Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Clin Lab ; 68(8)2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1994478

ABSTRACT

BACKGROUND: Novel coronavirus disease 2019 (COVID-19), which has been a global pandemic for nearly 2 years, presents with highly variable clinical manifestations in both the acute and post-acute periods. This study evaluated the relationship between CRP/albumin ratio and pulmonary function at 12 weeks in patients with post-acute COVID-19. METHODS: The study included 157 patients with a previous diagnosis of COVID-19 pneumonia who presented to our outpatient clinic with symptoms of post-acute COVID-19 (12 weeks after first testing positive) between July 2021 and October 2021. Patients who had non-severe pneumonia were included in group 1, severe pneumonia that did not require intensive care in group 2, and severe pneumonia that required intensive care in group 3. RESULTS: At 12 weeks, group 3 had significantly lower percent predicted forced expiratory volume in 1 second (FEV1%), percent predicted forced vital capacity (FVC%), percent predicted diffusing capacity of the lungs for carbon monoxide (DLCO%), and oxygen saturation (SO2) compared to patients in groups 1 and 2 (p = 0.001, 0.04, 0.001, and 0.001, respectively). CRP/albumin ratio was significantly lower in group 2 compared to groups 1 and 3 (p = 0.001). Correlation analysis independent of age and comorbidity showed that CRP/albumin ratio was negatively correlated with SO2, FEV1%, FVC%, and DLCO%. CONCLUSIONS: CRP and albumin levels have prognostic significance during acute COVID-19 infection. The negative correlation between CRP/albumin ratio and respiratory function observed in our study suggest this parameter may be used in the follow-up of patients presenting at 12 weeks with post-acute COVID-19 symptoms.


Subject(s)
COVID-19 , Lung , Albumins/analysis , C-Reactive Protein/analysis , COVID-19/complications , COVID-19/physiopathology , Forced Expiratory Volume , Humans , Lung/physiopathology , Vital Capacity
2.
PLoS One ; 17(2): e0263261, 2022.
Article in English | MEDLINE | ID: covidwho-1910506

ABSTRACT

PURPOSE: To evaluate the association between the coronavirus disease 2019 (COVID-19) and post-inflammatory emphysematous lung alterations on follow-up low-dose CT scans. METHODS: Consecutive patients with proven COVID-19 infection and a follow-up CT were retrospectively reviewed. The severity of pulmonary involvement was classified as mild, moderate and severe. Total lung volume, emphysema volume and the ratio of emphysema/-to-lung volume were quantified semi-automatically and compared inter-individually between initial and follow-up CT and to a control group of healthy, age- and sex-matched patients. Lung density was further assessed by drawing circular regions of interest (ROIs) into non-affected regions of the upper lobes. RESULTS: A total of 32 individuals (mean age: 64 ± 13 years, 12 females) with at least one follow-up CT (mean: 52 ± 66 days, range: 5-259) were included. In the overall cohort, total lung volume, emphysema volume and the ratio of lung-to-emphysema volume did not differ significantly between the initial and follow-up scans. In the subgroup of COVID-19 patients with > 30 days of follow-up, the emphysema volume was significantly larger as compared to the subgroup with a follow-up < 30 days (p = 0.045). Manually measured single ROIs generally yielded lower attenuation values prior to COVID-19 pneumonia, but the difference was not significant between groups (all p > 0.05). CONCLUSION: COVID-19 patients with a follow-up CT >30 days showed significant emphysematous lung alterations. These findings may help to explain the long-term effect of COVID-19 on pulmonary function and warrant validation by further studies.


Subject(s)
COVID-19/complications , Pulmonary Emphysema/complications , Pulmonary Emphysema/diagnostic imaging , Radiation Dosage , SARS-CoV-2/genetics , Tomography, X-Ray Computed/methods , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Female , Follow-Up Studies , Humans , Lung/physiopathology , Lung Volume Measurements , Male , Middle Aged , Pulmonary Emphysema/physiopathology , Retrospective Studies
3.
Biosensors (Basel) ; 12(6)2022 Jun 05.
Article in English | MEDLINE | ID: covidwho-1884002

ABSTRACT

Biophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441. Atelectrauma was mimicked through recruitment/derecruitment (RD) of a semi-infinite air bubble to the fluid-occluded micro-channel. We show that a confluent monolayer with a high level of barrier function is nearly impervious to atelectrauma for hundreds of RD events. Nevertheless, barrier function is eventually diminished, and after a critical number of RD insults, the monolayer disintegrates exponentially. Confluent layers with lower initial barrier function are less resilient. These results indicate that the first line of defense from atelectrauma resides with intercellular binding. After disruption, the epithelial layer community protection is diminished and atelectrauma ensues. ECIS may provide a platform for identifying damaging stimuli, ventilation scenarios, or pharmaceuticals that can reduce susceptibility or enhance barrier-function recovery.


Subject(s)
COVID-19 , Pulmonary Atelectasis/etiology , Respiratory Distress Syndrome , Ventilator-Induced Lung Injury , COVID-19/complications , COVID-19/physiopathology , Electric Impedance , Humans , Lung/physiopathology , Pneumonia, Aspiration/complications , Pneumonia, Aspiration/physiopathology , Pulmonary Atelectasis/physiopathology , Smoke Inhalation Injury/etiology , Smoke Inhalation Injury/physiopathology , Ventilator-Induced Lung Injury/complications , Ventilator-Induced Lung Injury/prevention & control
4.
Respiration ; 101(3): 272-280, 2022.
Article in English | MEDLINE | ID: covidwho-1865199

ABSTRACT

BACKGROUND: The presence of interstitial pneumonia in coronavirus disease 2019 (COVID-19) patients, as diagnosed through laboratory, functional, and radiological data, provides potential predicting factors of pulmonary sequelae. OBJECTIVES: The objectives were the creation of a risk assessment score for pulmonary sequelae at high-resolution computed tomography (HRCT) through the assessment of laboratory data, lung function, and radiological changes in patients after the onset of COVID-19 interstitial pneumonia and the identification of predictive factors. METHODS: We enrolled 121 subjects hospitalized due to COVID-19 pneumonia in our study. Clinical features, Charlson Comorbidity Index (CCI) score, HRCT score, and blood chemistry data at hospital admission, as well as HRCT score, pulmonary function testing values, exercise capacity by means of a 6-Minute Walk Test (6MWT), and dyspnea perception by the modified Medical Research Council (mMRC) at 4-month follow-up, were all recorded. The variables were elaborated in order to create a predictive model to identify patients at high risk of pulmonary sequelae at HRCT. RESULTS: At the time of follow-up visit, 63% of patients had functional abnormality (diffusion lung capacity and/or total lung capacity <80% of predicted). Age, BMI, CCI, D-dimer, 6MWT, and mMRC were included in the COVID-19 Sequelae Score (COSeSco, ranging 0-15), which was able to individuate COVID-19 patients with radiologic sequelae (HRCT score >10%) at follow-up. The most revelatory COSeSco value that was found to intercept the highest sensitivity (100%) and specificity (77%) was 2. CONCLUSION: The COSeSco - comprising age, BMI, comorbidities, D-dimer, walking distance, and dyspnea perception - makes it possible to identify particularly at-risk COVID-19 patients who are likely to develop pulmonary sequelae assessed by HRCT.


Subject(s)
COVID-19 , COVID-19/complications , Humans , Lung/diagnostic imaging , Lung/physiopathology , Respiratory Function Tests/methods , Risk Assessment , SARS-CoV-2
5.
Can J Anaesth ; 67(10): 1393-1404, 2020 10.
Article in English | MEDLINE | ID: covidwho-1777843

ABSTRACT

Pulmonary complications are the most common clinical manifestations of coronavirus disease (COVID-19). From recent clinical observation, two phenotypes have emerged: a low elastance or L-type and a high elastance or H-type. Clinical presentation, pathophysiology, pulmonary mechanics, radiological and ultrasound findings of these two phenotypes are different. Consequently, the therapeutic approach also varies between the two. We propose a management algorithm that combines the respiratory rate and oxygenation index with bedside lung ultrasound examination and monitoring that could help determine earlier the requirement for intubation and other surveillance of COVID-19 patients with respiratory failure.


RéSUMé: Les complications pulmonaires du coronavirus (COVID-19) constituent ses manifestations cliniques les plus fréquentes. De récentes observations cliniques ont fait émerger deux phénotypes : le phénotype à élastance faible ou type L (low), et le phénotype à élastance élevée, ou type H (high). La présentation clinique, la physiopathologie, les mécanismes pulmonaires, ainsi que les observations radiologiques et échographiques de ces deux différents phénotypes sont différents. L'approche thérapeutique variera par conséquent selon le phénotype des patients atteints de COVID-19 souffrant d'insuffisance respiratoire.


Subject(s)
Coronavirus Infections/complications , Lung/diagnostic imaging , Pneumonia, Viral/complications , Respiratory Insufficiency/diagnostic imaging , Ultrasonography , Acute Disease , Algorithms , COVID-19 , Coronavirus Infections/diagnostic imaging , Humans , Lung/physiopathology , Lung/virology , Oxygen/metabolism , Pandemics , Phenotype , Pneumonia, Viral/diagnostic imaging , Point-of-Care Systems , Respiratory Insufficiency/virology , Respiratory Rate/physiology
6.
Crit Care Med ; 50(4): 633-643, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1764678

ABSTRACT

OBJECTIVES: Prone position is used in acute respiratory distress syndrome and in coronavirus disease 2019 acute respiratory distress syndrome. However, it is unclear how responders may be identified and whether an oxygenation response improves outcome. The objective of this study was to quantify the response to prone position, describe the differences between coronavirus disease 2019 acute respiratory distress syndrome and acute respiratory distress syndrome, and explore variables associated with survival. DESIGN: Retrospective, observational, multicenter, international cohort study. SETTING: Seven ICUs in Italy, United Kingdom, and France. PATIENTS: Three hundred seventy-six adults (220 coronavirus disease 2019 acute respiratory distress syndrome and 156 acute respiratory distress syndrome). INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Preproning, a greater proportion of coronavirus disease 2019 acute respiratory distress syndrome patients had severe disease (53% vs 40%), worse Pao2/Fio2 (13.0 kPa [interquartile range, 10.5-15.5 kPa] vs 14.1 kPa [interquartile range, 10.5-18.6 kPa]; p = 0.017) but greater compliance (38 mL/cm H2O [interquartile range, 27-53 mL/cm H2O] vs 31 mL/cm H2O [interquartile range, 21-37 mL/cm H2O]; p < 0.001). Patients with coronavirus disease 2019 acute respiratory distress syndrome had a longer median time from intubation to prone position (2.0 d [interquartile range, 0.7-5.0 d] vs 1.0 d [interquartile range, 0.5-2.9 d]; p = 0.03). The proportion of responders, defined by an increase in Pao2/Fio2 greater than or equal to 2.67 kPa (20 mm Hg), upon proning, was similar between acute respiratory distress syndrome and coronavirus disease 2019 acute respiratory distress syndrome (79% vs 76%; p = 0.5). Responders had earlier prone position (1.4 d [interquartile range, 0.7-4.2 d] vs 2.5 d [interquartile range, 0.8-6.2 d]; p = 0.06)]. Prone position less than 24 hours from intubation achieved greater improvement in oxygenation (11 kPa [interquartile range, 4-21 kPa] vs 7 kPa [interquartile range, 2-13 kPa]; p = 0.002). The variables independently associated with the "responder" category were Pao2/Fio2 preproning (odds ratio, 0.89 kPa-1 [95% CI, 0.85-0.93 kPa-1]; p < 0.001) and interval between intubation and proning (odds ratio, 0.94 d-1 [95% CI, 0.89-0.99 d-1]; p = 0.019). The overall mortality was 45%, with no significant difference observed between acute respiratory distress syndrome and coronavirus disease 2019 acute respiratory distress syndrome. Variables independently associated with mortality included age (odds ratio, 1.03 yr-1 [95% CI, 1.01-1.05 yr-1]; p < 0.001); interval between hospital admission and proning (odds ratio, 1.04 d-1 [95% CI, 1.002-1.084 d-1]; p = 0.047); and change in Pao2/Fio2 on proning (odds ratio, 0.97 kPa-1 [95% CI, 0.95-0.99 kPa-1]; p = 0.002). CONCLUSIONS: Prone position, particularly when delivered early, achieved a significant oxygenation response in ~80% of coronavirus disease 2019 acute respiratory distress syndrome, similar to acute respiratory distress syndrome. This response was independently associated with improved survival.


Subject(s)
COVID-19/therapy , Prone Position , Respiration, Artificial/methods , Respiratory Distress Syndrome/therapy , Aged , COVID-19/complications , COVID-19/physiopathology , Europe , Female , Humans , Intensive Care Units , Lung/physiopathology , Male , Middle Aged , Odds Ratio , Patient Positioning , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/physiopathology , Respiratory Function Tests , Retrospective Studies
7.
Respir Res ; 23(1): 68, 2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1759751

ABSTRACT

BACKGROUND: Patient hospitalized for coronavirus disease 2019 (COVID-19) pulmonary infection can have sequelae such as impaired exercise capacity. We aimed to determine the frequency of long-term exercise capacity limitation in survivors of severe COVID-19 pulmonary infection and the factors associated with this limitation. METHODS: Patients with severe COVID-19 pulmonary infection were enrolled 3 months after hospital discharge in COVulnerability, a prospective cohort. They underwent cardiopulmonary exercise testing, pulmonary function test, echocardiography, and skeletal muscle mass evaluation. RESULTS: Among 105 patients included, 35% had a reduced exercise capacity (VO2peak < 80% of predicted). Compared to patients with a normal exercise capacity, patients with reduced exercise capacity were more often men (89.2% vs. 67.6%, p = 0.015), with diabetes (45.9% vs. 17.6%, p = 0.002) and renal dysfunction (21.6% vs. 17.6%, p = 0.006), but did not differ in terms of initial acute disease severity. An altered exercise capacity was associated with an impaired respiratory function as assessed by a decrease in forced vital capacity (p < 0.0001), FEV1 (p < 0.0001), total lung capacity (p < 0.0001) and DLCO (p = 0.015). Moreover, we uncovered a decrease of muscular mass index and grip test in the reduced exercise capacity group (p = 0.001 and p = 0.047 respectively), whilst 38.9% of patients with low exercise capacity had a sarcopenia, compared to 10.9% in those with normal exercise capacity (p = 0.001). Myocardial function was normal with similar systolic and diastolic parameters between groups whilst reduced exercise capacity was associated with a slightly shorter pulmonary acceleration time, despite no pulmonary hypertension. CONCLUSION: Three months after a severe COVID-19 pulmonary infection, more than one third of patients had an impairment of exercise capacity which was associated with a reduced pulmonary function, a reduced skeletal muscle mass and function but without any significant impairment in cardiac function.


Subject(s)
COVID-19/complications , Exercise Tolerance/physiology , Pneumonia/physiopathology , Aged , COVID-19/physiopathology , Cohort Studies , Echocardiography/methods , Echocardiography/statistics & numerical data , Exercise Test/methods , Exercise Test/statistics & numerical data , Exercise Tolerance/immunology , Female , Follow-Up Studies , France , Humans , Lung/physiopathology , Male , Middle Aged , Pneumonia/etiology , Prospective Studies , Respiratory Function Tests/methods , Respiratory Function Tests/statistics & numerical data , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology
8.
BMC Pulm Med ; 22(1): 101, 2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1759734

ABSTRACT

BACKGROUND: In Germany, the first case of coronavirus disease 2019 (COVID-19) was registered on 28 January 2020. By February 2021, the third wave of the pandemic began. So far, only few data are available on the SARS-CoV-2 prevalence and the clinical impact of an infection in patients with cystic fibrosis (CF). METHODS: From February 2020 until March 2021, we screened 156 CF patients for anti-SARS-CoV-2 IgG antibodies (serology) and the presence of SARS-CoV-2 in deep throat saliva or nasopharyngeal swabs (molecular testing). From patients with confirmed SARS-CoV-2 infection, we recorded symptoms and collected clinical data. RESULTS: In total, 13 patients (8.3%) were tested positive for SARS-CoV-2 infection, most of them during the second and the beginning third wave of the pandemic. Ten positive tested patients described symptoms linked to COVID-19. The most common symptom was cough followed by fatigue and headache. SARS-CoV-2 infection did not impair lung function. No positive tested patient needed to be hospitalized. CONCLUSIONS: SARS-CoV-2 infections in patients with CF are not as rare as initially anticipated, as frequent testing revealed. However, infected patients did not experience more severe clinical courses or worse clinical outcome. Our observation is in line with published reports indicating that individuals with CF are not at higher risk for severe COVID-19.


Subject(s)
COVID-19/epidemiology , Cystic Fibrosis/complications , Adolescent , Adult , Antibodies, Viral/blood , COVID-19/complications , Cystic Fibrosis/physiopathology , Female , Germany/epidemiology , Humans , Incidence , Lung/physiopathology , Male , Pulmonary Ventilation , SARS-CoV-2/immunology
9.
PLoS One ; 17(3): e0265202, 2022.
Article in English | MEDLINE | ID: covidwho-1753195

ABSTRACT

BACKGROUND: Non-invasive ventilation (NIV) has been increasingly used in COVID-19 patients. The limited physiological monitoring and the unavailability of respiratory mechanic measures, usually obtainable during invasive ventilation, is a limitation of NIV for ARDS and COVID-19 patients management. OBJECTIVES: This pilot study was aimed to evaluate the feasibility of non-invasively monitoring respiratory mechanics by oscillometry in COVID-19 patients with moderate-severe acute respiratory distress syndrome (ARDS) receiving NIV. METHOD: 15 COVID-19 patients affected by moderate-severe ARDS at the RICU (Respiratory Intensive Care Unit) of the University hospital of Cattinara, Trieste, Italy were recruited. Patients underwent oscillometry tests during short periods of spontaneous breathing between NIV sessions. RESULTS: Oscillometry proved to be feasible, reproducible and well-tolerated by patients. At admission, 8 of the 15 patients showed oscillometry parameters within the normal range which further slightly improved before discharge. At discharge, four patients had still abnormal respiratory mechanics, not exclusively linked to pre-existing respiratory comorbidities. Lung mechanics parameters were not correlated with oxygenation. CONCLUSIONS: Our results suggest that lung mechanics provide complementary information for improving patients phenotyping and personalisation of treatments during NIV in COVID 19 patients, especially in the presence of respiratory comorbidities where deterioration of lung mechanics may be less coupled with changes in oxygenation and more difficult to identify. Oscillometry may provide a valuable tool for monitoring lung mechanics in COVID 19 patients receiving NIV.


Subject(s)
COVID-19/therapy , Lung/physiopathology , Noninvasive Ventilation/methods , Oscillometry/methods , Respiratory Distress Syndrome/virology , Adult , Aged , COVID-19/physiopathology , Feasibility Studies , Female , Humans , Italy , Male , Middle Aged , Pilot Projects , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Retrospective Studies
10.
Turk J Med Sci ; 51(SI-1): 3359-3371, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1726151

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people worlwide and caused a pandemic that is still ongoing. The virus can cause a disease named as COVID-19, which is composed of multi systemic manifestations with a pulmonary system predominance. As the time passes, we are dealing more and more with a wide variety of effects and complications of the disease in survivors as far as with concerns about the clinical outcome and the timeline of symptoms in different patients. Since the lungs are the most involved organs and the post-COVID prolonged and persistent effects are mainly related to the pulmonary system, it is crucial to define and predict the outcome and to determine the individuals that can progress to fibrosis and loss of function of lungs. This review summarizes the current literature regarding the pulmonary complications in post-COVID syndrome and the management of these conditions.


Subject(s)
COVID-19/complications , Fibrosis , Lung/physiopathology , Severe Acute Respiratory Syndrome/complications , COVID-19/epidemiology , COVID-19/therapy , Humans , Pandemics , SARS-CoV-2 , Syndrome
11.
BMC Anesthesiol ; 22(1): 59, 2022 03 04.
Article in English | MEDLINE | ID: covidwho-1724413

ABSTRACT

BACKGROUND: Data on the lung respiratory mechanics and gas exchange in the time course of COVID-19-associated respiratory failure is limited. This study aimed to explore respiratory mechanics and gas exchange, the lung recruitability and risk of overdistension during the time course of mechanical ventilation. METHODS: This was a prospective observational study in critically ill mechanically ventilated patients (n = 116) with COVID-19 admitted into Intensive Care Units of Sechenov University. The primary endpoints were: «optimum¼ positive end-expiratory pressure (PEEP) level balanced between the lowest driving pressure and the highest SpO2 and number of patients with recruitable lung on Days 1 and 7 of mechanical ventilation. We measured driving pressure at different levels of PEEP (14, 12, 10 and 8 cmH2O) with preset tidal volume, and with the increase of tidal volume by 100 ml and 200 ml at preset PEEP level, and calculated static respiratory system compliance (CRS), PaO2/FiO2, alveolar dead space and ventilatory ratio on Days 1, 3, 5, 7, 10, 14 and 21. RESULTS: The «optimum¼ PEEP levels on Day 1 were 11.0 (10.0-12.8) cmH2O and 10.0 (9.0-12.0) cmH2O on Day 7. Positive response to recruitment was observed on Day 1 in 27.6% and on Day 7 in 9.2% of patients. PEEP increase from 10 to 14 cmH2O and VT increase by 100 and 200 ml led to a significant decrease in CRS from Day 1 to Day 14 (p < 0.05). Ventilatory ratio was 2.2 (1.7-2,7) in non-survivors and in 1.9 (1.6-2.6) survivors on Day 1 and decreased on Day 7 in survivors only (p < 0.01). PaO2/FiO2 was 105.5 (76.2-141.7) mmHg in non-survivors on Day 1 and 136.6 (106.7-160.8) in survivors (p = 0.002). In survivors, PaO2/FiO2 rose on Day 3 (p = 0.008) and then between Days 7 and 10 (p = 0.046). CONCLUSION: Lung recruitability was low in COVID-19 and decreased during the course of the disease, but lung overdistension occurred at «intermediate¼ PEEP and VT levels. In survivors gas exchange improvements after Day 7 mismatched CRS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04445961 . Registered 24 June 2020-Retrospectively registered.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Lung/physiopathology , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/epidemiology , Aged , COVID-19/physiopathology , Critical Care/methods , Female , Humans , Male , Middle Aged , Noninvasive Ventilation/statistics & numerical data , Positive-Pressure Respiration , Prospective Studies , Respiratory Insufficiency/physiopathology , Respiratory Mechanics , Russia/epidemiology , SARS-CoV-2 , Survival Analysis , Tidal Volume , Treatment Failure
12.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-1673341

ABSTRACT

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Disease Models, Animal , Encephalitis, Viral/prevention & control , Keratin-18/genetics , Nasal Sprays , SARS-CoV-2/physiology , Administration, Inhalation , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Encephalitis, Viral/mortality , Epithelial Cells/metabolism , Female , Humans , Keratin-18/metabolism , Lung/immunology , Lung/pathology , Lung/physiopathology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic/genetics , Transcriptome , Virus Replication
13.
BMC Pulm Med ; 22(1): 51, 2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1666648

ABSTRACT

BACKGROUND: Understanding heterogeneity seen in patients with COVIDARDS and comparing to non-COVIDARDS may inform tailored treatments. METHODS: A multidisciplinary team of frontline clinicians and data scientists worked to create the Northwell COVIDARDS dataset (NorthCARDS) leveraging over 11,542 COVID-19 hospital admissions. The data was then summarized to examine descriptive differences based on clinically meaningful categories of lung compliance, and to examine trends in oxygenation. FINDINGS: Of the 1536 COVIDARDS patients in the NorthCARDS dataset, there were 531 (34.6%) who had very low lung compliance (< 20 ml/cmH2O), 970 (63.2%) with low-normal compliance (20-50 ml/cmH2O), and 35 (2.2%) with high lung compliance (> 50 ml/cmH2O). The very low compliance group had double the median time to intubation compared to the low-normal group (107.3 h (IQR 25.8, 239.2) vs. 39.5 h (IQR 5.4, 91.6)). Overall, 68.8% (n = 1057) of the patients died during hospitalization. In comparison to non-COVIDARDS reports, there were less patients in the high compliance category (2.2% vs. 12%, compliance ≥ 50 mL/cmH20), and more patients with P/F ≤ 150 (59.8% vs. 45.6%). There is a statistically significant correlation between compliance and P/F ratio. The Oxygenation Index is the highest in the very low compliance group (12.51, SD(6.15)), and lowest in high compliance group (8.78, SD(4.93)). CONCLUSIONS: The respiratory system compliance distribution of COVIDARDS is similar to non-COVIDARDS. In some patients, there may be a relation between time to intubation and duration of high levels of supplemental oxygen treatment on trajectory of lung compliance.


Subject(s)
COVID-19/physiopathology , Hypoxia/virology , Lung/physiopathology , Respiratory Distress Syndrome/virology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , COVID-19/therapy , Case-Control Studies , Disease Progression , Female , Humans , Hypoxia/physiopathology , Hypoxia/therapy , Male , Middle Aged , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Function Tests , Retrospective Studies , Treatment Outcome
14.
Curr Med Imaging ; 17(12): 1487-1495, 2021.
Article in English | MEDLINE | ID: covidwho-1622466

ABSTRACT

PURPOSE: The purpose of this study was to investigate the influencing factors for chest CT hysteresis and severity of coronavirus disease 2019 (COVID-19). METHODS: The chest CT data of patients with confirmed COVID-19 in 4 hospitals were retrospectively analyzed. An independent assessment was performed by one clinician using the DEXIN FACT Workstation Analysis System, and the assessment results were reviewed by another clinician. Furthermore, the mean hysteresis time was calculated according to the median time from progression to the most serious situation to improve chest CT in patients after fever relief. The optimal scaling regression analysis was performed by including variables with statistical significance in univariate analysis. In addition, a multivariate regression model was established to investigate the relationship of the percentage of lesion/total lung volume with lymphocyte and other variables. RESULTS: In the included 166 patients with COVID-19, the average value of the most serious percentage of lesion/total lung volume was 6.62, of which 90 patients with fever had an average hysteresis time of 4.5 days after symptom relief, with a similar trend observed in those without fever. Multivariate analysis revealed that lymphocyte count in peripheral blood and transcutaneous oxygen saturation decreased with the increase of the percentage of lesion/total lung volume. CONCLUSION: There is a hysteresis effect in the improvement of chest CT image relative to fever relief in patients with COVID-19. The pulmonary lesions may be related to the severity as well as decreased lymphocyte count or percutaneous oxygen saturation.


Subject(s)
COVID-19 , Tomography, X-Ray Computed , COVID-19/diagnostic imaging , Humans , Lung/diagnostic imaging , Lung/physiopathology , Retrospective Studies , SARS-CoV-2
15.
Respir Res ; 23(1): 7, 2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1622237

ABSTRACT

BACKGROUND: The comparison of respiratory system compliance (Crs) between COVID and non-COVID ARDS patients has been the object of debate, but few studies have evaluated it when considering applied positive end expiratory pressure (PEEP), which is one of the known determinants of Crs itself. The aim of this study was to compare Crs taking into account the applied PEEP. METHODS: Two cohorts of patients were created: those with COVID-ARDS and those with non-COVID ARDS. In the whole sample the association between Crs and type of ARDS at different PEEP levels was adjusted for anthropometric and clinical variables. As secondary analyses, patients were matched for predicted functional residual capacity and the same association was assessed. Moreover, the association between Crs and type of ARDS was reassessed at predefined PEEP level of 0, 5, 10, and 15 cmH2O with a propensity score-weighted linear model. RESULTS: 367 patients were included in the study, 276 patients with COVID-ARDS and 91 with non-COVID ARDS. The association between Crs and type of ARDS was not significant in both the complete cohorts (p = 0.17) and in the matched cohorts (p = 0.92). This was true also for the propensity score weighted association at PEEP 5, 10 and 15 cmH2O, while it was statistically significant at PEEP 0 (with a median difference of 3 ml/cmH2O, which in our opinion is not clinically significant). CONCLUSIONS: The compliance of the respiratory system is similar between COVID ARDS and non-COVID ARDS when calculated at the same PEEP level and while taking into account patients' anthropometric characteristics.


Subject(s)
COVID-19/therapy , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Aged , Anthropometry , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/virology , Female , Functional Residual Capacity , Host-Pathogen Interactions , Humans , Lung/physiopathology , Lung/virology , Lung Compliance , Male , Middle Aged , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/physiopathology , Retrospective Studies , SARS-CoV-2/pathogenicity , Treatment Outcome
16.
Bull Exp Biol Med ; 172(3): 364-367, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1616180

ABSTRACT

The article presents a theoretical rationale and a clinical case of relief of post-COVID ventilation failure by inhalation of Xe and O2 gas mixture. Pneumonitis of coronavirus etiology transforms saturated phospholipids of surfactant into a solid-ordered phase, which disrupts surface tension, alveolar pneumatization, and alveolar-capillary gas exchange. Using molecular modeling (B3LYP/lanl2dz; GAUSSIAN09), we demonstrated that Xe atom due to the van der Waals dispersion interaction increases the distance between the phospholipid acyl chains providing a phase transition from the solid-ordered to liquid phase and restored the surface-active monolayer surfactant film. A clinical case confirmed that short-term inhalations of the Xe and O2 gas mixture relieved manifestations of ventilation insufficiency and increased SpO2 and pneumatization of the terminal parts of the lungs.


Subject(s)
COVID-19/complications , Oxygen/administration & dosage , Respiratory Insufficiency/therapy , Respiratory Therapy/methods , Xenon/administration & dosage , Administration, Inhalation , Anesthetics, Inhalation/administration & dosage , COVID-19/etiology , COVID-19/rehabilitation , COVID-19/therapy , Drug Combinations , Humans , Lung/drug effects , Lung/physiopathology , Male , Middle Aged , Respiration/drug effects , Respiratory Insufficiency/etiology , Russia , SARS-CoV-2
17.
Sci Immunol ; 7(67): eabm5505, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1612940

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease characterized by a profound dysregulation of the innate immune system. This knowledge has emerged from the large body of single-cell omics studies of patients with COVID-19, which have provided one of the most detailed cellular atlases of a human disease ever. However, we are only beginning to understand the innate immunological pathways that govern host defense and immunopathology in COVID-19. In this review, we discuss the emerging understanding of how SARS-CoV-2 and host-derived molecules activate specific pattern recognition receptors to elicit protective interferon responses and pathological cytokine responses, with particular focus on acute infection of the lung and lung pathophysiology in critical COVID-19. In addition, we discuss how these pathways are modulated by virus-host interactions and host stress-sensing pathways. In-depth understanding of the disease mechanisms will likely uncover specific molecular targets for the treatment of COVID-19 and other emerging viral infections. In addition, it will reveal the fine balance between beneficial protective versus pathological disease causing immune responses.


Subject(s)
COVID-19 , Immunity, Innate , Lung , SARS-CoV-2/immunology , Signal Transduction/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Humans , Lung/immunology , Lung/pathology , Lung/physiopathology
18.
Lancet Respir Med ; 10(1): 95-106, 2022 01.
Article in English | MEDLINE | ID: covidwho-1612130

ABSTRACT

The lungs are the main site that is affected in severe COVID-19, and post-mortem lung tissue provides crucial insights into the pathophysiology of severe disease. From basic histology to state-of-the-art multiparameter digital pathology technologies, post-mortem lung tissue provides snapshots of tissue architecture, and resident and inflammatory cell phenotypes and composition at the time of death. Contrary to early assumptions that COVID-19 in the lungs is a uniform disease, post-mortem findings have established a high degree of disease heterogeneity. Classic diffuse alveolar damage represents just one phenotype, with disease divisible by early and late progression as well as by pathophysiological process. A distinct lung tissue state occurs with secondary infection; extrapulmonary causes of death might also originate from a pathological process in the lungs linked to microthrombosis. This heterogeneity of COVID-19 lung disease must be recognised in the management of patients and in the development of novel treatment strategies.


Subject(s)
COVID-19 , Lung , Autopsy , COVID-19/immunology , COVID-19/pathology , Fossils , Humans , Lung/pathology , Lung/physiopathology , Lung/virology , Patient Acuity , SARS-CoV-2
19.
Crit Care ; 26(1): 12, 2022 01 04.
Article in English | MEDLINE | ID: covidwho-1608868

ABSTRACT

BACKGROUND: In the context of acute respiratory distress syndrome (ARDS), the response to lung recruitment maneuvers (LRMs) varies considerably from one patient to another and so is difficult to predict. The aim of the study was to determine whether or not the recruitment-to-inflation (R/I) ratio could differentiate between patients according to the change in lung mechanics during the LRM. METHODS: We evaluated the changes in gas exchange and respiratory mechanics induced by a stepwise LRM at a constant driving pressure of 15 cmH2O during pressure-controlled ventilation. We assessed lung recruitability by measuring the R/I ratio. Patients were dichotomized with regard to the median R/I ratio. RESULTS: We included 30 patients with moderate-to-severe ARDS and a median [interquartile range] R/I ratio of 0.62 [0.42-0.83]. After the LRM, patients with high recruitability (R/I ratio ≥ 0.62) presented an improvement in the PaO2/FiO2 ratio, due to significant increase in respiratory system compliance (33 [27-42] vs. 42 [35-60] mL/cmH2O; p < 0.001). In low recruitability patients (R/I < 0.62), the increase in PaO2/FiO2 ratio was associated with a significant decrease in pulse pressure as a surrogate of cardiac output (70 [55-85] vs. 50 [51-67] mmHg; p = 0.01) but not with a significant change in respiratory system compliance (33 [24-47] vs. 35 [25-47] mL/cmH2O; p = 0.74). CONCLUSION: After the LRM, patients with high recruitability presented a significant increase in respiratory system compliance (indicating a gain in ventilated area), while those with low recruitability presented a decrease in pulse pressure suggesting a drop in cardiac output and therefore in intrapulmonary shunt.


Subject(s)
COVID-19 , Lung , Respiratory Distress Syndrome , COVID-19/complications , Humans , Lung/physiopathology , Positive-Pressure Respiration , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
20.
Br J Anaesth ; 128(3): 491-500, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608752

ABSTRACT

BACKGROUND: There is a need to assess the long-term outcomes of survivors of critical illness from COVID-19. METHODS: Ninety-two survivors of critical illness from COVID-19 from four hospitals in Hubei Province, China participated in this prospective cohort study. Multiple characteristics, including lung function (lung volumes, diffusing capacity for carbon monoxide, chest computed tomography scores, and walking capacity); immune status (SARS-CoV-2-neutralising antibody and all subtypes of immunoglobulin (Ig) G against SARS-CoV-2, immune cells in response to ex vivo antigen peptide stimuli, and lymphocyte count and its subtypes); liver, coagulation, and kidney functions; quality of life; cognitive function; and mental status, were assessed after 3, 6, and 12 months of follow-up. RESULTS: Amongst the 92 enrolled survivors, 72 (78%) patients required mechanical ventilation. At 12 months, the predicted percentage diffusing capacity of lung for carbon monoxide was 82% (inter-quartile range [IQR]: 76-97%) with a residual volume of 77 (64-88)%. Other lung function parameters and the 6-min walk test improved gradually over time and were almost back to normal by 12 months. The titres of IgG and neutralising antibody to COVID-19 remained high at 12 months compared with those of controls who were not infected with COVID-19, although IgG titres decreased significantly from 34.0 (IQR: 23.8-74.3) to 15.0 (5.8-24.3) AU ml-1 (P<0.001), whereas neutralising antibodies decreased from 29.99 (IQR: 19.43-53.93) AU ml-1 at 6 months to 19.75 (13.1-29.8) AU ml-1 (P<0.001) at 12 months. In general, liver, kidney, physical, and mental functions also improved over time. CONCLUSIONS: Survivors of critical illness from COVID-19 show some persistent long-term impairments in lung function. However, a majority of these tests were normal by 12 months. These patients still had detectable levels of neutralising antibodies against SARS-CoV-2 and all types of IgG at 12 months, but the levels had declined over this time period. CLINICAL TRIAL REGISTRATION: None.


Subject(s)
Antibodies/blood , COVID-19/diagnosis , COVID-19/immunology , Survivors , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , China , Critical Illness , Cytokines/blood , Female , Humans , Kidney/physiopathology , Liver/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Male , Middle Aged , Prognosis , Prospective Studies , Quality of Life , Respiratory Function Tests , SARS-CoV-2/immunology , Tomography, X-Ray Computed , Walk Test
SELECTION OF CITATIONS
SEARCH DETAIL