Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 374
Filter
1.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index
2.
PLoS One ; 17(6): e0270609, 2022.
Article in English | MEDLINE | ID: covidwho-2196920

ABSTRACT

Covid-19 progression shows sex-dependent features. It is hypothesized that a better Covid-19 survival rate in females can be attributed to the presence of higher 17ß-estradiol (E2) levels in women than in men. Virus SARS-CoV-2 is enabled to enter the cell with the use of angiotensin converting enzyme 2 (ACE2). The expression of several renin-angiotensin system components has been shown to exert a rhythmic pattern, and a role of the circadian system in their regulation has been implicated. Therefore, the aim of the study is to elucidate possible interference between E2 signalling and the circadian system in the regulation of the expression of ACE2 mRNA and functionally related molecules. E2 was administered at a dosage of 40 µg/kg/day for 7 days to male Wistar rats, and sampling of the lungs and colon was performed during a 24-h cycle. The daily pattern of expression of molecules facilitating SARS-CoV-2 entry into the cell, clock genes and E2 receptors was analysed. As a consequence of E2 administration, a rhythm in ACE2 and TMPRSS2 mRNA expression was observed in the lungs but not in the colon. ADAM17 mRNA expression showed a pronounced rhythmic pattern in both tissues that was not influenced by E2 treatment. ESR1 mRNA expression exerted a rhythmic pattern, which was diminished by E2 treatment. The influence of E2 administration on ESR2 and GPER1 mRNA expression was greater in the lungs than in the colon as a significant rhythm in ESR2 and GPER1 mRNA expression appeared only in the lungs after E2 treatment. E2 administration also increased the amplitude of bmal1 expression in the lungs, which implicates altered functioning of peripheral oscillators in response to E2 treatment. The daily pattern of components of the SARS-CoV-2 entrance pathway and their responsiveness to E2 should be considered in the timing of pharmacological therapy for Covid-19.


Subject(s)
ADAM17 Protein , Angiotensin-Converting Enzyme 2 , COVID-19 , Colon , Estradiol , Lung , Receptors, Estradiol , ADAM17 Protein/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/drug therapy , COVID-19/virology , Colon/drug effects , Colon/metabolism , Estradiol/pharmacology , Female , Lung/metabolism , Male , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Receptors, Estradiol/genetics , Receptors, Estradiol/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Transcription, Genetic/drug effects , Virus Internalization
3.
Front Immunol ; 13: 954339, 2022.
Article in English | MEDLINE | ID: covidwho-2154721

ABSTRACT

The vast diversity of microbial communities reside in various locations of the human body, and they are collectively named as the 'Human Microbiota.' The majority of those microbes are found in the gastrointestinal and respiratory tracts. The microorganisms present in the gastrointestinal and the respiratory tracts are called the gut microbiota and the airway microbiota, respectively. These microbial communities are known to affect both the metabolic functions and the immune responses of the host. Among multiple factors determining the composition of gut microbiota, diet has played a pivotal role. The gut microbes possess enzymatic machinery for assimilating dietary fibers and releasing different metabolites, primarily short-chain fatty acids (SCFAs). The SCFAs modulate the immune responses of not only the gut but other distal mucosal sites as well, such as the lungs. Dysbiosis in normal gut flora is one of the factors involved in the development of asthma and other respiratory disorders. Of note, several human and murine studies have indicated significant cross-talk between gut microbiota and lung immunity, known as the gut-lung axis. Here, in this review, we summarize the recent state of the field concerning the effect of dietary metabolites, particularly SCFAs, on the "gut-lung axis" as well as discuss its impact on lung health. Moreover, we have highlighted the role of the "gut-lung axis" in SARS-CoV-2 mediated inflammation. Also, to analyze the global research progress on the gut-lung axis and to identify the knowledge gap in this field, we have also utilized the bibliographic tools Dimension database and VOS viewer analysis software. Through network mapping and visualization analysis, we can predict the present research trend and the possibility to explore new directions.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Animals , Mice , SARS-CoV-2 , Fatty Acids, Volatile/metabolism , Lung/metabolism , Homeostasis , Dietary Fiber , Immunity
4.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2090207

ABSTRACT

The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease's mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1ß, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , Inflammasomes/metabolism , SARS-CoV-2 , Interleukin-18 , NF-kappa B/metabolism , Angiotensin-Converting Enzyme 2 , Autopsy , Influenza A Virus, H1N1 Subtype/metabolism , Caspase 1/metabolism , Lung/metabolism , Cytokines/metabolism , Biopsy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
5.
mBio ; 13(5): e0241522, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2088413

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Mice , Humans , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoplasmic Reticulum Stress/genetics , SARS-CoV-2/genetics , Inositol , Protein Serine-Threonine Kinases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Ribonucleases/genetics , Transcription Factors , RNA, Messenger , Lung/metabolism , Interferons , X-Box Binding Protein 1/genetics
6.
OMICS ; 26(11): 608-621, 2022 11.
Article in English | MEDLINE | ID: covidwho-2087719

ABSTRACT

COVID-19 is a systemic disease affecting tissues and organs, including and beyond the lung. Apart from the current pandemic context, we also have vastly inadequate knowledge of consequences of repeated exposures to SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus causing COVID-19, in multiple organ systems and the whole organism scales when the disease evolves from a pandemic to an endemic state. This calls for a systems biology and systems medicine approach and unpacking the effects of COVID-19 in lung as well as other tissues. We report here original findings from transcriptomics analyses and differentially expressed genes (DEGs) in lung samples from 60 patients and 27 healthy controls, and in whole blood samples from 255 patients and 103 healthy individuals. A total of 11 datasets with RNA-seq transcriptomic data were obtained from the Gene Expression Omnibus and the European Nucleotide Archive. The identified DEGs were used to construct protein interaction and functional networks and to identify related pathways and miRNAs. We found 35 DEGs common between lung and the whole blood, and importantly, 2 novel genes, namely CYP1B1 and TNFAIP6, which have not been previously implicated with COVID-19. We also identified four novel miRNA potential regulators, hsa-mir-192-5p, hsa-mir-221-3p, hsa-mir-4756-3p, and hsa-mir-10a-5p, implicated in lung or other diseases induced by coronaviruses. In summary, these findings offer new molecular leads and insights to unpack COVID-19 systems biology in a whole organism context and might inform future antiviral drug, diagnostics, and vaccine discovery efforts.


Subject(s)
COVID-19 , MicroRNAs , Humans , Transcriptome/genetics , COVID-19/genetics , SARS-CoV-2/genetics , Systems Biology , MicroRNAs/metabolism , Lung/metabolism , Computational Biology
7.
Inflamm Res ; 71(12): 1417-1432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2074066

ABSTRACT

Acute respiratory distress syndrome (ARDS) is an acute and diffuse inflammatory lung injury in a short time, one of the common severe manifestations of the respiratory system that endangers human life and health. As an innate immune cell, macrophages play a key role in the inflammatory response. For a long time, the role of pulmonary macrophages in ARDS has tended to revolve around the polarization of M1/M2. However, with the development of single-cell RNA sequencing, fate mapping, metabolomics, and other new technologies, a deeper understanding of the development process, classification, and function of macrophages in the lung are acquired. Here, we discuss the function of pulmonary macrophages in ARDS from the two dimensions of anatomical location and cell origin and describe the effects of cell metabolism and intercellular interaction on the function of macrophages. Besides, we explore the treatments for targeting macrophages, such as enhancing macrophage phagocytosis, regulating macrophage recruitment, and macrophage death. Considering the differences in responsiveness of different research groups to these treatments and the tremendous dynamic changes in the gene expression of monocyte/macrophage, we discussed the possibility of characterizing the gene expression of monocyte/macrophage as the biomarkers. We hope that this review will provide new insight into pulmonary macrophage function and therapeutic targets of ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Macrophages, Alveolar/metabolism , Macrophages , Lung/metabolism
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2071501

ABSTRACT

In SARS-CoV-2-infected humans, disease progression is often associated with acute respiratory distress syndrome involving severe lung injury, coagulopathy, and thrombosis of the alveolar capillaries. The pathogenesis of these pulmonary complications in COVID-19 patients has not been elucidated. Autopsy study of these patients showed SARS-CoV-2 virions in pulmonary vessels and sequestrated leukocytes infiltrates associated with endotheliopathy and microvascular thrombosis. Since SARS-CoV-2 enters and infects target cells by binding its spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2), and there is evidence that vascular endothelial cells and neutrophils express ACE2, we investigated the effect of S-proteins and cell-cell communication on primary human lung microvascular endothelial cells (HLMEC) and neutrophils expression of thrombogenic factors and the potential mechanisms. Using S-proteins of two different SARS-CoV-2 variants (Wuhan and Delta), we demonstrate that exposure of HLMEC or neutrophils to S-proteins, co-culture of HLMEC exposed to S-proteins with non-exposed neutrophils, or co-culture of neutrophils exposed to S-proteins with non-exposed HLMEC induced transcriptional upregulation of tissue factor (TF), significantly increased the expression and secretion of factor (F)-V, thrombin, and fibrinogen and inhibited tissue factor pathway inhibitor (TFPI), the primary regulator of the extrinsic pathway of blood coagulation, in both cell types. Recombinant (r)TFPI and a thiol blocker (5,5'-dithio-bis-(2-nitrobenzoic acid)) prevented S-protein-induced expression and secretion of Factor-V, thrombin, and fibrinogen. Thrombomodulin blocked S-protein-induced expression and secretion of fibrinogen but had no effect on S-protein-induced expression of Factor-V or thrombin. These results suggests that following SARS-CoV-2 contact with the pulmonary endothelium or neutrophils and endothelial-neutrophil interactions, viral S-proteins induce coagulopathy via the TF pathway and mechanisms involving functional thiol groups. These findings suggest that using rTFPI and/or thiol-based drugs could be a viable therapeutic strategy against SARS-CoV-2-induced coagulopathy and thrombosis.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Thrombosis , Angiotensin-Converting Enzyme 2 , Cell Communication , Endothelial Cells/metabolism , Endothelium/metabolism , Fibrinogen , Humans , Lipoproteins , Lung/metabolism , Neutrophils/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Sulfhydryl Compounds , Thrombin , Thrombomodulin , Thromboplastin , Thrombosis/etiology
9.
Free Radic Biol Med ; 190: 247-263, 2022 09.
Article in English | MEDLINE | ID: covidwho-2036015

ABSTRACT

Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.


Subject(s)
Acute Lung Injury , COVID-19 , Hyperoxia , Pneumonia , Respiratory Distress Syndrome , Acute Lung Injury/metabolism , Aging , Antioxidants/metabolism , COVID-19/therapy , Humans , Hyperoxia/complications , Hyperoxia/metabolism , Lung/metabolism , Oxygen/metabolism , Pneumonia/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , alpha7 Nicotinic Acetylcholine Receptor/metabolism
11.
Pharmacol Ther ; 237: 108249, 2022 09.
Article in English | MEDLINE | ID: covidwho-2015917

ABSTRACT

Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.


Subject(s)
Cystic Fibrosis , Pulmonary Arterial Hypertension , Virus Diseases , Chloride Channels/metabolism , Chlorides/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Familial Primary Pulmonary Hypertension , Humans , Lung/metabolism , Virus Diseases/drug therapy
12.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-2010122

ABSTRACT

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Subject(s)
Antipyretics , COVID-19 , Clerodendrum , Hesperidin , Petasites , A549 Cells , Anti-Inflammatory Agents/pharmacology , COVID-19/drug therapy , Caspase 1/metabolism , Clerodendrum/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Hesperidin/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-18 , Interleukin-6 , Lung/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Solvents , Spike Glycoprotein, Coronavirus , Transcription Factor AP-1
13.
Sci Rep ; 12(1): 4058, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-2004786

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key host protein by which severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters and multiplies within cells. The level of ACE2 expression in the lung is hypothesised to correlate with an increased risk of severe infection and complications in COrona VIrus Disease 2019 (COVID-19). To test this hypothesis, we compared the protein expression status of ACE2 by immunohistochemistry (IHC) in post-mortem lung samples of patients who died of severe COVID-19 and lung samples obtained from non-COVID-19 patients for other indications. IHC for CD61 and CD163 was performed for the assessment of platelet-rich microthrombi and macrophages, respectively. IHC for SARS-CoV-2 viral antigen was also performed. In a total of 55, 44 COVID-19 post-mortem lung samples were tested for ACE2, 36 for CD163, and 26 for CD61, compared to 15 non-covid 19 control lung sections. Quantification of immunostaining, random sampling, and correlation analysis were used to substantiate the morphologic findings. Our results show that ACE2 protein expression was significantly higher in COVID-19 post-mortem lung tissues than in controls, regardless of sample size. Histomorphology in COVID-19 lungs showed diffuse alveolar damage (DAD), acute bronchopneumonia, and acute lung injury with SARS-CoV-2 viral protein detected in a subset of cases. ACE2 expression levels were positively correlated with increased expression levels of CD61 and CD163. In conclusion, our results show significantly higher ACE2 protein expression in severe COVID-19 disease, correlating with increased macrophage infiltration and microthrombi, suggesting a pathobiological role in disease severity.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Lung/metabolism , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Antigens, CD/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/metabolism , Autopsy , COVID-19/virology , Case-Control Studies , Female , Humans , Immunohistochemistry , Integrin beta3/genetics , Integrin beta3/metabolism , Lung/pathology , Male , Middle Aged , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
14.
Cell Biol Int ; 46(12): 2257-2261, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1999839

ABSTRACT

Vascular barrier dysfunction due to endothelial hyperpermeability has been associated with the pathophysiology of sepsis and severe lung injury, which may inflict acute respiratory distress syndrome (ARDS). Our group is focused on the mechanisms operating towards the regulation of endothelial permeability, to contribute in the development of efficient and targeted countermeasures against ARDS. Unfortunately, the number of ARDS-related deaths in the intensive care units has dramatically increased during the COVID-19 era. The findings described herein inform the corresponding scientific and medical community on the relation of P53 and stress responses in barrier function.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Sepsis , Humans , Tumor Suppressor Protein p53/metabolism , Unfolded Protein Response , Sepsis/metabolism , Lung/metabolism
15.
Front Immunol ; 13: 921728, 2022.
Article in English | MEDLINE | ID: covidwho-1987494

ABSTRACT

Fibroblasts of different origins are known to possess stromal memory after inflammatory episodes. However, there are no studies exploring human lung fibroblast memory which may predict a subsequent inflammatory response in chronic respiratory diseases and COVID-19. MRC-5 and HF19 human lung fibroblast cell lines were treated using different primary and secondary stimulus combinations: TNFα-WD-TNFα, Poly (I:C)-WD-TNFα, TNFα-WD-Poly (I:C), or LPS-WD-TNFα with a 24-h rest period (withdrawal period; WD) between the two 24-h stimulations. TLR3 and NF-κB inhibitors were used to determine pathways involved. The effect of SARS-Cov-2 spike protein to inflammatory response of lung fibroblasts was also investigated. mRNA expressions of genes and IL6 release were measured using qRT-PCR and ELISA, respectively. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni's post hoc analysis for comparison of multiple groups. Preexposure with Poly (I:C) significantly increased TNFα-induced IL6 gene expression and IL6 release in both cell lines, while it affected neither gene expressions of IL1B, IL2, IL8, and MMP8 nor fibrosis-related genes: ACTA2, COL1A1, POSTN, and TGFB1. Inhibition of TLR3 or NF-κB during primary stimulation significantly downregulated IL6 release. Simultaneous treatment of MRC-5 cells with SARS-CoV-2 spike protein further increased TNFα-induced IL6 release; however, preexposure to Poly (I:C) did not affect it. Human lung fibroblasts are capable of retaining inflammatory memory and showed an augmented response upon secondary exposure. These results may contribute to the possibility of training human lung fibroblasts to respond suitably on inflammatory episodes after viral infection.


Subject(s)
COVID-19 , Interleukin-6/genetics , Tumor Necrosis Factor-alpha , Fibroblasts/metabolism , Gene Expression , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Interleukin-6/metabolism , Lung/metabolism , NF-kappa B/metabolism , Poly I-C/metabolism , Poly I-C/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Mol Brain ; 15(1): 71, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-1978784

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused a global pandemic Coronavirus Disease 2019 (COVID-19). Currently, there are no effective treatments specifically for COVID-19 infection. The initial step in SARS-CoV-2 infection is attachment to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. We have developed a protein peptide that effectively disrupts the binding between the SARS-CoV-2 spike protein and ACE2. When delivered by nasal spray, our peptide prevents SARS-CoV-2 spike protein from entering lung and olfactory bulb cells of mice expressing human ACE2. Our peptide represents a potential novel treatment and prophylaxis against COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , Humans , Lung/metabolism , Mice , Olfactory Bulb/metabolism , Peptides/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Spike Glycoprotein, Coronavirus
17.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1960624

ABSTRACT

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Subject(s)
COVID-19 , Lung , Myosin Light Chains , SARS-CoV-2 , Severity of Illness Index , Thromboinflammation , Vasculitis , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Humans , Leukocytes, Mononuclear , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung/virology , Myosin Light Chains/blood , RNA-Seq , SARS-CoV-2/isolation & purification , Single-Cell Analysis , Spectrometry, X-Ray Emission , Thromboinflammation/pathology , Thromboinflammation/virology , Vasculitis/pathology , Vasculitis/virology
18.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-1957405

ABSTRACT

Vitamin D supplementation is linked to improved outcomes from respiratory virus infection, and the COVID-19 pandemic renewed interest in understanding the potential role of vitamin D in protecting the lung from viral infections. Therefore, we evaluated the role of vitamin D using animal models of pandemic H1N1 influenza and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. In mice, dietary-induced vitamin D deficiency resulted in lung inflammation that was present prior to infection. Vitamin D sufficient (D+) and deficient (D-) wildtype (WT) and D+ and D- Cyp27B1 (Cyp) knockout (KO, cannot produce 1,25(OH)2D) mice were infected with pandemic H1N1. D- WT, D+ Cyp KO, and D- Cyp KO mice all exhibited significantly reduced survival compared to D+ WT mice. Importantly, survival was not the result of reduced viral replication, as influenza M gene expression in the lungs was similar for all animals. Based on these findings, additional experiments were performed using the mouse and hamster models of SARS-CoV-2 infection. In these studies, high dose vitamin D supplementation reduced lung inflammation in mice but not hamsters. A trend to faster weight recovery was observed in 1,25(OH)2D treated mice that survived SARS-CoV-2 infection. There was no effect of vitamin D on SARS-CoV-2 N gene expression in the lung of either mice or hamsters. Therefore, vitamin D deficiency enhanced disease severity, while vitamin D sufficiency/supplementation reduced inflammation following infections with H1N1 influenza and SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Vitamin D Deficiency , Animals , Humans , Lung/metabolism , Mice , Pandemics , SARS-CoV-2 , Vitamin D/therapeutic use , Vitamin D Deficiency/epidemiology , Vitamins
19.
Life Sci ; 305: 120782, 2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-1956258

ABSTRACT

Acute lung injury (ALI) is characterized by diffuse pulmonary infiltrates and causes great mortality. ALI presents with overproduction of proinflammatory cytokines, cell death, destruction of alveoli-endothelial barriers, and neutrophil infiltration in lung tissues. Damage-associated molecular patterns (DAMPs) are molecules released from damaged cells due to infection, trauma, etc. DAMPs activate innate and adaptive immunity, trigger inflammatory responses, and are important in the initiation and development of ALI. We reviewed the literatures on DAMPs in ALI. Alveolar macrophages (AMs), neutrophils, and epithelial cells (AECs) are important in the pathogenesis of ALI. We comprehensively analyzed the interaction between DAMPs and AMs, alveolar neutrophils, and AECs. During the initial stage of ALI, ruptured cell membranes or destroyed mitochondria release DAMPs. DAMPs activate the inflammasome in nearby sentinel immune cells, such as AMs. AMs produce IL-1ß and other cytokines. These mediators upregulate adhesion molecules of the capillary endothelium that facilitate neutrophil recruitment. The recruited neutrophils detect DAMPs using formyl peptide receptors on the membrane, guiding their migration to the injured site. The accumulation of immune cells, cytokines, chemokines, proteases, etc., results in diffuse alveolar damage and pulmonary hyperpermeability with protein-rich fluid retention. Some clinical studies have shown that patients with ALI with higher circulating DAMPs have higher mortality rates. In conclusion, DAMPs are important in the initiation and progression of ALI. The interactions between DAMPs and AMs, neutrophils, and AECs are important in ALI. This review comprehensively addresses the mechanisms of DAMPs and their interactions in ALI.


Subject(s)
Acute Lung Injury , Acute Lung Injury/pathology , Alarmins/metabolism , Animals , Cytokines/metabolism , Humans , Lipopolysaccharides/metabolism , Lung/metabolism , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Neutrophils/metabolism
20.
Int J Mol Sci ; 21(9)2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-1934078

ABSTRACT

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) initiates the cytokine/chemokine storm-mediated lung injury. The SARS-CoV unique domain (SUD) with three macrodomains (N, M, and C), showing the G-quadruplex binding activity, was examined the possible role in SARS pathogenesis in this study. The chemokine profile analysis indicated that SARS-CoV SUD significantly up-regulated the expression of CXCL10, CCL5 and interleukin (IL)-1ß in human lung epithelial cells and in the lung tissues of the mice intratracheally instilled with the recombinant plasmids. Among the SUD subdomains, SUD-MC substantially activated AP-1-mediated CXCL10 expression in vitro. In the wild type mice, SARS-CoV SUD-MC triggered the pulmonary infiltration of macrophages and monocytes, inducing CXCL10-mediated inflammatory responses and severe diffuse alveolar damage symptoms. Moreover, SUD-MC actuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome-dependent pulmonary inflammation, as confirmed by the NLRP3 inflammasome inhibitor and the NLRP3-/- mouse model. This study demonstrated that SARS-CoV SUD modulated NLRP3 inflammasome-dependent CXCL10-mediated pulmonary inflammation, providing the potential therapeutic targets for developing the antiviral agents.


Subject(s)
Chemokine CXCL10/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Viral Proteins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/immunology , Cell Line , Chemokine CXCL10/genetics , Disease Models, Animal , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pneumonia/pathology , Pneumonia/virology , Promoter Regions, Genetic , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Up-Regulation , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL