Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Commun Biol ; 5(1): 212, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1735294

ABSTRACT

Internalization of membrane proteins plays a key role in many physiological functions; however, highly sensitive and versatile technologies are lacking to study such processes in real-time living systems. Here we describe an assay based on bioluminescence able to quantify membrane receptor trafficking for a wide variety of internalization mechanisms such as GPCR internalization/recycling, antibody-mediated internalization, and SARS-CoV2 viral infection. This study represents an alternative drug discovery tool to accelerate the drug development for a wide range of physiological processes, such as cancer, neurological, cardiopulmonary, metabolic, and infectious diseases including COVID-19.


Subject(s)
Drug Discovery/methods , Membrane Proteins , Protein Transport/physiology , Spectrometry, Fluorescence/methods , COVID-19 , Drug Development/methods , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Microscopy, Fluorescence , Nanotechnology , Receptors, G-Protein-Coupled , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Virus Internalization
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1518611

ABSTRACT

Inhaled nebulized interferon (IFN)-α and IFN-ß have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5'-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3'-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 µM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Interferon-alpha/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Exoribonucleases/genetics , Genetic Vectors , HeLa Cells , Humans , Interferon-alpha/administration & dosage , Luciferases/genetics , Luciferases/metabolism , Naphthyridines/administration & dosage , Naphthyridines/pharmacology , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacology , RNA, Viral/drug effects , Replicon
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1512374

ABSTRACT

Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.


Subject(s)
Nucleosides/metabolism , Phosphotransferases/metabolism , Adenosine Triphosphate/metabolism , Animals , Drosophila melanogaster/metabolism , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Humans , Luciferases/metabolism , Phosphorylation/physiology , Substrate Specificity
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1488612

ABSTRACT

Inhaled nebulized interferon (IFN)-α and IFN-ß have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5'-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3'-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 µM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Interferon-alpha/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/genetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Exoribonucleases/genetics , Genetic Vectors , HeLa Cells , Humans , Interferon-alpha/administration & dosage , Luciferases/genetics , Luciferases/metabolism , Naphthyridines/administration & dosage , Naphthyridines/pharmacology , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacology , RNA, Viral/drug effects , Replicon
5.
Sci Rep ; 11(1): 18428, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1415954

ABSTRACT

Here we describe a homogeneous bioluminescent immunoassay based on the interaction between Fc-tagged SARS-CoV-2 Spike RBD and human ACE2, and its detection by secondary antibodies labeled with NanoLuc luciferase fragments LgBit and SmBit. The assay utility for the discovery of novel inhibitors was demonstrated with a panel of anti-RBD antibodies, ACE2-derived miniproteins and soluble ACE2. Studying the effect of RBD mutations on ACE2 binding showed that the N501Y mutation increased RBD apparent affinity toward ACE2 tenfold that resulted in escaping inhibition by some anti-RBD antibodies. In contrast, while E484K mutation did not highly change the binding affinity, it still escaped antibody inhibition likely due to changes in the epitope recognized by the antibody. Also, neutralizing antibodies (NAbs) from COVID-19 positive samples from two distinct regions (USA and Brazil) were successfully detected and the results further suggest the persistence of NAbs for at least 6 months post symptom onset. Finally, sera from vaccinated individuals were tested for NAbs and showed varying neutralizing activity after first and second doses, suggesting the assay can be used to assess immunity of vaccinated populations. Our results demonstrate the broad utility and ease of use of this methodology both for drug discovery and clinical research applications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/analysis , COVID-19/prevention & control , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Antibodies, Viral/analysis , Brazil , COVID-19/immunology , Humans , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , United States , Vaccination
6.
Nat Commun ; 12(1): 4586, 2021 07 28.
Article in English | MEDLINE | ID: covidwho-1387355

ABSTRACT

Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a mix-and-measure homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. Introduction of a calibrator luciferase provides a robust ratiometric signal that allows direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. With its easy-to-implement standardized workflow, RAPPID provides an attractive, fast, and low-cost alternative to traditional immunoassays, in an academic setting, in clinical laboratories, and for point-of-care applications.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/standards , Luminescent Measurements/standards , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Serological Testing/instrumentation , Calibration , GTP-Binding Proteins/chemistry , Genes, Reporter , Humans , Immunoconjugates/chemistry , Limit of Detection , Luciferases/genetics , Luciferases/metabolism , Point-of-Care Testing , SARS-CoV-2/genetics
7.
STAR Protoc ; 2(4): 100781, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1356489

ABSTRACT

We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).


Subject(s)
COVID-19/pathology , Gene Expression Regulation, Viral/drug effects , Interferons/pharmacology , Luciferases/metabolism , RNA, Messenger/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Humans , Luciferases/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , SARS-CoV-2/drug effects , Viral Proteins/genetics
8.
Sci Rep ; 11(1): 9136, 2021 04 28.
Article in English | MEDLINE | ID: covidwho-1207152

ABSTRACT

Coiled-coil (CC) dimer-forming peptides are attractive designable modules for mediating protein association. Highly stable CCs are desired for biological activity regulation and assay. Here, we report the design and versatile applications of orthogonal CC dimer-forming peptides with a dissociation constant in the low nanomolar range. In vitro stability and specificity was confirmed in mammalian cells by enzyme reconstitution, transcriptional activation using a combination of DNA-binding and a transcriptional activation domain, and cellular-enzyme-activity regulation based on externally-added peptides. In addition to cellular regulation, coiled-coil-mediated reporter reconstitution was used for the detection of cell fusion mediated by the interaction between the spike protein of pandemic SARS-CoV2 and the ACE2 receptor. This assay can be used to investigate the mechanism of viral spike protein-mediated fusion or screening for viral inhibitors under biosafety level 1 conditions.


Subject(s)
Host-Pathogen Interactions/physiology , Peptides/chemistry , Peptides/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cell Fusion , Circular Dichroism , Giant Cells/virology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Membrane Fusion , Peptides/genetics , Protein Engineering/methods , Protein Multimerization , Protein Stability , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transcription, Genetic
9.
Nat Commun ; 12(1): 1806, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1146643

ABSTRACT

Better diagnostic tools are needed to combat the ongoing COVID-19 pandemic. Here, to meet this urgent demand, we report a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This serological assay, called SATiN, is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in the liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that SATiN has a similar sensitivity to ELISA, and its readouts are consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics, as well as disease and vaccination management.


Subject(s)
Antibodies, Viral/blood , COVID-19 Testing/methods , COVID-19/diagnosis , Immunoassay/methods , Luciferases/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Spike Glycoprotein, Coronavirus/immunology
10.
Mol Ther ; 29(6): 1984-2000, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1093250

ABSTRACT

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to the RBD's antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point toward targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Neutralizing/pharmacology , Biological Assay , Lectins/pharmacology , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Asparagine/chemistry , Asparagine/metabolism , Binding Sites , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/immunology , COVID-19/virology , Genes, Reporter , Glycosylation/drug effects , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Luciferases/genetics , Luciferases/metabolism , Luminescent Measurements , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization/drug effects
11.
Viruses ; 13(2)2021 01 24.
Article in English | MEDLINE | ID: covidwho-1052508

ABSTRACT

The 3C-like protease (3CLpro) of SARS-CoV-2 is considered an excellent target for COVID-19 antiviral drug development because it is essential for viral replication and has a cleavage specificity distinct from human proteases. However, drug development for 3CLpro has been hindered by a lack of cell-based reporter assays that can be performed in a BSL-2 setting. Current efforts to identify 3CLpro inhibitors largely rely upon in vitro screening, which fails to account for cell permeability and cytotoxicity of compounds, or assays involving replication-competent virus, which must be performed in a BSL-3 facility. To address these limitations, we have developed a novel cell-based luciferase complementation reporter assay to identify inhibitors of SARS-CoV-2 3CLpro in a BSL-2 setting. The assay is based on a lentiviral vector that co-expresses 3CLpro and two luciferase fragments linked together by a 3CLpro cleavage site. 3CLpro-mediated cleavage results in a loss of complementation and low luciferase activity, whereas inhibition of 3CLpro results in 10-fold higher levels of luciferase activity. The luciferase reporter assay can easily distinguish true 3CLpro inhibition from cytotoxicity, a powerful feature that should reduce false positives during screening. Using the assay, we screened 32 small molecules for activity against SARS-CoV-2 3CLpro, including HIV protease inhibitors, HCV protease inhibitors, and various other compounds that have been reported to inhibit SARS-CoV-2 3CLpro. Of these, only five exhibited significant inhibition of 3CLpro in cells: GC376, boceprevir, Z-FA-FMK, calpain inhibitor XII, and GRL-0496. This assay should greatly facilitate efforts to identify more potent inhibitors of SARS-CoV-2 3CLpro.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases/metabolism , Protease Inhibitors/metabolism , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Cell Survival/drug effects , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Lentivirus/genetics , Luciferases/genetics , Protease Inhibitors/pharmacology
12.
Virology ; 556: 73-78, 2021 04.
Article in English | MEDLINE | ID: covidwho-1049897

ABSTRACT

The need to stem the current outbreak of SARS-CoV-2 responsible for COVID-19 is driving the search for inhibitors that will block coronavirus replication and pathogenesis. The coronavirus 3C-like protease (3CLpro) encoded in the replicase polyprotein is an attractive target for antiviral drug development because protease activity is required for generating a functional replication complex. Reagents that can be used to screen for protease inhibitors and for identifying the replicase products of SARS-CoV-2 are urgently needed. Here we describe a luminescence-based biosensor assay for evaluating small molecule inhibitors of SARS-CoV-2 3CLpro/main protease. We also document that a polyclonal rabbit antiserum developed against SARS-CoV 3CLpro cross reacts with the highly conserved 3CLpro of SARS-CoV-2. These reagents will facilitate the pre-clinical evaluation of SARS-CoV-2 protease inhibitors.


Subject(s)
Biosensing Techniques/methods , Coronavirus 3C Proteases/metabolism , Immune Sera/immunology , Luciferases/metabolism , SARS-CoV-2/metabolism , Animals , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/immunology , Cross Reactions , Luciferases/genetics , Protease Inhibitors/pharmacology , Rabbits , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS Virus/immunology , SARS Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
13.
Viruses ; 13(2)2021 01 24.
Article in English | MEDLINE | ID: covidwho-1045366

ABSTRACT

The 3C-like protease (3CLpro) of SARS-CoV-2 is considered an excellent target for COVID-19 antiviral drug development because it is essential for viral replication and has a cleavage specificity distinct from human proteases. However, drug development for 3CLpro has been hindered by a lack of cell-based reporter assays that can be performed in a BSL-2 setting. Current efforts to identify 3CLpro inhibitors largely rely upon in vitro screening, which fails to account for cell permeability and cytotoxicity of compounds, or assays involving replication-competent virus, which must be performed in a BSL-3 facility. To address these limitations, we have developed a novel cell-based luciferase complementation reporter assay to identify inhibitors of SARS-CoV-2 3CLpro in a BSL-2 setting. The assay is based on a lentiviral vector that co-expresses 3CLpro and two luciferase fragments linked together by a 3CLpro cleavage site. 3CLpro-mediated cleavage results in a loss of complementation and low luciferase activity, whereas inhibition of 3CLpro results in 10-fold higher levels of luciferase activity. The luciferase reporter assay can easily distinguish true 3CLpro inhibition from cytotoxicity, a powerful feature that should reduce false positives during screening. Using the assay, we screened 32 small molecules for activity against SARS-CoV-2 3CLpro, including HIV protease inhibitors, HCV protease inhibitors, and various other compounds that have been reported to inhibit SARS-CoV-2 3CLpro. Of these, only five exhibited significant inhibition of 3CLpro in cells: GC376, boceprevir, Z-FA-FMK, calpain inhibitor XII, and GRL-0496. This assay should greatly facilitate efforts to identify more potent inhibitors of SARS-CoV-2 3CLpro.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Luciferases/metabolism , Protease Inhibitors/metabolism , SARS-CoV-2/enzymology , Antiviral Agents/pharmacology , Cell Survival/drug effects , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Lentivirus/genetics , Luciferases/genetics , Protease Inhibitors/pharmacology
14.
Biochem Biophys Res Commun ; 534: 485-490, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-927785

ABSTRACT

To identify drugs that could potentially be used to treat infection with SARS-CoV-2, a high throughput 384-well assay was developed to measure the binding of the receptor binding domain (RBD) of the viral S1 protein to its main receptor, angiotensin converting enzyme 2 (ACE2). The RBD was fused to both a HiBIT tag and an IL6 secretion signal to enable facile collection from the cell culture media. The addition of culture media containing this protein, termed HiBIT-RBD, to cells expressing ACE2 led to binding that was specific to ACE2 and both time and concentration dependant, Binding could be inhibited by both RBD expressed in E. coli and by a full length S1 - Fc fusion protein (Fc-fused S1) expressed in eukaryotic cells. The mutation of residues that are known to play a role in the interaction of RBD with ACE2 also reduced binding. This assay may be used to identify drugs which inhibit the viral uptake into cells mediated by binding to ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Luciferases/metabolism , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites/genetics , COVID-19/drug therapy , COVID-19/metabolism , COVID-19/virology , Humans , Luciferases/genetics , Nanotechnology/methods , Protein Binding , Protein Domains , Receptors, Virus/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics
15.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-910383

ABSTRACT

The emerging pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused social and economic disruption worldwide, infecting over 9.0 million people and killing over 469 000 by 24 June 2020. Unfortunately, no vaccine or antiviral drug that completely eliminates the transmissible disease coronavirus disease 2019 (COVID-19) has been developed to date. Given that coronavirus nonstructural protein 1 (nsp1) is a good target for attenuated vaccines, it is of great significance to explore the detailed characteristics of SARS-CoV-2 nsp1. Here, we first confirmed that SARS-CoV-2 nsp1 had a conserved function similar to that of SARS-CoV nsp1 in inhibiting host-protein synthesis and showed greater inhibition efficiency, as revealed by ribopuromycylation and Renilla luciferase (Rluc) reporter assays. Specifically, bioinformatics and biochemical experiments showed that by interacting with 40S ribosomal subunit, the lysine located at amino acid 164 (K164) was the key residue that enabled SARS-CoV-2 nsp1 to suppress host gene expression. Furthermore, as an inhibitor of host-protein expression, SARS-CoV-2 nsp1 contributed to cell-cycle arrest in G0/G1 phase, which might provide a favourable environment for virus production. Taken together, this research uncovered the detailed mechanism by which SARS-CoV-2 nsp1 K164 inhibited host gene expression, laying the foundation for the development of attenuated vaccines based on nsp1 modification.


Subject(s)
Host-Pathogen Interactions/genetics , Lysine/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Amino Acid Substitution , Computational Biology/methods , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Humans , Luciferases/genetics , Luciferases/metabolism , Lysine/metabolism , Mutation , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/virology , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Viral Nonstructural Proteins/metabolism
16.
J Gen Virol ; 102(1)2021 01.
Article in English | MEDLINE | ID: covidwho-873186

ABSTRACT

Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/diagnosis , Henipavirus Infections/diagnosis , High-Throughput Screening Assays , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/metabolism , Antibodies, Viral/isolation & purification , Antibodies, Viral/metabolism , COVID-19/immunology , COVID-19/virology , Cell Fusion , Convalescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Immune Sera/chemistry , Luciferases/genetics , Luciferases/metabolism , Models, Molecular , Nipah Virus/immunology , Nipah Virus/pathogenicity , Protein Conformation , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/immunology , Respiratory Syncytial Virus, Human/pathogenicity , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Swine , Viral Fusion Protein Inhibitors/chemistry , Viral Fusion Protein Inhibitors/metabolism , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
17.
Virus Res ; 286: 198074, 2020 09.
Article in English | MEDLINE | ID: covidwho-611212

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus causing the pandemic of severe pneumonia (Coronavirus Disease 2019, COVID-19). SARS-CoV-2 is highly pathogenic in human, having posed immeasurable public health challenges to the world. Innate immune response is critical for the host defense against viral infection and the dysregulation of the host innate immune responses probably aggravates SARS-CoV-2 infection, contributing to the high morbidity and lethality of COVID-19. It has been reported that some coronavirus proteins play an important role in modulating innate immunity of the host, but few studies have been conducted on SARS-CoV-2. In this study, we screened the viral proteins of SARS-CoV-2 and found that the viral ORF6, ORF8 and nucleocapsid proteins were potential inhibitors of type I interferon signaling pathway, a key component for antiviral response of host innate immune. All the three proteins showed strong inhibition on type I interferon (IFN-ß) and NF-κB-responsive promoter, further examination revealed that these proteins were able to inhibit the interferon-stimulated response element (ISRE) after infection with Sendai virus, while only ORF6 and ORF8 proteins were able to inhibit the ISRE after treatment with interferon beta. These findings would be helpful for the further study of the detailed signaling pathway and unveil the key molecular player that may be targeted.


Subject(s)
Betacoronavirus/genetics , Host-Pathogen Interactions/genetics , Interferon-beta/genetics , NF-kappa B/genetics , Nucleocapsid Proteins/genetics , Viral Proteins/genetics , Betacoronavirus/immunology , Coronavirus Nucleocapsid Proteins , Gene Expression Regulation , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Interferon-beta/immunology , Luciferases/genetics , Luciferases/metabolism , NF-kappa B/immunology , Nucleocapsid Proteins/immunology , Phosphoproteins , Plasmids/chemistry , Plasmids/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Response Elements , SARS-CoV-2 , Sendai virus/genetics , Sendai virus/immunology , Signal Transduction , Transfection/methods , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL