Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
PLoS One ; 17(3): e0265691, 2022.
Article in English | MEDLINE | ID: covidwho-1910563

ABSTRACT

Automatic detection of some pulmonary abnormalities using chest X-rays may be impacted adversely due to obscuring by bony structures like the ribs and the clavicles. Automated bone suppression methods would increase soft tissue visibility and enhance automated disease detection. We evaluate this hypothesis using a custom ensemble of convolutional neural network models, which we call DeBoNet, that suppresses bones in frontal CXRs. First, we train and evaluate variants of U-Nets, Feature Pyramid Networks, and other proposed custom models using a private collection of CXR images and their bone-suppressed counterparts. The DeBoNet, constructed using the top-3 performing models, outperformed the individual models in terms of peak signal-to-noise ratio (PSNR) (36.7977±1.6207), multi-scale structural similarity index measure (MS-SSIM) (0.9848±0.0073), and other metrics. Next, the best-performing bone-suppression model is applied to CXR images that are pooled from several sources, showing no abnormality and other findings consistent with COVID-19. The impact of bone suppression is demonstrated by evaluating the gain in performance in detecting pulmonary abnormality consistent with COVID-19 disease. We observe that the model trained on bone-suppressed CXRs (MCC: 0.9645, 95% confidence interval (0.9510, 0.9780)) significantly outperformed (p < 0.05) the model trained on non-bone-suppressed images (MCC: 0.7961, 95% confidence interval (0.7667, 0.8255)) in detecting findings consistent with COVID-19 indicating benefits derived from automatic bone suppression on disease classification. The code is available at https://github.com/sivaramakrishnan-rajaraman/Bone-Suppresion-Ensemble.


Subject(s)
COVID-19/diagnostic imaging , Lung Diseases/diagnostic imaging , Neural Networks, Computer , Radiography, Thoracic/methods , Clavicle/diagnostic imaging , Humans , Ribs/diagnostic imaging , Signal-To-Noise Ratio
2.
J Healthc Eng ; 2022: 9036457, 2022.
Article in English | MEDLINE | ID: covidwho-1770049

ABSTRACT

Chest X-ray (CXR) imaging is one of the most widely used and economical tests to diagnose a wide range of diseases. However, even for expert radiologists, it is a challenge to accurately diagnose diseases from CXR samples. Furthermore, there remains an acute shortage of trained radiologists worldwide. In the present study, a range of machine learning (ML), deep learning (DL), and transfer learning (TL) approaches have been evaluated to classify diseases in an openly available CXR image dataset. A combination of the synthetic minority over-sampling technique (SMOTE) and weighted class balancing is used to alleviate the effects of class imbalance. A hybrid Inception-ResNet-v2 transfer learning model coupled with data augmentation and image enhancement gives the best accuracy. The model is deployed in an edge environment using Amazon IoT Core to automate the task of disease detection in CXR images with three categories, namely pneumonia, COVID-19, and normal. Comparative analysis has been given in various metrics such as precision, recall, accuracy, AUC-ROC score, etc. The proposed technique gives an average accuracy of 98.66%. The accuracies of other TL models, namely SqueezeNet, VGG19, ResNet50, and MobileNetV2 are 97.33%, 91.66%, 90.33%, and 76.00%, respectively. Further, a DL model, trained from scratch, gives an accuracy of 92.43%. Two feature-based ML classification techniques, namely support vector machine with local binary pattern (SVM + LBP) and decision tree with histogram of oriented gradients (DT + HOG) yield an accuracy of 87.98% and 86.87%, respectively.


Subject(s)
COVID-19 , Lung Diseases , COVID-19/diagnostic imaging , Humans , Lung Diseases/diagnostic imaging , Machine Learning , Support Vector Machine , Thorax
3.
Radiology ; 304(1): 185-192, 2022 07.
Article in English | MEDLINE | ID: covidwho-1741709

ABSTRACT

Background The long-term effects of SARS-CoV-2 infection on pulmonary structure and function remain incompletely characterized. Purpose To test whether SARS-CoV-2 infection leads to small airways disease in patients with persistent symptoms. Materials and Methods In this single-center study at a university teaching hospital, adults with confirmed COVID-19 who remained symptomatic more than 30 days following diagnosis were prospectively enrolled from June to December 2020 and compared with healthy participants (controls) prospectively enrolled from March to August 2018. Participants with post-acute sequelae of COVID-19 (PASC) were classified as ambulatory, hospitalized, or having required the intensive care unit (ICU) based on the highest level of care received during acute infection. Symptoms, pulmonary function tests, and chest CT images were collected. Quantitative CT analysis was performed using supervised machine learning to measure regional ground-glass opacity (GGO) and using inspiratory and expiratory image-matching to measure regional air trapping. Univariable analyses and multivariable linear regression were used to compare groups. Results Overall, 100 participants with PASC (median age, 48 years; 66 women) were evaluated and compared with 106 matched healthy controls; 67% (67 of 100) of the participants with PASC were classified as ambulatory, 17% (17 of 100) were hospitalized, and 16% (16 of 100) required the ICU. In the hospitalized and ICU groups, the mean percentage of total lung classified as GGO was 13.2% and 28.7%, respectively, and was higher than that in the ambulatory group (3.7%, P < .001 for both comparisons). The mean percentage of total lung affected by air trapping was 25.4%, 34.6%, and 27.3% in the ambulatory, hospitalized, and ICU groups, respectively, and 7.2% in healthy controls (P < .001). Air trapping correlated with the residual volume-to-total lung capacity ratio (ρ = 0.6, P < .001). Conclusion In survivors of COVID-19, small airways disease occurred independently of initial infection severity. The long-term consequences are unknown. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Elicker in this issue.


Subject(s)
COVID-19/complications , Lung Diseases , COVID-19/diagnostic imaging , Female , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Male , Middle Aged , Tomography, X-Ray Computed/methods
4.
Radiology ; 295(3): 200463, 2020 06.
Article in English | MEDLINE | ID: covidwho-1723927

ABSTRACT

In this retrospective study, chest CTs of 121 symptomatic patients infected with coronavirus disease-19 (COVID-19) from four centers in China from January 18, 2020 to February 2, 2020 were reviewed for common CT findings in relationship to the time between symptom onset and the initial CT scan (i.e. early, 0-2 days (36 patients), intermediate 3-5 days (33 patients), late 6-12 days (25 patients)). The hallmarks of COVID-19 infection on imaging were bilateral and peripheral ground-glass and consolidative pulmonary opacities. Notably, 20/36 (56%) of early patients had a normal CT. With a longer time after the onset of symptoms, CT findings were more frequent, including consolidation, bilateral and peripheral disease, greater total lung involvement, linear opacities, "crazy-paving" pattern and the "reverse halo" sign. Bilateral lung involvement was observed in 10/36 early patients (28%), 25/33 intermediate patients (76%), and 22/25 late patients (88%).


Subject(s)
Coronavirus Infections/diagnostic imaging , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Pneumonia, Viral/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Female , Humans , Lung/diagnostic imaging , Lung/pathology , Lung/virology , Lung Diseases/pathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Radiography, Thoracic/methods , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Young Adult
5.
Chest ; 161(2): e97-e101, 2022 02.
Article in English | MEDLINE | ID: covidwho-1664781

ABSTRACT

CASE PRESENTATION: An 84-year-old man with an active smoking habit presented to the ED with dyspnea, hemoptysis, and thick phlegm that was difficult to clear. He reported no weight loss, no fever, and no chest pain or dysphonia. He denied both international travel and previous contact with confirmed cases of TB or SARS-CoV-2. He had no known occupational exposures. The patient's personal history included a resolved complete atrioventricular block that required a permanent pacemaker, moderate-to-severe COPD, rheumatoid arthritis (treated with oral prednisone, 2.5 mg/d) and B-chronic lymphocytic leukemia (treated with methotrexate and prophylactic oral supplements of ferrous sulfate). Moreover, he was in medical follow up because of a peptic ulcer, atrophic gastritis, and colonic diverticulosis. The patient also had a history of thoracic surgery after an episode of acute mediastinitis from an odontogenic infection, which required ICU management and temporal tracheostomy.


