
Europace ; 23(7): 1124-1133, 2021 07 18.
Article in English | MEDLINE | ID: covidwho-1233851

ABSTRACT

AIMS: Coronavirus disease of 2019 (COVID-19) has rapidly become a worldwide pandemic. Many clinical trials have been initiated to fight the disease. Among those, hydroxychloroquine and azithromycin had initially been suggested to improve clinical outcomes. Despite any demonstrated beneficial effects, they are still in use in some countries but have been reported to prolong the QT interval and induce life-threatening arrhythmia. Since a significant proportion of the world population may be treated with such COVID-19 therapies, evaluation of the arrhythmogenic risk of any candidate drug is needed. METHODS AND RESULTS: Using the O'Hara-Rudy computer model of human ventricular wedge, we evaluate the arrhythmogenic potential of clinical factors that can further alter repolarization in COVID-19 patients in addition to hydroxychloroquine (HCQ) and azithromycin (AZM) such as tachycardia, hypokalaemia, and subclinical to mild long QT syndrome. Hydroxychloroquine and AZM drugs have little impact on QT duration and do not induce any substrate prone to arrhythmia in COVID-19 patients with normal cardiac repolarization reserve. Nevertheless, in every tested condition in which this reserve is reduced, the model predicts larger electrocardiogram impairments, as with dofetilide. In subclinical conditions, the model suggests that mexiletine limits the deleterious effects of AZM and HCQ. CONCLUSION: By studying the HCQ and AZM co-administration case, we show that the easy-to-use O'Hara-Rudy model can be applied to assess the QT-prolongation potential of off-label drugs, beyond HCQ and AZM, in different conditions representative of COVID-19 patients and to evaluate the potential impact of additional drug used to limit the arrhythmogenic risk.


Subject(s)
COVID-19 , Long QT Syndrome , Azithromycin/adverse effects , COVID-19/drug therapy , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/prevention & control , Humans , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , SARS-CoV-2
20.
JAMA Netw Open ; 4(4): e216842, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1198342

ABSTRACT

Importance: Critical illness, a marked inflammatory response, and viruses such as SARS-CoV-2 may prolong corrected QT interval (QTc). Objective: To evaluate baseline QTc interval on 12-lead electrocardiograms (ECGs) and ensuing changes among patients with and without COVID-19. Design, Setting, and Participants: This cohort study included 3050 patients aged 18 years and older who underwent SARS-CoV-2 testing and had ECGs at Columbia University Irving Medical Center from March 1 through May 1, 2020. Patients were analyzed by treatment group over 5 days, as follows: hydroxychloroquine with azithromycin, hydroxychloroquine alone, azithromycin alone, and neither hydroxychloroquine nor azithromycin. ECGs were manually analyzed by electrophysiologists masked to COVID-19 status. Multivariable modeling evaluated clinical associations with QTc prolongation from baseline. Exposures: COVID-19, hydroxychloroquine, azithromycin. Main Outcomes and Measures: Mean QTc prolongation, percentage of patients with QTc of 500 milliseconds or greater. Results: A total of 965 patients had more than 2 ECGs and were included in the study, with 561 (58.1%) men, 198 (26.2%) Black patients, and 191 (19.8%) aged 80 years and older. There were 733 patients (76.0%) with COVID-19 and 232 patients (24.0%) without COVID-19. COVID-19 infection was associated with significant mean QTc prolongation from baseline by both 5-day and 2-day multivariable models (5-day, patients with COVID-19: 20.81 [95% CI, 15.29 to 26.33] milliseconds; P < .001; patients without COVID-19: -2.01 [95% CI, -17.31 to 21.32] milliseconds; P = .93; 2-day, patients with COVID-19: 17.40 [95% CI, 12.65 to 22.16] milliseconds; P < .001; patients without COVID-19: 0.11 [95% CI, -12.60 to 12.81] milliseconds; P = .99). COVID-19 infection was independently associated with a modeled mean 27.32 (95% CI, 4.63-43.21) millisecond increase in QTc at 5 days compared with COVID-19-negative status (mean QTc, with COVID-19: 450.45 [95% CI, 441.6 to 459.3] milliseconds; without COVID-19: 423.13 [95% CI, 403.25 to 443.01] milliseconds; P = .01). More patients with COVID-19 not receiving hydroxychloroquine and azithromycin had QTc of 500 milliseconds or greater compared with patients without COVID-19 (34 of 136 [25.0%] vs 17 of 158 [10.8%], P = .002). Multivariable analysis revealed that age 80 years and older compared with those younger than 50 years (mean difference in QTc, 11.91 [SE, 4.69; 95% CI, 2.73 to 21.09]; P = .01), severe chronic kidney disease compared with no chronic kidney disease (mean difference in QTc, 12.20 [SE, 5.26; 95% CI, 1.89 to 22.51; P = .02]), elevated high-sensitivity troponin levels (mean difference in QTc, 5.05 [SE, 1.19; 95% CI, 2.72 to 7.38]; P < .001), and elevated lactate dehydrogenase levels (mean difference in QTc, 5.31 [SE, 2.68; 95% CI, 0.06 to 10.57]; P = .04) were associated with QTc prolongation. Torsades de pointes occurred in 1 patient (0.1%) with COVID-19. Conclusions and Relevance: In this cohort study, COVID-19 infection was independently associated with significant mean QTc prolongation at days 5 and 2 of hospitalization compared with day 0. More patients with COVID-19 had QTc of 500 milliseconds or greater compared with patients without COVID-19.


Subject(s)
Azithromycin , COVID-19 , Electrocardiography , Hydroxychloroquine , Long QT Syndrome , Aged, 80 and over , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/adverse effects , Azithromycin/administration & dosage , Azithromycin/adverse effects , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/epidemiology , COVID-19 Testing/methods , Drug Therapy, Combination/methods , Drug Therapy, Combination/statistics & numerical data , Electrocardiography/methods , Electrocardiography/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Long QT Syndrome/chemically induced , Long QT Syndrome/diagnosis , Long QT Syndrome/epidemiology , Long QT Syndrome/virology , Male , Middle Aged , New York/epidemiology , Outcome and Process Assessment, Health Care , Risk Factors , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL