Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Physiol Rep ; 9(20): e15075, 2021 10.
Article in English | MEDLINE | ID: covidwho-1485552

ABSTRACT

Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.


Subject(s)
Exercise/physiology , Influenza A virus/immunology , Leukocytes/immunology , Lung/immunology , Nasal Lavage Fluid/immunology , Neutrophils/immunology , Adolescent , Adult , Animals , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Female , Gene Expression , Humans , Leukocytes/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Nasal Lavage/methods , Nasal Lavage Fluid/cytology , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Neutrophils/metabolism , Time Factors , Young Adult
2.
Front Immunol ; 12: 705646, 2021.
Article in English | MEDLINE | ID: covidwho-1450806

ABSTRACT

COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , Lung/cytology , SARS-CoV-2/immunology , B-Lymphocytes/immunology , Biomarkers , Bronchoalveolar Lavage Fluid/chemistry , Dendritic Cells/immunology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Killer Cells, Natural/immunology , Lung/chemistry , Machine Learning , Macrophages/immunology , Monocytes/immunology , Neutrophils/immunology , RNA, Viral/genetics , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis , T-Lymphocytes/immunology
3.
Nat Commun ; 12(1): 5809, 2021 10 04.
Article in English | MEDLINE | ID: covidwho-1450282

ABSTRACT

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


Subject(s)
Brain Stem/virology , Lung/virology , Models, Biological , SARS-CoV-2/pathogenicity , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Alveolar Epithelial Cells/virology , Animals , Antiviral Agents/pharmacology , Brain Stem/cytology , Brain Stem/immunology , Brain Stem/pathology , Cricetinae , Immunity, Innate , Inflammation , Lung/cytology , Lung/immunology , Lung/pathology , Neurons/virology , Organ Culture Techniques , Regulated Cell Death , SARS-CoV-2/drug effects , Viral Tropism
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1444232

ABSTRACT

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


Subject(s)
COVID-19/veterinary , Cats/virology , Lions/virology , Angiotensin-Converting Enzyme 2/analysis , Animals , COVID-19/transmission , COVID-19/virology , Cat Diseases/transmission , Cat Diseases/virology , Cells, Cultured , Disease Susceptibility , Humans , Lung/cytology , Lung/virology , Nose/cytology , Nose/virology , SARS-CoV-2/isolation & purification , Trachea/cytology , Trachea/virology
5.
Cells ; 10(10)2021 09 24.
Article in English | MEDLINE | ID: covidwho-1438525

ABSTRACT

The objective of this review is to describe the evolution of lung tissue-derived diploid progenitor cell applications, ranging from historical biotechnological substrate functions for vaccine production and testing to current investigations around potential therapeutic use in respiratory tract regenerative medicine. Such cell types (e.g., MRC-5 or WI-38 sources) were extensively studied since the 1960s and have been continuously used over five decades as safe and sustainable industrial vaccine substrates. Recent research and development efforts around diploid progenitor lung cells (e.g., FE002-Lu or Walvax-2 sources) consist in qualification for potential use as optimal and renewed vaccine production substrates and, alternatively, for potential therapeutic applications in respiratory tract regenerative medicine. Potentially effective, safe, and sustainable cell therapy approaches for the management of inflammatory lung diseases or affections and related symptoms (e.g., COVID-19 patients and burn patient severe inhalation syndrome) using local homologous allogeneic cell-based or cell-derived product administrations are considered. Overall, lung tissue-derived progenitor cells isolated and produced under good manufacturing practices (GMP) may be used with high versatility. They can either act as key industrial platforms optimally conforming to specific pharmacopoeial requirements or as active pharmaceutical ingredients (API) for potentially effective promotion of lung tissue repair or regeneration.


Subject(s)
Biotechnology/methods , Diploidy , Lung/cytology , Regenerative Medicine/methods , Respiratory Tract Infections/therapy , Animals , Biological Specimen Banks , COVID-19 Vaccines , Cell Line , Cell- and Tissue-Based Therapy , History, 20th Century , History, 21st Century , Humans , Lung/physiology , Regeneration , Regenerative Medicine/history , SARS-CoV-2 , Stem Cell Transplantation , Stem Cells/cytology , Transplantation, Homologous
6.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394563

ABSTRACT

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/classification , Interferon Type I/metabolism , SARS-CoV-2/immunology , Adult , Aged, 80 and over , Asymptomatic Infections , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/virology , Epithelial Cells/cytology , Female , Hospitalization , Humans , Interferon Type I/immunology , Lung/cytology , Male , Middle Aged , Neuropilin-1/metabolism , Phenotype , Severity of Illness Index , Toll-Like Receptor 7/metabolism
7.
Life Sci Alliance ; 4(1)2021 01.
Article in English | MEDLINE | ID: covidwho-1389961

ABSTRACT

Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction. Some of the catalysing enzymes of such reactions have demonstrated interactions with existing drugs, which can be used for experimental testing of the presented predictions using gene knockouts and RNA interference techniques. In summary, the developed computational approach offers a platform for rapid, experimentally testable generation of drug predictions against existing and emerging viruses based on their biomass requirements.


Subject(s)
Host-Pathogen Interactions , Lung , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Biomass , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Culture Media/chemistry , Culture Media/metabolism , Glycolysis/physiology , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Lung/cytology , Lung/metabolism , Metabolic Flux Analysis , Models, Biological , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Systems Biology , Virus Replication/drug effects , Virus Replication/physiology
8.
Cytokine ; 140: 155430, 2021 04.
Article in English | MEDLINE | ID: covidwho-1385381

ABSTRACT

In vitro interferon (IFN)α treatment of primary human upper airway basal cells has been shown to drive ACE2 expression, the receptor of SARS-CoV-2. The protease furin is also involved in mediating SARS-CoV-2 and other viral infections, although its association with early IFN response has not been evaluated yet. In order to assess the in vivo relationship between ACE2 and furin expression and the IFN response in nasopharyngeal cells, we first examined ACE2 and furin levels and their correlation with the well-known marker of IFNs' activation, ISG15, in children (n = 59) and adults (n = 48), during respiratory diseases not caused by SARS-CoV-2. A strong positive correlation was found between ACE2 expression, but not of furin, and ISG15 in all patients analyzed. In addition, type I and III IFN stimulation experiments were performed to examine the IFN-mediated activation of ACE2 isoforms (full-length and truncated) and furin in epithelial cell lines. Following all the IFNs treatments, only the truncated ACE2 levels, were upregulated significantly in the A549 and Calu3 cells, in particular by type I IFNs. If confirmed in vivo following IFNs' activation, the induction of the truncated ACE2 isoform only would not enhance the risk of SARS-CoV-2 infection in the respiratory tract.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epithelial Cells/drug effects , Gene Expression/drug effects , Interferons/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line, Tumor , Child , Cytokines/genetics , Epithelial Cells/metabolism , Humans , Interferons/metabolism , Lung/cytology , Middle Aged , SARS-CoV-2/physiology , Ubiquitins/genetics
9.
Cells ; 10(7)2021 06 26.
Article in English | MEDLINE | ID: covidwho-1389304

ABSTRACT

The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.


Subject(s)
Lab-On-A-Chip Devices , Lung Diseases/pathology , Lung/physiology , Regeneration/physiology , Respiratory Mucosa/cytology , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , Cells, Cultured , Extracellular Matrix/physiology , Humans , Lung/cytology , Lung/pathology , Lung Diseases/physiopathology , Lung Diseases/therapy , Models, Biological , Respiratory Mucosa/pathology , Respiratory Mucosa/physiology , SARS-CoV-2/pathogenicity , Tissue Culture Techniques/instrumentation , Tissue Culture Techniques/methods
10.
Sci Adv ; 6(48)2020 11.
Article in English | MEDLINE | ID: covidwho-1388431

ABSTRACT

Acute respiratory distress syndrome is associated with a robust inflammatory response that damages the vascular endothelium, impairing gas exchange. While restoration of microcapillaries is critical to avoid mortality, therapeutic targeting of this process requires a greater understanding of endothelial repair mechanisms. Here, we demonstrate that lung endothelium possesses substantial regenerative capacity and lineage tracing reveals that native endothelium is the source of vascular repair after influenza injury. Ablation of chicken ovalbumin upstream promoter-transcription factor 2 (COUP-TF2) (Nr2f2), a transcription factor implicated in developmental angiogenesis, reduced endothelial proliferation, exacerbating viral lung injury in vivo. In vitro, COUP-TF2 regulates proliferation and migration through activation of cyclin D1 and neuropilin 1. Upon influenza injury, nuclear factor κB suppresses COUP-TF2, but surviving endothelial cells ultimately reestablish vascular homeostasis dependent on restoration of COUP-TF2. Therefore, stabilization of COUP-TF2 may represent a therapeutic strategy to enhance recovery from pathogens, including H1N1 influenza and SARS-CoV-2.


Subject(s)
COUP Transcription Factor II/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Influenza A Virus, H1N1 Subtype , Lung/cytology , Lung/physiology , Orthomyxoviridae Infections/metabolism , Regeneration/genetics , Animals , COUP Transcription Factor II/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Knockout Techniques , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Orthomyxoviridae Infections/virology , Transfection
11.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: covidwho-1380072

ABSTRACT

Background: SARS-CoV-2, the virus responsible for COVID-19, causes widespread damage in the lungs in the setting of an overzealous immune response whose origin remains unclear. Methods: We present a scalable, propagable, personalized, cost-effective adult stem cell-derived human lung organoid model that is complete with both proximal and distal airway epithelia. Monolayers derived from adult lung organoids (ALOs), primary airway cells, or hiPSC-derived alveolar type II (AT2) pneumocytes were infected with SARS-CoV-2 to create in vitro lung models of COVID-19. Results: Infected ALO monolayers best recapitulated the transcriptomic signatures in diverse cohorts of COVID-19 patient-derived respiratory samples. The airway (proximal) cells were critical for sustained viral infection, whereas distal alveolar differentiation (AT2→AT1) was critical for mounting the overzealous host immune response in fatal disease; ALO monolayers with well-mixed proximodistal airway components recapitulated both. Conclusions: Findings validate a human lung model of COVID-19, which can be immediately utilized to investigate COVID-19 pathogenesis and vet new therapies and vaccines. Funding: This work was supported by the National Institutes for Health (NIH) grants 1R01DK107585-01A1, 3R01DK107585-05S1 (to SD); R01-AI141630, CA100768 and CA160911 (to PG) and R01-AI 155696 (to PG, DS and SD); R00-CA151673 and R01-GM138385 (to DS), R01- HL32225 (to PT), UCOP-R00RG2642 (to SD and PG), UCOP-R01RG3780 (to P.G. and D.S) and a pilot award from the Sanford Stem Cell Clinical Center at UC San Diego Health (P.G, S.D, D.S). GDK was supported through The American Association of Immunologists Intersect Fellowship Program for Computational Scientists and Immunologists. L.C.A's salary was supported in part by the VA San Diego Healthcare System. This manuscript includes data generated at the UC San Diego Institute of Genomic Medicine (IGC) using an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).


Subject(s)
Adult Stem Cells , COVID-19 , Lung/pathology , Models, Biological , Organoids , Adult Stem Cells/virology , COVID-19/pathology , COVID-19/virology , Female , Humans , Lung/cytology , Lung/virology , Male , Middle Aged , Organoids/virology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/virology , Respiratory Mucosa/cytology , Respiratory Mucosa/virology
12.
Sci Adv ; 7(34)2021 08.
Article in English | MEDLINE | ID: covidwho-1365115

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) severity is highly variable, with pediatric patients typically experiencing less severe infection than adults and especially the elderly. The basis for this difference is unclear. We find that mRNA and protein expression of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, increases with advancing age in distal lung epithelial cells. However, in humans, ACE2 expression exhibits high levels of intra- and interindividual heterogeneity. Further, cells infected with SARS-CoV-2 experience endoplasmic reticulum stress, triggering an unfolded protein response and caspase-mediated apoptosis, a natural host defense system that halts virion production. Apoptosis of infected cells can be selectively induced by treatment with apoptosis-modulating BH3 mimetic drugs. Notably, epithelial cells within young lungs and airways are more primed to undergo apoptosis than those in adults, which may naturally hinder virion production and support milder COVID-19 severity.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Apoptosis/genetics , COVID-19/genetics , Gene Expression Profiling/methods , Age Factors , Aged , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Female , Humans , Infant , Lung/cytology , Lung/metabolism , Lung/virology , Male , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/physiology , Severity of Illness Index , Vero Cells , Virus Internalization
13.
Antiviral Res ; 194: 105162, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347485

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected over 200 million people throughout the world as of August 2021. There are currently no approved treatments providing high chance of recovery from a severe case of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, and the beneficial effect of Remdesivir and passive immunization therapies may only be seen when administered early on disease onset. The emergence of variants is also raising concerns regarding the efficacy of antibody therapies, antivirals, and vaccines. Therefore, there is still a need to develop new antivirals. Here, we investigated the suitability of primary human epithelial cells from the trachea/bronchia (NHBE) and small airway (SAEC) as lung models of SARS-CoV-2 infection to determine, whether the microbicide polyphenylene carboxymethylene (PPCM) has antiviral activity against SARS-CoV-2. Both NHBE and SAEC expressed proteins required for virus entry in lung epithelial cells. However, these cells were only low to moderately permissive to SARS-CoV-2 as titers increased at best by 2.5 log10 during an 8-day kinetic. Levels of replication in SAEC, unlike in NHBE, were consistent with data from other studies using human normal tissues or air-liquid interface cultures, suggesting that SAEC may be more relevant to use than NHBE for drug screening. PPCM EC50 against SARS-CoV-2 was between 32 and 132 µg/ml with a selectivity index between 12 and 41, depending on the cell type and the infective dose used. PPCM doses were consistent with those previously showing effect against other human viruses. Finally, PPCM antiviral effect observed in SAEC was in line with reduction of inflammatory markers observed overly expressed in severe COVID-19 patients. Altogether, our data support the fact that PPCM should be further evaluated in vivo for toxicity and antiviral activity against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/virology , Polymers/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , COVID-19/prevention & control , COVID-19/transmission , Epithelial Cells/drug effects , Humans , Lung/cytology , Lung/virology , Polymers/chemistry , Proof of Concept Study , SARS-CoV-2/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
14.
Brief Bioinform ; 22(2): 1254-1266, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343630

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is accountable for the cause of coronavirus disease (COVID-19) that causes a major threat to humanity. As the spread of the virus is probably getting out of control on every day, the epidemic is now crossing the most dreadful phase. Idiopathic pulmonary fibrosis (IPF) is a risk factor for COVID-19 as patients with long-term lung injuries are more likely to suffer in the severity of the infection. Transcriptomic analyses of SARS-CoV-2 infection and IPF patients in lung epithelium cell datasets were selected to identify the synergistic effect of SARS-CoV-2 to IPF patients. Common genes were identified to find shared pathways and drug targets for IPF patients with COVID-19 infections. Using several enterprising Bioinformatics tools, protein-protein interactions (PPIs) network was designed. Hub genes and essential modules were detected based on the PPIs network. TF-genes and miRNA interaction with common differentially expressed genes and the activity of TFs are also identified. Functional analysis was performed using gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathway and found some shared associations that may cause the increased mortality of IPF patients for the SARS-CoV-2 infections. Drug molecules for the IPF were also suggested for the SARS-CoV-2 infections.


Subject(s)
COVID-19/complications , Idiopathic Pulmonary Fibrosis/complications , SARS-CoV-2/genetics , COVID-19/genetics , COVID-19/virology , Datasets as Topic , Epithelial Cells/virology , Gene Ontology , Genes, Viral , Humans , Lung/cytology , Lung/virology , Transcriptome
15.
Med Sci Monit ; 27: e930776, 2021 Oct 12.
Article in English | MEDLINE | ID: covidwho-1344551

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, patients presented with COVID-19 pneumonia of varying severity. The phenomenon of severe hypoxemia without signs of respiratory distress is also known as silent or hidden hypoxemia. Although silent hypoxemia is not unique to pneumonia due to SARS-CoV-2 infection, this phenomenon is now recognized to be associated with severe COVID-19 pneumonia. Proper management of critically ill patients is the key to reducing mortality. Herein, we summarize the possible and rare factors contributing to silent hypoxemia in patients with COVID-19. Microvascular thrombosis causes dead space ventilation in the lungs, and the flow of pulmonary capillaries is reduced, which leads to an imbalance in the V/Q ratio. The dissociation curve of oxyhemoglobin shifts to the left and limits the release of oxygen to the tissue. SARS-CoV-2 interferes with the synthesis of hemoglobin and reduces the ability to carry oxygen. The accumulation of endogenous carbon monoxide and carboxyhemoglobin will reduce the total oxygen carrying capacity and interfere with pulse oxygen saturation readings. There are also some non-specific factors that cause the difference between pulse oximetry and oxygen partial pressure. We propose some potentially more effective clinical alternatives and recommendations for optimizing the clinical management processes of patients with COVID-19. This review aims to describe the prevalence of silent hypoxemia in COVID-19 pneumonia, to provide an update on what is known of the pathophysiology, and to highlight the importance of diagnosing silent hypoxemia in patients with COVID-19 pneumonia.


Subject(s)
COVID-19/metabolism , Hypoxia/virology , Pneumonia, Viral/virology , Asymptomatic Diseases/epidemiology , COVID-19/epidemiology , COVID-19/virology , Humans , Hypoxia/epidemiology , Hypoxia/metabolism , Lung/cytology , Lung/metabolism , Lung/virology , Microvessels/metabolism , Oximetry , Oxygen/metabolism , Pneumonia, Viral/metabolism , Prevalence , SARS-CoV-2/isolation & purification , Thrombosis/metabolism , Thrombosis/virology
16.
Eur J Pharmacol ; 908: 174374, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1322083

ABSTRACT

The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.


Subject(s)
COVID-19/drug therapy , Chloroquine/pharmacology , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Chloroquine/therapeutic use , Datasets as Topic , Down-Regulation/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Drug Synergism , Dual Specificity Phosphatase 1/metabolism , Fibroblasts , Glucocorticoids/therapeutic use , Healthy Volunteers , Humans , Lung/cytology , Lung/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Middle Aged , Nasopharynx/virology , Off-Label Use , Primary Cell Culture , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
17.
Viruses ; 13(7)2021 06 25.
Article in English | MEDLINE | ID: covidwho-1289021

ABSTRACT

The current COVID-19 pandemic has highlighted the urgent need to develop effective therapeutic strategies. We evaluated the in vitro antiviral effect against SARS-CoV-2 of a hepatitis B virus (HBV) hexamer peptide, Poly6, which is capable of eliciting an antiviral effect against human immunodeficiency virus -1 (HIV-1), as a novel HIV-1 integrase inhibitor, and a strong anticancer immune response in an IFN-I-dependent manner, as a novel potential adjuvant in anticancer immunotherapy. Here, we report that Poly6 exerts an anti-SARS-CoV-2 effect, with an estimated 50% inhibitory concentration of 2.617 µM, in the human bronchial epithelial cell line, Calu-3 but not in Vero-E6 cells, which are deficient in type 1 interferon (IFN-I) signaling. We proved via assays based on mRNA profiles, inhibitors, or blocking antibodies that Poly6 can exert an anti-SARS-CoV-2 effect in an IFN-I-dependent manner. We also found that Poly6 inhibits IL-6 production enhanced by SARS-CoV-2 in infected Calu-3 cells at both the transcription and the translation levels, mediated via IL-10 induction in an IFN-I-dependent manner. These results indicate the feasibility of Poly6 as an IFN-I-inducing COVID-19 drug with potent antiviral and anti-inflammatory activities.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Hepatitis B virus/chemistry , Interferon Type I/immunology , Peptides/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Bronchi/cytology , Bronchi/virology , Chlorocebus aethiops , Epithelial Cells/immunology , Epithelial Cells/virology , Hepatitis B virus/genetics , Humans , Lung/cytology , Lung/virology , Peptides/immunology , SARS-CoV-2/immunology , Vero Cells
18.
Life Sci ; 280: 119752, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1281493

ABSTRACT

AIMS: Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of the renin-angiotensin system and also a major receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here, we reveal a role for NF-κB in human lung cell expression of ACE2, and we further explore the potential utility of repurposing NF-κB inhibitors to downregulate ACE2. MAIN METHODS: Expression of ACE2 was assessed by Western blotting and RT-qPCR in multiple human lung cell lines with or without NF-κB inhibitor treatment. Surface ACE2 expression and intracellular reactive oxygen species (ROS) levels were measured with flow cytometry. p50 was knocked down with siRNA. Cytotoxicity was monitored by PARP cleavage and MTS assay. KEY FINDINGS: Pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, suppressed endogenous ACE2 mRNA and protein expression in H322M and Calu-3 cells. The ROS level in H322M cells was increased after PDTC treatment, and pretreatment with N-acetyl-cysteine (NAC) reversed PDTC-induced ACE2 suppression. Meanwhile, treatment with hydrogen peroxide augmented ACE2 suppression in H322M cells with p50 knockdown. Two repurposed NF-κB inhibitors, the anthelmintic drug triclabendazole and the antiprotozoal drug emetine, also reduced ACE2 mRNA and protein levels. Moreover, zinc supplementation augmented the suppressive effects of triclabendazole and emetine on ACE2 expression in H322M and Calu-3 cells. SIGNIFICANCE: These results suggest that ACE2 expression is modulated by ROS and NF-κB signaling in human lung cells, and the combination of zinc with triclabendazole or emetine shows promise for clinical treatment of ACE2-related disease.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Antiparasitic Agents/pharmacology , Down-Regulation/drug effects , Emetine/pharmacology , NF-kappa B/antagonists & inhibitors , Triclabendazole/pharmacology , Zinc/pharmacology , COVID-19/drug therapy , COVID-19/genetics , Cell Line , Drug Repositioning , Humans , Lung/cytology , Lung/drug effects , Lung/metabolism , Pyrrolidines/pharmacology , Thiocarbamates/pharmacology
19.
EMBO J ; 40(15): e107826, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1261483

ABSTRACT

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/immunology , Epithelial Cells/immunology , Interferon-Induced Helicase, IFIH1/immunology , Macrophages/immunology , RNA, Viral/immunology , Receptors, Immunologic/immunology , SARS-CoV-2 , COVID-19/genetics , COVID-19/virology , Cell Line , Cytokines/genetics , Cytokines/immunology , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Immunity, Innate , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Janus Kinases/immunology , Lung/cytology , Lung/immunology , Lung/virology , Macrophage Activation , NF-kappa B/immunology , Respiratory Mucosa/cytology , Respiratory Mucosa/immunology , Respiratory Mucosa/virology , SARS-CoV-2/genetics , SARS-CoV-2/physiology , STAT Transcription Factors/immunology , Virus Replication
20.
J Allergy Clin Immunol ; 148(2): 368-380.e3, 2021 08.
Article in English | MEDLINE | ID: covidwho-1260767

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to a variety of clinical outcomes, ranging from the absence of symptoms to severe acute respiratory disease and ultimately death. A feature of patients with severe coronavirus disease 2019 (COVID-19) is the abundance of inflammatory cytokines in the blood. Elevated levels of cytokines are predictive of infection severity and clinical outcome. In contrast, studies aimed at defining the driving forces behind the inflammation in lungs of subjects with severe COVID-19 remain scarce. OBJECTIVE: Our aim was to analyze and compare the plasma and bronchoalveolar lavage (BAL) fluids of patients with severe COVID-19 (n = 45) for the presence of cytokines and lipid mediators of inflammation (LMIs). METHODS: Cytokines were measured by using Luminex multiplex assay, and LMIs were measured by using liquid chromatography-tandem mass spectrometry. RESULTS: We revealed high concentrations of numerous cytokines, chemokines, and LMIs in the BAL fluid of patients with severe COVID-19. Of the 13 most abundant mediators in BAL fluid, 11 were chemokines, with CXCL1 and CXCL8 being 200 times more abundant than IL-6 and TNF-α. Eicosanoid levels were also elevated in the lungs of subjects with severe COVID-19. Consistent with the presence chemotactic molecules, BAL fluid samples were enriched for neutrophils, lymphocytes, and eosinophils. Inflammatory cytokines and LMIs in plasma showed limited correlations with those present in BAL fluid, arguing that circulating inflammatory molecules may not be a reliable proxy of the inflammation occurring in the lungs of patients with severe COVID-19. CONCLUSIONS: Our findings indicate that hyperinflammation of the lungs of patients with severe COVID-19 is fueled by excessive production of chemokines and eicosanoids. Therapeutic strategies to dampen inflammation in patients with COVID-19 should be tailored accordingly.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Eicosanoids/immunology , Inflammation/immunology , Lung/immunology , SARS-CoV-2 , Adult , Aged , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/blood , Cytokines/blood , Female , Humans , Inflammation/blood , Lung/cytology , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...