Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 3.320
Filter
Add filters

Document Type
Year range
1.
J Healthc Eng ; 2022: 9028835, 2022.
Article in English | MEDLINE | ID: covidwho-1639295

ABSTRACT

Background: Novel coronavirus disease 2019 (COVID-19) was discovered in December 2019 and has infected more than 80 million people worldwide, and more than 50 million people have achieved a clinical cure. In this study, the pulmonary function results of patients after clinical medicine for three months were reported. Objective: To investigate the effect of COVID-19 on lung function in patients. Methods: A retrospective analysis was performed on 56 COVID-19-infected patients who were cured after the clinical treatment at Taizhou Public Health Medical Center in Zhejiang Province from January 31, 2020, to March 10, 2020. At discharge and three months after discharge, lung function was measured, including inspiratory vital capacity (IVC), forced vital capacity (FVC), forced expiratory volume in first second (FEV1), forced expiratory volume in first second to inspiratory vital capacity (FEV1/IVC), maximum mid-expiratory flow rate (MEF), peak expiratory flow rate (PEF), and carbon monoxide dispersion (DLCO). Results: At discharge, there were 37 patients (66.1%) with pulmonary dysfunction, 22 patients (39.3%) with ventilation dysfunction, 31 cases (55.4%) with small airway dysfunction, and 16 cases (28.6%) with restricted ventilation dysfunction combined with small airway dysfunction. At 3 months after discharge, 24 of the 56 patients still had pulmonary dysfunction and all of them had small airway dysfunction, of which 10 patients (17.9%) were restricted ventilation dysfunction combined with small airway dysfunction. DLCO was measured three months after discharge. Twenty-nine patients (51.8%) had mild to moderate diffuse dysfunction. All pulmonary function indexes of 56 patients recovered gradually after 3 months after release, except FEV1/IVC, and the difference was statistically significant (P < 0.05). There were 41 patients of normal type (73.2%) and 15 patients of severe type (26.8%). Among the 15 severe patients, 8 patients (53.3%) had ventilation dysfunction at discharge, 9 patients (60%) had small airway dysfunction, 4 patients (26.7%) still had ventilation dysfunction 3 months after discharge, 7 patients (46.7%) had small airway dysfunction, and 10 patients (66.7%) had diffuse dysfunction. Among the 41 common type patients, 14 patients (34.1%) had ventilation dysfunction at discharge, 22 patients (53.7%) had small airway dysfunction, 6 patients (14.6%) still had ventilation dysfunction 3 months after discharge, 17 patients (41.5%) had small airway dysfunction, and 19 patients (46.3%) had diffuse dysfunction. Patients with severe COVID-19 had more pulmonary impairment and improved pulmonary function than normal patients. Conclusion: COVID-19 infection can cause lung function impairment, manifested as restricted ventilation dysfunction, small airway dysfunction, and diffuse dysfunction. The pulmonary function of most patients was improved 3 months after clinical cure and discharge, and some patients remained with mild to moderate diffuse dysfunction and small airway dysfunction.


Subject(s)
COVID-19 , Humans , Lung , Retrospective Studies , SARS-CoV-2 , Vital Capacity
2.
Trials ; 23(1): 47, 2022 Jan 17.
Article in English | MEDLINE | ID: covidwho-1636360

ABSTRACT

BACKGROUND: The acute respiratory distress syndrome (ARDS) occurs in response to a variety of insults, and mechanical ventilation is life-saving in this setting, but ventilator-induced lung injury can also contribute to the morbidity and mortality in the condition. The Beacon Caresystem is a model-based bedside decision support system using mathematical models tuned to the individual patient's physiology to advise on appropriate ventilator settings. Personalised approaches using individual patient description may be particularly advantageous in complex patients, including those who are difficult to mechanically ventilate and wean, in particular ARDS. METHODS: We will conduct a multi-centre international randomised, controlled, allocation concealed, open, pragmatic clinical trial to compare mechanical ventilation in ARDS patients following application of the Beacon Caresystem to that of standard routine care to investigate whether use of the system results in a reduction in driving pressure across all severities and phases of ARDS. DISCUSSION: Despite 20 years of clinical trial data showing significant improvements in ARDS mortality through mitigation of ventilator-induced lung injury, there remains a gap in its personalised application at the bedside. Importantly, the protective effects of higher positive end-expiratory pressure (PEEP) were noted only when there were associated decreases in driving pressure. Hence, the pressures set on the ventilator should be determined by the diseased lungs' pressure-volume relationship which is often unknown or difficult to determine. Knowledge of extent of recruitable lung could improve the ventilator driving pressure. Hence, personalised management demands the application of mechanical ventilation according to the physiological state of the diseased lung at that time. Hence, there is significant rationale for the development of point-of-care clinical decision support systems which help personalise ventilatory strategy according to the current physiology. Furthermore, the potential for the application of the Beacon Caresystem to facilitate local and remote management of large numbers of ventilated patients (as seen during this COVID-19 pandemic) could change the outcome of mechanically ventilated patients during the course of this and future pandemics. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04115709. Registered on 4 October 2019, version 4.0.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Lung , Multicenter Studies as Topic , Pandemics , Randomized Controlled Trials as Topic , Respiration, Artificial/adverse effects , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , SARS-CoV-2
3.
Cardiovasc Ultrasound ; 20(1): 2, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1633049

ABSTRACT

BACKGROUND: This study aimed to investigate the relationship between echocardiography results and lung ultrasound score (LUS) in coronavirus disease 2019 (COVID-19) pneumonia patients and evaluate the impact of the combined application of these techniques in the evaluation of COVID-19 pneumonia. METHODS: Hospitalized COVID-19 pneumonia patients who underwent daily lung ultrasound and echocardiography were included in this study. Patients with tricuspid regurgitation within three days of admission were enrolled. Moreover, the correlation and differences between their pulmonary artery pressure (PAP) and LUS on days 3, 8, and 13 were analyzed. The inner diameter of the pulmonary artery root as well as the size of the atria and ventricles were also considered. RESULTS: The PAP on days 3, 8, and 13 of hospitalization was positively correlated with the LUS (r = 0.448, p = 0.003; r = 0.738, p < 0.001; r = 0.325, p = 0.036, respectively). On day 8, the values of both PAP and LUS were higher than on days 3 and 13 (p < 0.01). Similarly, PAP and LUS were significantly increased in 92.9% (39/42) and 90.5% (38/42) of patients, respectively, and at least one of these two values was positive in 97.6% (41/42) of cases. The inner diameters of the right atrium, right ventricle, and pulmonary artery also differed significantly from their corresponding values on days 3 and 13 (p < 0.05). CONCLUSIONS: PAP is positively correlated with LUS in COVID-19 pneumonia. The two values could be combined for a more precise assessment of disease progression and recovery status.


Subject(s)
COVID-19 , Pneumonia , Echocardiography , Humans , Lung/diagnostic imaging , Pilot Projects , Pneumonia/diagnostic imaging , SARS-CoV-2 , Ultrasonography
4.
Vopr Virusol ; 66(6): 442-451, 2022 01 08.
Article in Russian | MEDLINE | ID: covidwho-1623041

ABSTRACT

INTRODUCTION: Verification of histological changes in respiratory system using Syrian (golden) hamsters (Mesocricetus auratus) as experimental model is an important task for preclinical studies of drugs intended for prevention and treatment of the novel coronavirus infection COVID-19.The aim of this work was to study pathological changes of pulmonary tissue in SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) experimental infection in Syrian hamsters. MATERIAL AND METHODS: Male Syrian hamsters weighting 80-100 g were infected by intranasal administration of culture SARS-CoV-2 at dose 4 × 104 TCID50/ml (TCID is tissue culture infectious dose). Animals were euthanatized on 3, 7 and 14 days after infection, with gravimetric registration. The viral load in lungs was measured using the polymerase chain reaction (PCR). Right lung and trachea tissues were stained with hematoxylin-eosin and according to Mallory. RESULTS AND DISCUSSION: The highest viral replicative activity in lungs was determined 3 days after the infection. After 7 days, on a background of the decrease of the viral load in lungs, a pathologically significant increase of the organ's gravimetric parameters was observed. Within 3 to 14 days post-infection, the lung histologic pattern had been showing the development of inflammation with a succession of infiltrative-proliferative, edematousmacrophagal and fibroblastic changes. It was found that initial changes in respiratory epithelium can proceed without paranecrotic interstitial inflammation, while in the formation of multiple lung parenchyma lesions, damage to the epithelium of bronchioles and acinar ducts can be secondary. The appearance of epithelioid large-cell metaplastic epithelium, forming pseudoacinar structures, was noted as a pathomorphological feature specific to SARS-CoV-2 infection in Syrian hamsters. CONCLUSION: As a result of the study, the specific features of the pathology of the respiratory system in SARSCoV-2 infected Syrian hamsters were described. These findings are of practical importance as reference data that can be used for preclinical studies to assess the effectiveness of vaccines and potential drugs.


Subject(s)
COVID-19 , Lung/pathology , Lung/virology , Mesocricetus , Animals , Coronaviridae , Disease Models, Animal , Inflammation , Male , Mesocricetus/immunology , Mesocricetus/virology , SARS-CoV-2
5.
Curr Med Imaging ; 17(12): 1487-1495, 2021.
Article in English | MEDLINE | ID: covidwho-1622466

ABSTRACT

PURPOSE: The purpose of this study was to investigate the influencing factors for chest CT hysteresis and severity of coronavirus disease 2019 (COVID-19). METHODS: The chest CT data of patients with confirmed COVID-19 in 4 hospitals were retrospectively analyzed. An independent assessment was performed by one clinician using the DEXIN FACT Workstation Analysis System, and the assessment results were reviewed by another clinician. Furthermore, the mean hysteresis time was calculated according to the median time from progression to the most serious situation to improve chest CT in patients after fever relief. The optimal scaling regression analysis was performed by including variables with statistical significance in univariate analysis. In addition, a multivariate regression model was established to investigate the relationship of the percentage of lesion/total lung volume with lymphocyte and other variables. RESULTS: In the included 166 patients with COVID-19, the average value of the most serious percentage of lesion/total lung volume was 6.62, of which 90 patients with fever had an average hysteresis time of 4.5 days after symptom relief, with a similar trend observed in those without fever. Multivariate analysis revealed that lymphocyte count in peripheral blood and transcutaneous oxygen saturation decreased with the increase of the percentage of lesion/total lung volume. CONCLUSION: There is a hysteresis effect in the improvement of chest CT image relative to fever relief in patients with COVID-19. The pulmonary lesions may be related to the severity as well as decreased lymphocyte count or percutaneous oxygen saturation.


Subject(s)
COVID-19 , Tomography, X-Ray Computed , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/physiopathology , Retrospective Studies , SARS-CoV-2
6.
Respir Res ; 23(1): 7, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1622237

ABSTRACT

BACKGROUND: The comparison of respiratory system compliance (Crs) between COVID and non-COVID ARDS patients has been the object of debate, but few studies have evaluated it when considering applied positive end expiratory pressure (PEEP), which is one of the known determinants of Crs itself. The aim of this study was to compare Crs taking into account the applied PEEP. METHODS: Two cohorts of patients were created: those with COVID-ARDS and those with non-COVID ARDS. In the whole sample the association between Crs and type of ARDS at different PEEP levels was adjusted for anthropometric and clinical variables. As secondary analyses, patients were matched for predicted functional residual capacity and the same association was assessed. Moreover, the association between Crs and type of ARDS was reassessed at predefined PEEP level of 0, 5, 10, and 15 cmH2O with a propensity score-weighted linear model. RESULTS: 367 patients were included in the study, 276 patients with COVID-ARDS and 91 with non-COVID ARDS. The association between Crs and type of ARDS was not significant in both the complete cohorts (p = 0.17) and in the matched cohorts (p = 0.92). This was true also for the propensity score weighted association at PEEP 5, 10 and 15 cmH2O, while it was statistically significant at PEEP 0 (with a median difference of 3 ml/cmH2O, which in our opinion is not clinically significant). CONCLUSIONS: The compliance of the respiratory system is similar between COVID ARDS and non-COVID ARDS when calculated at the same PEEP level and while taking into account patients' anthropometric characteristics.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Aged , Anthropometry , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/virology , Female , Functional Residual Capacity , Host-Pathogen Interactions , Humans , Lung/physiopathology , Lung/virology , Lung Compliance , Male , Middle Aged , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/physiopathology , Retrospective Studies , SARS-CoV-2/pathogenicity , Treatment Outcome
7.
Sci Rep ; 12(1): 696, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1621270

ABSTRACT

Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.


Subject(s)
Acute Chest Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Animals , Antibodies, Neutralizing/metabolism , Biomarkers/metabolism , COVID-19/metabolism , Disease Models, Animal , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , SARS-CoV-2/pathogenicity , Swine
9.
Bull Exp Biol Med ; 172(3): 364-367, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616180

ABSTRACT

The article presents a theoretical rationale and a clinical case of relief of post-COVID ventilation failure by inhalation of Xe and O2 gas mixture. Pneumonitis of coronavirus etiology transforms saturated phospholipids of surfactant into a solid-ordered phase, which disrupts surface tension, alveolar pneumatization, and alveolar-capillary gas exchange. Using molecular modeling (B3LYP/lanl2dz; GAUSSIAN09), we demonstrated that Xe atom due to the van der Waals dispersion interaction increases the distance between the phospholipid acyl chains providing a phase transition from the solid-ordered to liquid phase and restored the surface-active monolayer surfactant film. A clinical case confirmed that short-term inhalations of the Xe and O2 gas mixture relieved manifestations of ventilation insufficiency and increased SpO2 and pneumatization of the terminal parts of the lungs.


Subject(s)
COVID-19/complications , Oxygen/administration & dosage , Respiratory Insufficiency/therapy , Respiratory Therapy/methods , Xenon/administration & dosage , Administration, Inhalation , Anesthetics, Inhalation/administration & dosage , COVID-19/etiology , COVID-19/rehabilitation , COVID-19/therapy , Drug Combinations , Humans , Lung/drug effects , Lung/physiopathology , Male , Middle Aged , Respiration/drug effects , Respiratory Insufficiency/etiology , Russia , SARS-CoV-2
10.
J Tradit Chin Med ; 41(6): 982-984, 2021 12.
Article in English | MEDLINE | ID: covidwho-1614424

ABSTRACT

OBJECTIVE: To study the possible role of traditional Chinese medicine (TCM) of Huangqi (Radix Astragali Mongolici), Gancao (Radix Glycyrrhizae), Jinyinhua (Flos Lonicerae), and Lianqiao (Fructus Forsythiae Suspensae) in absorption of lung lesions in Corona Virus Disease 2019 (COVID-19) patients. METHODS: A cohort of COVID-19 cases was recruited. During hospitalization, chest computed tomographic (CT) scan and real time polymerase chain reaction (RT-PCR) test were performed every three days. Comparison was held (Western Medicine, WM vs WM plus TCM) on absorption of lung lesions, time interval from admission to negative test result of RT-PCR (ATN), and medical expense. Multivariate cox regression models were built to identify the possible prognostic factor of delayed absorption of lung lesion. RESULTS: The medical expenditure (1163 ± 379 vs 1137 ± 498, P = 0.863) and ATN (13 ± 4 vs 10 ± 4, P = 0.055) were comparable between cases treated with WM plus TCM and cases only received WM. Multivariate cox regression model showed that cases receiving extra TCM had lower risk of delayed absorption of lung lesions [Hazard ratio = 0.24, 95% confidence Interval (0.06, 0.96), P = 0.043]. CONCLUSION: Compared to WM, the treatment of WM plus TCM facilitates the recovery of pulmonary infiltration on COVID-19 cases without significantly increasing medical expense.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal/therapeutic use , Lung/pathology , Adult , Astragalus propinquus , Female , Forsythia , Glycyrrhiza , Hospitalization , Humans , Lonicera , Lung/virology , Male , Medicine, Chinese Traditional , Middle Aged , Plant Extracts
13.
BMC Infect Dis ; 21(1): 1183, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1606168

ABSTRACT

BACKGROUND: We investigate the long-term effects of SARS-CoV on patients' lung and immune systems 15 years post-infection. SARS-CoV-2 pandemic is ongoing however, another genetically related beta-coronavirus SARS-CoV caused an epidemic in 2003-2004. METHODS: We enrolled 58 healthcare workers from Peking University People's Hospital who were infected with SARS-CoV in 2003. We evaluated lung damage by mMRC score, pulmonary function tests, and chest CT. Immune function was assessed by their serum levels of globin, complete components, and peripheral T cell subsets. ELISA was used to detect SARS-CoV-specific IgG antibodies in sera. RESULTS: After 15 years of disease onset, 19 (36.5%), 8 (34.6%), and 19 (36.5%) subjects had impaired DL (CO), RV, and FEF25-75, respectively. 17 (30.4%) subjects had an mMRC score ≥ 2. Fourteen (25.5%) cases had residual CT abnormalities. T regulatory cells were a bit higher in the SARS survivors. IgG antibodies against SARS S-RBD protein and N protein were detected in 11 (18.97%) and 12 (20.69%) subjects, respectively. Subgroup analysis revealed that small airway dysfunction and CT abnormalities were more common in the severe group than in the non-severe group (57.1% vs 22.6%, 54.5% vs 6.1%, respectively, p < 0.05). CONCLUSIONS: SARS-CoV could cause permanent damage to the lung, which requires early pulmonary rehabilitation. The long-lived immune memory response against coronavirus requires further studies to assess the potential benefit. Trial registration ClinicalTrials.gov, NCT03443102. Registered prospectively on 25 January 2018.


Subject(s)
Antibodies, Viral , COVID-19 , Humans , Lung , Pandemics , SARS-CoV-2
14.
Eur J Radiol ; 144: 110002, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1605018

ABSTRACT

PURPOSE: To examine the performance of radiologists in differentiating COVID-19 from non-COVID-19 atypical pneumonia and to perform an analysis of CT patterns in a study cohort including viral, fungal and atypical bacterial pathogens. METHODS: Patients with positive RT-PCR tests for COVID-19 pneumonia (n = 90) and non-COVID-19 atypical pneumonia (n = 294) were retrospectively included. Five radiologists, blinded to the pathogen test results, assessed the CT scans and classified them as COVID-19 or non-COVID-19 pneumonia. For both groups specific CT features were recorded and a multivariate logistic regression model was used to calculate their ability to predict COVID-19 pneumonia. RESULTS: The radiologists differentiated between COVID-19 and non-COVID-19 pneumonia with an overall accuracy, sensitivity, and specificity of 88% ± 4 (SD), 79% ± 6 (SD), and 90% ± 6 (SD), respectively. The percentage of correct ratings was lower in the early and late stage of COVID-19 pneumonia compared to the progressive and peak stage (68 and 71% vs 85 and 89%). The variables associated with the most increased risk of COVID-19 pneumonia were band like subpleural opacities (OR 5.55, p < 0.001), vascular enlargement (OR 2.63, p = 0.071), and subpleural curvilinear lines (OR 2.52, p = 0.021). Bronchial wall thickening and centrilobular nodules were associated with decreased risk of COVID-19 pneumonia with OR of 0.30 (p = 0.013) and 0.10 (p < 0.001), respectively. CONCLUSIONS: Radiologists can differentiate between COVID-19 and non-COVID-19 atypical pneumonias at chest CT with high overall accuracy, although a lower performance was observed in the early and late stage of COVID 19 pneumonia. Specific CT features might help to make the correct diagnosis.


Subject(s)
COVID-19 , Influenza, Human , Humans , Lung , Radiologists , Retrospective Studies , SARS-CoV-2
15.
Crit Care ; 26(1): 12, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1608868

ABSTRACT

BACKGROUND: In the context of acute respiratory distress syndrome (ARDS), the response to lung recruitment maneuvers (LRMs) varies considerably from one patient to another and so is difficult to predict. The aim of the study was to determine whether or not the recruitment-to-inflation (R/I) ratio could differentiate between patients according to the change in lung mechanics during the LRM. METHODS: We evaluated the changes in gas exchange and respiratory mechanics induced by a stepwise LRM at a constant driving pressure of 15 cmH2O during pressure-controlled ventilation. We assessed lung recruitability by measuring the R/I ratio. Patients were dichotomized with regard to the median R/I ratio. RESULTS: We included 30 patients with moderate-to-severe ARDS and a median [interquartile range] R/I ratio of 0.62 [0.42-0.83]. After the LRM, patients with high recruitability (R/I ratio ≥ 0.62) presented an improvement in the PaO2/FiO2 ratio, due to significant increase in respiratory system compliance (33 [27-42] vs. 42 [35-60] mL/cmH2O; p < 0.001). In low recruitability patients (R/I < 0.62), the increase in PaO2/FiO2 ratio was associated with a significant decrease in pulse pressure as a surrogate of cardiac output (70 [55-85] vs. 50 [51-67] mmHg; p = 0.01) but not with a significant change in respiratory system compliance (33 [24-47] vs. 35 [25-47] mL/cmH2O; p = 0.74). CONCLUSION: After the LRM, patients with high recruitability presented a significant increase in respiratory system compliance (indicating a gain in ventilated area), while those with low recruitability presented a decrease in pulse pressure suggesting a drop in cardiac output and therefore in intrapulmonary shunt.


Subject(s)
COVID-19 , Lung , Respiratory Distress Syndrome , COVID-19/complications , Humans , Lung/physiopathology , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
16.
BMC Pulm Med ; 22(1): 1, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1608729

ABSTRACT

BACKGROUND: Quantitative evaluation of radiographic images has been developed and suggested for the diagnosis of coronavirus disease 2019 (COVID-19). However, there are limited opportunities to use these image-based diagnostic indices in clinical practice. Our aim in this study was to evaluate the utility of a novel visually-based classification of pulmonary findings from computed tomography (CT) images of COVID-19 patients with the following three patterns defined: peripheral, multifocal, and diffuse findings of pneumonia. We also evaluated the prognostic value of this classification to predict the severity of COVID-19. METHODS: This was a single-center retrospective cohort study of patients hospitalized with COVID-19 between January 1st and September 30th, 2020, who presented with suspicious findings on CT lung images at admission (n = 69). We compared the association between the three predefined patterns (peripheral, multifocal, and diffuse), admission to the intensive care unit, tracheal intubation, and death. We tested quantitative CT analysis as an outcome predictor for COVID-19. Quantitative CT analysis was performed using a semi-automated method (Thoracic Volume Computer-Assisted Reading software, GE Health care, United States). Lungs were divided by Hounsfield unit intervals. Compromised lung (%CL) volume was the sum of poorly and non-aerated volumes (- 500, 100 HU). We collected patient clinical data, including demographic and clinical variables at the time of admission. RESULTS: Patients with a diffuse pattern were intubated more frequently and for a longer duration than patients with a peripheral or multifocal pattern. The following clinical variables were significantly different between the diffuse pattern and peripheral and multifocal groups: body temperature (p = 0.04), lymphocyte count (p = 0.01), neutrophil count (p = 0.02), c-reactive protein (p < 0.01), lactate dehydrogenase (p < 0.01), Krebs von den Lungen-6 antigen (p < 0.01), D-dimer (p < 0.01), and steroid (p = 0.01) and favipiravir (p = 0.03) administration. CONCLUSIONS: Our simple visual assessment of CT images can predict the severity of illness, a resulting decrease in respiratory function, and the need for supplemental respiratory ventilation among patients with COVID-19.


Subject(s)
COVID-19/classification , COVID-19/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Amides/therapeutic use , Antiviral Agents/therapeutic use , Body Temperature , C-Reactive Protein/metabolism , COVID-19/drug therapy , COVID-19/physiopathology , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , L-Lactate Dehydrogenase/blood , Lung/diagnostic imaging , Lymphocyte Count , Male , Middle Aged , Mucin-1/blood , Neutrophils , Predictive Value of Tests , Prognosis , Pyrazines/therapeutic use , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , SARS-CoV-2 , Steroids/therapeutic use
17.
J Med Case Rep ; 16(1): 2, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1605063

ABSTRACT

BACKGROUND: In patients receiving single lung transplantation for idiopathic pulmonary fibrosis, worsening of fibrosis of the native lung is usually progressive over time, with no significant effects on gas exchange. CASE PRESENTATION: Here, we describe the cases of two Caucasian male recipients of single lung transplants for idiopathic pulmonary fibrosis, 65 and 62 years of age, who exhibited acute worsening of lung fibrosis after an episode of serious viral infection (cytomegalovirus primo-infection in one case and COVID-19 in the other). In both cases, along with opacification of the native lung over several days, the patients presented acute respiratory failure that required the use of high-flow nasal oxygen therapy. Eventually, hypoxemic respiratory failure resolved, but with rapid progression of fibrosis of the native lung. CONCLUSION: We conclude that acute worsening of fibrosis on the native lung secondary to a severe viral infection should be added to the list of potential complications developing on the native lung after single lung transplantation for idiopathic pulmonary fibrosis.


Subject(s)
COVID-19 , Idiopathic Pulmonary Fibrosis , Lung Transplantation , Humans , Idiopathic Pulmonary Fibrosis/therapy , Lung , Male , SARS-CoV-2
18.
Medicine (Baltimore) ; 100(47): e27980, 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1604285

ABSTRACT

RATIONALE: Pulmonary fibrosis is an infamous sequela of coronavirus disease 2019 (COVID-19) pneumonia leading to long-lasting respiratory problems and activity limitations. Pulmonary rehabilitation is beneficial to improve the symptoms of lung fibrosis. We experienced a post-COVID-19 pulmonary fibrosis patient who received a structured exercise-based pulmonary rehabilitation program. PATIENT CONCERNS: This article presents a case of successful pulmonary rehabilitation of a patient with post-COVID-19 pulmonary fibrosis. The patient could not cut off the oxygen supplement even after a successful recovery from COVID-19. DIAGNOSIS: Diagnosis of COVID-19 was based on the reverse transcription-polymerase chain reaction (RT-PCR). Pulmonary fibrosis was diagnosed by patient's complaint, clinical appearance, and computed tomography (CT) on chest. INTERVENTION: The patient underwent ten sessions of exercise-based rehabilitation program according to Consensus Document on Pulmonary Rehabilitation in Korea, 2015. OUTCOME: On the 8th day, he could cut off the oxygen supplementation and complete the one-hour exercise without oxygen. He was discharged after completing the 10-session program without any activity limitations. LESSONS: Exercise-based pulmonary rehabilitation will help the post-COVID-19 pulmonary fibrosis patients. This case suggested the importance of pulmonary rehabilitation program to the post-COVID-19 pulmonary fibrosis patient.


Subject(s)
COVID-19/complications , Lung/diagnostic imaging , Pulmonary Fibrosis/rehabilitation , COVID-19/diagnosis , COVID-19 Testing , Humans , Lung/pathology , Male , Middle Aged , Oxygen , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/etiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed
20.
J Korean Med Sci ; 36(44): e309, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1593105

ABSTRACT

BACKGROUND: We assessed maternal and neonatal outcomes of critically ill pregnant and puerperal patients in the clinical course of coronavirus disease 2019 (COVID-19). METHODS: Records of pregnant and puerperal women with polymerase chain reaction positive COVID-19 virus who were admitted to our intensive care unit (ICU) from March 2020 to August 2021 were investigated. Demographic, clinical and laboratory data, pharmacotherapy, and neonatal outcomes were analyzed. These outcomes were compared between patients that were discharged from ICU and patients who died in ICU. RESULTS: Nineteen women were included in this study. Additional oxygen was required in all cases (100%). Eight patients (42%) were intubated and mechanically ventilated. All patients that were mechanically ventilated have died. Increased levels of C-reactive protein (CRP) was seen in all patients (100%). D-dimer values increased in 15 patients (78.9%); interleukin-6 (IL-6) increased in 16 cases (84.2%). Sixteen patients used antiviral drugs. Eleven patients were discharged from the ICU and eight patients have died due to complications of COVID-19 showing an ICU mortality rate of 42.1%. Mean number of hospitalized days in ICU was significantly lower in patients that were discharged (P = 0.037). Seventeen patients underwent cesarean-section (C/S) (89.4%). Mean birth week was significantly lower in patients who died in ICU (P = 0.024). Eleven preterm (57.8%) and eight term deliveries (42.1%) occurred. CONCLUSION: High mortality rate was detected among critically ill pregnant/parturient patients followed in the ICU. Main predictors of mortality were the need of invasive mechanical ventilation and higher number of days hospitalized in ICU. Rate of C/S operations and preterm delivery were high. Pleasingly, the rate of neonatal death was low and no neonatal COVID-19 occurred.


Subject(s)
COVID-19/mortality , Pregnancy Complications, Infectious/mortality , Puerperal Disorders/mortality , SARS-CoV-2 , Adult , Antiviral Agents/therapeutic use , COVID-19/blood , COVID-19/diagnostic imaging , COVID-19/therapy , Cesarean Section , Combined Modality Therapy , Critical Illness/mortality , Delivery, Obstetric/statistics & numerical data , Female , Hospital Mortality , Humans , Infant, Newborn , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Lung/diagnostic imaging , Oxygen Inhalation Therapy , Pregnancy , Pregnancy Outcome , Respiration, Artificial , Retrospective Studies , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...