Subject(s)
Bronchoscopy/methods , COVID-19/diagnosis , Ferrous Compounds , Lung Diseases , Multiple Chronic Conditions/therapy , Respiratory Aspiration , Aged, 80 and over , Biopsy/methods , Bronchoalveolar Lavage/methods , COVID-19/epidemiology , Diagnosis, Differential , Ferrous Compounds/administration & dosage , Ferrous Compounds/adverse effects , Hematinics/administration & dosage , Hematinics/adverse effects , Hemoptysis/diagnosis , Hemoptysis/etiology , Humans , Lung Diseases/chemically induced , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Lung Diseases/therapy , Male , Respiratory Aspiration/complications , Respiratory Aspiration/diagnosis , Respiratory Aspiration/physiopathology , SARS-CoV-2 , Tomography, X-Ray Computed/methods , Withholding Treatment
6.
Can J Cardiol ; 38(3): 338-346, 2022 03.
Article in English | MEDLINE | ID: covidwho-1654182

ABSTRACT

BACKGROUND: Strict isolation precautions limit formal echocardiography use in the setting of COVID-19 infection. Information on the importance of handheld focused ultrasound for cardiac evaluation in these patients is scarce. This study investigated the utility of a handheld echocardiography device in hospitalised patients with COVID-19 in diagnosing cardiac pathologies and predicting the composite end point of in-hospital death, mechanical ventilation, shock, and acute decompensated heart failure. METHODS: From April 28 through July 27, 2020, consecutive patients diagnosed with COVID-19 underwent evaluation with the use of handheld ultrasound (Vscan Extend with Dual Probe; GE Healthcare) within 48 hours of admission. The patients were divided into 2 groups: "normal" and "abnormal" echocardiogram, as defined by biventricular systolic dysfunction/enlargement or moderate/severe valvular regurgitation/stenosis. RESULTS: Among 102 patients, 26 (25.5%) had abnormal echocardiograms. They were older with more comorbidities and more severe presenting symptoms compared with the group with normal echocardiograms. The prevalences of the composite outcome among low- and high-risk patients (oxygen saturation < 94%) were 3.1% and 27.1%, respectively. Multivariate logistic regression analysis revealed that an abnormal echocardiogram at presentation was independently associated with the composite end point (odds ratio 6.19, 95% confidence interval 1.50-25.57; P = 0.012). CONCLUSIONS: An abnormal echocardiogram in COVID-19 infection settings is associated with a higher burden of medical comorbidities and independently predicts major adverse end points. Handheld focused echocardiography can be used as an important "rule-out" tool among high-risk patients with COVID-19 and should be integrated into their routine admission evaluation. However, its routine use among low-risk patients is not recommended.


Subject(s)
COVID-19/complications , Echocardiography/instrumentation , Heart Diseases/diagnostic imaging , Lung Diseases/diagnostic imaging , Ultrasonography/instrumentation , Aged , Echocardiography/standards , Female , Heart Diseases/etiology , Hospitalization , Humans , Lung Diseases/etiology , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Ultrasonography/standards
7.
Emerg Radiol ; 29(2): 227-234, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1604573

ABSTRACT

PURPOSE: The use of lung ultrasound for diagnosis of COVID-19 has emerged during the pandemic as a beneficial diagnostic modality due to its rapid availability, bedside use, and lack of radiation. This study aimed to determine if routine ultrasound (US) imaging of the lungs of trauma patients with COVID-19 infections who undergo extended focused assessment with sonography for trauma (EFAST) correlates with computed tomography (CT) imaging and X-ray findings, as previously reported in other populations. METHODS: This was a prospective, observational feasibility study performed at two level 1 trauma centers. US, CT, and X-ray imaging were retrospectively reviewed by a surgical trainee and a board-certified radiologist to determine any correlation of imaging findings in patients with active COVID-19 infection. RESULTS: There were 53 patients with lung US images from EFAST available for evaluation and COVID-19 testing. The overall COVID-19 positivity rate was 7.5%. COVID-19 infection was accurately identified by one patient on US by the trainee, but there was a 15.1% false-positive rate for infection based on the radiologist examination. CONCLUSIONS: Evaluation of the lung during EFAST cannot be used in the trauma setting to identify patients with active COVID-19 infection or to stratify patients as high or low risk of infection. This is likely due to differences in lung imaging technique and the presence of concomitant thoracic injury.


Subject(s)
COVID-19 , Focused Assessment with Sonography for Trauma , Lung Diseases , Lung , Wounds and Injuries , COVID-19/complications , COVID-19/diagnostic imaging , COVID-19/epidemiology , False Positive Reactions , Feasibility Studies , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Pandemics , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed , Trauma Centers , Wounds and Injuries/complications , Wounds and Injuries/diagnostic imaging
8.
Emerg Radiol ; 29(1): 9-21, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1525544

ABSTRACT

PURPOSE: To correlate thromboembolic (TE) complications secondary to COVID-19 with the extent of the pulmonary parenchymal disease using CT severity scores and other comorbidities. METHODS: In total, 185 patients with COVID-19 and suspected thromboembolic complications were classified into two groups based on the presence or absence of thromboembolic complications. Thromboembolic complications were categorized based on location. Chest CT severity scoring system was used to assess the pulmonary parenchymal disease severity in all patients. Based into severity scores, patients were categorized into three groups (mild, moderate, and sever disease). RESULTS: The final study cohort consisted of 171 patients (99 male and 72 female) after excluding 14 patients with non-diagnostic CT pulmonary angiography. The TE group included 53 patients with a mean age of 55.1 ± 7.1, while the non-TE group included 118 patients with a mean age of 52.9 ± 10.8. Patients with BMI > 30 kg/m2 or having a history of smoking and HTN were found more frequently in the TE group (p < 0.05). Patients admitted to ICU were significantly higher in the TE group (p < 0.001). There was statistically significant difference (p = 0.002) in chest CT-SS between the TE group (22.8 ± 11.4) and non-TE group (17.6 ± 10.7). The percentage of severe parenchymal disease in the TE group was significantly higher compared to the non-TE group (p < 0.05). Severe parenchymal disease, BMI > 30 kg/m2, smoking, and HTN had a higher and more significant odds ratio for developing TE complications. CONCLUSION: The present data suggest that severe pulmonary parenchymal disease secondary to COVID-19 is associated with a higher incidence of thromboembolic complications.


Subject(s)
COVID-19 , Lung Diseases , Adult , Female , Humans , Lung Diseases/diagnostic imaging , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
9.
Int J Med Sci ; 18(15): 3395-3402, 2021.
Article in English | MEDLINE | ID: covidwho-1409696

ABSTRACT

Computed tomography (CT) of the chest is one of the main diagnositic tools for coronavirus disease 2019 (COVID-19) infection. To document the chest CT findings in patients with confirmed COVID-19 and their association with the clinical severity, we searched related literatures through PubMed, MEDLINE, Embase, Web of Science (inception to May 4, 2020) and reviewed reference lists of previous systematic reviews. A total of 31 case reports (3768 patients) on CT findings of COVID-19 were included. The most common comorbid conditions were hypertension (18.4%) and diabetes mellitus (8.3%). The most common symptom was fever (78.7%), followed by cough (60.2%). It took an average of 5.6 days from symptom onset to admission. The most common chest CT finding was vascular enlargement (84.8%), followed by ground-glass opacity (GGO) (60.1%), air-bronchogram (47.8%), and consolidation (41.4%). Most lung lesions were located in the lung periphery (72.2%) and involved bilateral lung (76%). Most patients showed normal range of laboratory findings such as white blood cell count (96.4%) and lymphocyte (87.2%). Compared to previous published meta-analyses, our study is the first to summarize the different radiologic characteristics of chest CT in a total of 3768 COVID-19 patients by compiling case series studies. A comprehensive diagnostic approach should be adopted for patients with known COVID-19, suspected cases, and for exposed individuals.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , COVID-19/blood , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Lymphocyte Count , Oxygen/therapeutic use , Prognosis
10.
Radiology ; 301(2): E383-E395, 2021 11.
Article in English | MEDLINE | ID: covidwho-1406672

ABSTRACT

The acute course of COVID-19 is variable and ranges from asymptomatic infection to fulminant respiratory failure. Patients recovering from COVID-19 can have persistent symptoms and CT abnormalities of variable severity. At 3 months after acute infection, a subset of patients will have CT abnormalities that include ground-glass opacity (GGO) and subpleural bands with concomitant pulmonary function abnormalities. At 6 months after acute infection, some patients have persistent CT changes to include the resolution of GGOs seen in the early recovery phase and the persistence or development of changes suggestive of fibrosis, such as reticulation with or without parenchymal distortion. The etiology of lung disease after COVID-19 may be a sequela of prolonged mechanical ventilation, COVID-19-induced acute respiratory distress syndrome (ARDS), or direct injury from the virus. Predictors of lung disease after COVID-19 include need for intensive care unit admission, mechanical ventilation, higher inflammatory markers, longer hospital stay, and a diagnosis of ARDS. Treatments of lung disease after COVID-19 are being investigated, including the potential of antifibrotic agents for prevention of lung fibrosis after COVID-19. Future research is needed to determine the long-term persistence of lung disease after COVID-19, its impact on patients, and methods to either prevent or treat it. © RSNA, 2021.


Subject(s)
COVID-19/complications , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Tomography, X-Ray Computed/methods , Acute Disease , Humans , Lung/diagnostic imaging , SARS-CoV-2
12.
G Ital Cardiol (Rome) ; 22(8): 638-647, 2021 Aug.
Article in Italian | MEDLINE | ID: covidwho-1365476

ABSTRACT

In recent years, lung ultrasonography has acquired an important role as a valuable diagnostic tool in clinical practice. The lung is usually poorly explorable, but it provides more acoustic information in pathological conditions that modify the relationship between air, water and tissues. The different acoustic impedance of all these components makes the chest wall a powerful ultrasound reflector: this is responsible for the creation of several artifacts providing valuable information about lung pathophysiology. Lung ultrasonography helps in the diagnostic process of parenchymal and pleural pathologies, in the differential diagnosis of dyspnea and in the clinical and prognostic evaluation of the SARS-CoV-2 infection.


Subject(s)
COVID-19/diagnostic imaging , Lung/diagnostic imaging , Ultrasonography/methods , Cardiologists , Diagnosis, Differential , Dyspnea/diagnostic imaging , Humans , Lung/virology , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Prognosis
13.
BMJ Open Respir Res ; 8(1)2021 08.
Article in English | MEDLINE | ID: covidwho-1356953

ABSTRACT

BACKGROUND: The majority of patients with SARS-CoV-2 infection are diagnosed and managed as outpatients; however, little is known about the burden of pulmonary disease in this setting. Lung ultrasound (LUS) is a convenient tool for detection of COVID-19 pneumonia. Identifying SARS-CoV-2 infected outpatients with pulmonary disease may be important for early risk stratification. OBJECTIVES: To investigate the prevalence, natural history and clinical significance of pulmonary disease in outpatients with SARS-CoV-2. METHODS: SARS-CoV-2 PCR positive outpatients (CV(+)) were assessed with LUS to identify the presence of interstitial pneumonia. Studies were considered positive based on the presence of B-lines, pleural irregularity and consolidations. A subset of patients underwent longitudinal examinations. Correlations between LUS findings and patient symptoms, demographics, comorbidities and clinical outcomes over 8 weeks were evaluated. RESULTS: 102 CV(+) patients underwent LUS with 42 (41%) demonstrating pulmonary involvement. Baseline LUS severity scores correlated with shortness of breath on multivariate analysis. Of the CV(+) patients followed longitudinally, a majority showed improvement or resolution in LUS findings after 1-2 weeks. Only one patient in the CV(+) cohort was briefly hospitalised, and no patient died or required mechanical ventilation. CONCLUSION: We found a high prevalence of LUS findings in outpatients with SARS-CoV-2 infection. Given the pervasiveness of pulmonary disease across a broad spectrum of LUS severity scores and lack of adverse outcomes, our findings suggest that LUS may not be a useful as a risk stratification tool in SARS-CoV-2 in the general outpatient population.


Subject(s)
COVID-19 , Lung Diseases/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung Diseases/virology , Outpatients , Prevalence , Ultrasonography
14.
BMJ Case Rep ; 14(8)2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1350010

ABSTRACT

Diffuse alveolar haemorrhage (DAH) has been reported as a rare complication of clopidogrel use and is usually a diagnosis of exclusion. We describe the case of an 88-year-old Native American woman who presented with acute hypoxic respiratory failure with CT scan of the chest showing diffuse bilateral ground-glass opacities. She had been on clopidogrel for 6 months for a carotid artery stent. Bronchoscopy with bronchoalveolar lavage and transbronchial biopsies revealed DAH. Infectious and autoimmune work-up were all negative. Clopidogrel was stopped and high-dose steroids were started. Her symptoms gradually improved until she was discharged from the hospital. The differential DAH is broad. Anticoagulant-induced DAH should be part of the differential diagnosis, and is usually a diagnosis of exclusion.


Subject(s)
Lung Diseases , Aged, 80 and over , Bronchoalveolar Lavage , Bronchoscopy , Clopidogrel/adverse effects , Female , Hemorrhage/chemically induced , Humans , Lung Diseases/diagnosis , Lung Diseases/diagnostic imaging
15.
Pediatr Rheumatol Online J ; 19(1): 104, 2021 Jun 30.
Article in English | MEDLINE | ID: covidwho-1292002

ABSTRACT

BACKGROUND: H syndrome (HS) is a rare autoinflammatory disease caused by a mutation in the solute carrier family 29, member 3 (SCL29A3) gene. It has a variable clinical presentation and little phenotype-genotype correlation. The pathognomonic sign of HS is cutaneous hyperpigmentation located mainly in the inner thighs and often accompanied by other systemic manifestations. Improvement after tocilizumab treatment has been reported in a few patients with HS. We report the first patient with HS who presented cardiogenic shock, multiorgan infiltration, and digital ischemia. CASE PRESENTATION: 8-year-old boy born to consanguineous parents of Moroccan origin who was admitted to the intensive care unit during the Coronavirus Disease-2019 (COVID-19) pandemic with tachypnoea, tachycardia, and oliguria. Echocardiography showed dilated cardiomyopathy and severe systolic dysfunction compatible with cardiogenic shock. Additionally, he presented with multiple organ dysfunction syndrome. SARS-CoV-2 polymerase chain reaction (PCR) and antibody detection by chromatographic immunoassay were negative. A previously ordered gene panel for pre-existing sensorineural hearing loss showed a pathological mutation in the SCL29A3 gene compatible with H syndrome. Computed tomography scan revealed extensive alveolar infiltrates in the lungs and multiple poor defined hypodense lesions in liver, spleen, and kidneys; adenopathy; and cardiomegaly with left ventricle subendocardial nodules. Invasive mechanical ventilation, broad antibiotic and antifungal coverage showed no significant response. Therefore, Tocilizumab as compassionate use together with pulsed intravenous methylprednisolone was initiated. Improvement was impressive leading to normalization of inflammation markers, liver and kidney function, and stabilising heart function. Two weeks later, he was discharged and has been clinically well since then on two weekly administration of Tocilizumab. CONCLUSIONS: We report the most severe disease course produced by HS described so far in the literature. Our patient's manifestations included uncommon, new complications such as acute heart failure with severe systolic dysfunction, multi-organ cell infiltrate, and digital ischemia. Most of the clinical symptoms of our patient could have been explained by SARS-CoV-2, demonstrating the importance of a detailed differential diagnosis to ensure optimal treatment. Although the mechanism of autoinflammation of HS remains uncertain, the good response of our patient to Tocilizumab makes a case for the important role of IL-6 in this syndrome and for considering Tocilizumab as a first-line treatment, at least in severely affected patients.


Subject(s)
Cardiomyopathy, Dilated/physiopathology , Hereditary Autoinflammatory Diseases/physiopathology , Ischemia/physiopathology , Multiple Organ Failure/physiopathology , Shock, Cardiogenic/physiopathology , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/therapy , Child , Glucocorticoids/therapeutic use , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/therapy , Humans , Ischemia/therapy , Kidney Diseases/diagnostic imaging , Kidney Diseases/physiopathology , Kidney Diseases/therapy , Liver Diseases/diagnostic imaging , Liver Diseases/physiopathology , Liver Diseases/therapy , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Lung Diseases/therapy , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/physiopathology , Lymphadenopathy/therapy , Male , Methylprednisolone/therapeutic use , Multiple Organ Failure/therapy , Nucleoside Transport Proteins/genetics , Pulse Therapy, Drug , Respiration, Artificial , SARS-CoV-2 , Shock, Cardiogenic/therapy , Splenic Diseases/diagnostic imaging , Splenic Diseases/physiopathology , Splenic Diseases/therapy , Toes/blood supply , Tomography, X-Ray Computed , Treatment Outcome
16.
BMJ Case Rep ; 14(6)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1280407

ABSTRACT

A 40-year-old man developed granulomatosis with polyangiitis (GPA) following a mild case of COVID-19. Initially, he experienced mild migrating joint pain for 2 months prior to testing positive for SARS-CoV-2 but dramatically worsened following resolution of his infection. The pain continued to progress until he suddenly develope haemoptysis, prompting him to present to a local hospital. The diagnosis of diffuse alveolar haemorrhage secondary to GPA was confirmed with labs, imaging and histopathology. Precipitous deterioration of GPA with concurrent COVID-19 infection indicates a possible temporal relationship. Since the onset of the pandemic, SARS-CoV-2 has been anecdotally associated with the development of various connective tissue disorders. The overlapping clinical presentations and similar appearance on lung imaging present clinicians with a diagnostic challenge. This underscores the importance of having a high index of suspicion of autoimmune diagnoses in patients who present with new or worsening findings following a COVID-19 infection.


Subject(s)
COVID-19 , Granulomatosis with Polyangiitis , Lung Diseases , Adult , Granulomatosis with Polyangiitis/complications , Granulomatosis with Polyangiitis/diagnosis , Hemorrhage/etiology , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/etiology , Male , SARS-CoV-2
17.
Einstein (Säo Paulo) ; 19: eRW5772, 2021. graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-1122696

ABSTRACT

ABSTRACT Ground-glass opacity is a very frequent and unspecified finding in chest computed tomography. Therefore, it admits a wide range of differential diagnoses in the acute context, from viral pneumonias such as influenza virus, coronavirus disease 2019 and cytomegalovirus and even non-infectious lesions, such as vaping, pulmonary infarction, alveolar hemorrhage and pulmonary edema. For this diagnostic differentiation, ground glass must be correlated with other findings in imaging tests, with laboratory tests and with the patients' clinical condition. In the context of a pandemic, it is extremely important to remember the other pathologies with similar findings to coronavirus disease 2019 in the imaging exams.


RESUMO A opacidade em vidro fosco é uma alteração muito frequente e pouco específica na tomografia computadorizada de tórax. Ela admite grande leque de diagnósticos diferenciais no contexto agudo, desde pneumonias virais, como as causadas pelo vírus influenza, pela doença do coronavírus 2019 e pelo citomegalovírus, até mesmo lesões de origem não infecciosa, como vaping , infarto pulmonar, hemorragia alveolar e edema pulmonar. Para essa diferenciação diagnóstica, deve-se correlacionar o vidro fosco com os demais achados nos exames de imagem, exames laboratoriais e quadro clínico do paciente. É de suma importância, no contexto de pandemia, recordar as demais patologias com os achados semelhantes aos da doença do coronavírus 2019 nos exames de imagem.


Subject(s)
Humans , Pneumonia, Viral/diagnostic imaging , COVID-19/diagnostic imaging , Lung Diseases/diagnostic imaging , Pneumonia, Viral/classification , Tomography, X-Ray Computed , Cytomegalovirus Infections/diagnostic imaging , Diagnosis, Differential , Influenza, Human/diagnostic imaging
18.
Biomed Phys Eng Express ; 7(4)2021 05 20.
Article in English | MEDLINE | ID: covidwho-1225585

ABSTRACT

Segmenting lesion regions of Coronavirus Disease 2019 (COVID-19) from computed tomography (CT) images is a challenge owing to COVID-19 lesions characterized by high variation, low contrast between infection lesions and around normal tissues, and blurred boundaries of infections. Moreover, a shortage of available CT dataset hinders deep learning techniques applying to tackling COVID-19. To address these issues, we propose a deep learning-based approach known as PPM-Unet to segmenting COVID-19 lesions from CT images. Our method improves an Unet by adopting pyramid pooling modules instead of the conventional skip connection and then enhances the representation of the neural network by aiding the global attention mechanism. We first pre-train PPM-Unet on COVID-19 dataset of pseudo labels containing1600 samples producing a coarse model. Then we fine-tune the coarse PPM-Unet on the standard COVID-19 dataset consisting of 100 pairs of samples to achieve a fine PPM-Unet. Qualitative and quantitative results demonstrate that our method can accurately segment COVID-19 infection regions from CT images, and achieve higher performance than other state-of-the-art segmentation models in this study. It offers a promising tool to lay a foundation for quantitatively detecting COVID-19 lesions.


Subject(s)
COVID-19/complications , Deep Learning , Image Processing, Computer-Assisted/methods , Lung Diseases/pathology , Neural Networks, Computer , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Algorithms , COVID-19/virology , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/virology , Specimen Handling
19.
JAMA ; 325(15): 1525-1534, 2021 04 20.
Article in English | MEDLINE | ID: covidwho-1222575

ABSTRACT

Importance: Little is known about long-term sequelae of COVID-19. Objective: To describe the consequences at 4 months in patients hospitalized for COVID-19. Design, Setting, and Participants: In a prospective uncontrolled cohort study, survivors of COVID-19 who had been hospitalized in a university hospital in France between March 1 and May 29, 2020, underwent a telephone assessment 4 months after discharge, between July 15 and September 18, 2020. Patients with relevant symptoms and all patients hospitalized in an intensive care unit (ICU) were invited for further assessment at an ambulatory care visit. Exposures: Survival of hospitalization for COVID-19. Main Outcomes and Measures: Respiratory, cognitive, and functional symptoms were assessed by telephone with the Q3PC cognitive screening questionnaire and a checklist of symptoms. At the ambulatory care visit, patients underwent pulmonary function tests, lung computed tomographic scan, psychometric and cognitive tests (including the 36-Item Short-Form Health Survey and 20-item Multidimensional Fatigue Inventory), and, for patients who had been hospitalized in the ICU or reported ongoing symptoms, echocardiography. Results: Among 834 eligible patients, 478 were evaluated by telephone (mean age, 61 years [SD, 16 years]; 201 men, 277 women). During the telephone interview, 244 patients (51%) declared at least 1 symptom that did not exist before COVID-19: fatigue in 31%, cognitive symptoms in 21%, and new-onset dyspnea in 16%. There was further evaluation in 177 patients (37%), including 97 of 142 former ICU patients. The median 20-item Multidimensional Fatigue Inventory score (n = 130) was 4.5 (interquartile range, 3.0-5.0) for reduced motivation and 3.7 (interquartile range, 3.0-4.5) for mental fatigue (possible range, 1 [best] to 5 [worst]). The median 36-Item Short-Form Health Survey score (n = 145) was 25 (interquartile range, 25.0-75.0) for the subscale "role limited owing to physical problems" (possible range, 0 [best] to 100 [worst]). Computed tomographic lung-scan abnormalities were found in 108 of 171 patients (63%), mainly subtle ground-glass opacities. Fibrotic lesions were observed in 33 of 171 patients (19%), involving less than 25% of parenchyma in all but 1 patient. Fibrotic lesions were observed in 19 of 49 survivors (39%) with acute respiratory distress syndrome. Among 94 former ICU patients, anxiety, depression, and posttraumatic symptoms were observed in 23%, 18%, and 7%, respectively. The left ventricular ejection fraction was less than 50% in 8 of 83 ICU patients (10%). New-onset chronic kidney disease was observed in 2 ICU patients. Serology was positive in 172 of 177 outpatients (97%). Conclusions and Relevance: Four months after hospitalization for COVID-19, a cohort of patients frequently reported symptoms not previously present, and lung-scan abnormalities were common among those who were tested. These findings are limited by the absence of a control group and of pre-COVID assessments in this cohort. Further research is needed to understand longer-term outcomes and whether these findings reflect associations with the disease.


Subject(s)
COVID-19/complications , Hospitalization , Lung Diseases/etiology , Lung/pathology , Aged , Anxiety/etiology , COVID-19/psychology , Cognition Disorders/etiology , Cohort Studies , Depression/etiology , Dyspnea/etiology , Fatigue/etiology , Female , Follow-Up Studies , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Lung Diseases/pathology , Male , Middle Aged , Tomography, X-Ray Computed
20.
Clin Radiol ; 76(7): 548.e1-548.e12, 2021 07.
Article in English | MEDLINE | ID: covidwho-1141704

ABSTRACT

Pulmonary cysts are thin-walled radiolucent lesions that may appear in a variety of uncommon disorders known as diffuse cystic lung diseases (DCLD) that essentially includes lymphangioleiomyomatosis (LAM), Langerhans cell histiocytosis (LCH), lymphocytic interstitial pneumonia (LIP), Pneumocystis jiroveci pneumonia (PJP), and Birt-Hogg-Dubé syndrome (BHDS). Moreover, they have been reported in several cases of coronavirus disease 2019 (COVID-19). The purpose of this review is to provide a practical approach for evaluating lung cysts when encountered on CT. We describe the imaging findings of DLCD emphasising their differences in terms of shape and distribution of the cysts, as well as their association with other findings such as nodules or ground-glass opacities, which may help in making a confident diagnosis. We also discuss the link between pulmonary cysts and COVID-19.


Subject(s)
Cysts/diagnostic imaging , Lung Diseases/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Lung/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL