Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 802
Filter
1.
PLoS Pathog ; 18(1): e1010171, 2022 01.
Article in English | MEDLINE | ID: covidwho-2327858

ABSTRACT

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung/virology , SARS-CoV-2/physiology , Virus Internalization , Adult , Animals , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/pathology , Cells, Cultured , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drugs, Investigational/pharmacology , Drugs, Investigational/therapeutic use , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Inflammation/pathology , Inflammation/therapy , Inflammation/virology , Lung/pathology , SARS-CoV-2/drug effects , Vero Cells , Virus Internalization/drug effects
2.
Arch Cardiol Mex ; 91(Suplemento COVID): 086-094, 2021 Dec 20.
Article in Spanish | MEDLINE | ID: covidwho-2313261

ABSTRACT

Currently, myocardial injury has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). The studies also show a correlation between cardiac events and severe forms of the disease. COVID-19 begins with an early infection phase in which the virus infiltrates the lung parenchyma and proliferates. It then progresses to the pulmonary phase, where the initial inflammatory process, characterized by vasodilation, vascular permeability, and leukocyte recruitment, leads to lung damage, hypoxemia, and cardiovascular stress. The renin angiotensin aldosterone system is important in the pathophysiology of severe acute respiratory syndrome coronavirus 2 infection and in the propagation of systemic inflammation. Within this system, the pathway mediated by angiotensin-converting enzyme 2 (ACE2) produces vasodilation, cardioprotection, anti-oxidation, and anti-inflammation. Furthermore, the free form of ECA2 prevents binding of the virus to host cells and reduces its damage to the lung.


Actualmente, se ha reportado injuria miocárdica en pacientes hospitalizados por enfermedad por coronavirus 2019 (COVID-19). Los estudios, además, demuestran una correlación entre los eventos cardiacos y formas severas de la enfermedad. La COVID-19 comienza con una fase de infección temprana en la que el virus infiltra el parénquima pulmonar y prolifera. Luego progresa a la fase pulmonar, donde el proceso inflamatorio inicial, caracterizado por vasodilatación, permeabilidad vascular y reclutamiento de leucocitos, lleva a daño pulmonar, hipoxemia y estrés cardiovascular. El sistema renina angiotensina aldosterona es importante en la fisiopatología de la infección por el coronavirus 2 del síndrome respiratorio agudo grave y en la propagación de la inflamación sistémica. Dentro de este sistema, la vía mediada por la enzima convertidora de angiotensina 2 (ECA2) produce vasodilatación, cardioprotección, antioxidación y antiinflamación. Además, la forma libre de la ECA2 previene la unión del virus a las células huésped y reduce su daño al pulmón.


Subject(s)
COVID-19 , Cardiovascular System , Heart Diseases/virology , Angiotensin-Converting Enzyme 2 , COVID-19/complications , COVID-19/physiopathology , Cardiovascular System/virology , Humans , Lung/virology , Renin-Angiotensin System
3.
J Mol Cell Biol ; 13(3): 168-174, 2021 07 06.
Article in English | MEDLINE | ID: covidwho-2288493

ABSTRACT

The high infectivity and pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused the COVID-19 outbreak, one of the most devastating pandemics in more than a century. This pandemic has already left a trail of destruction, including enormous loss of life, a global economic slump, and widespread psychological damage. Despite assiduous world-wide endeavors, an effective cure for COVID-19 is still lacking. Surprisingly, infected neonates and children have relatively mild clinical manifestations and a much lower fatality rate than elderly adults. Recent studies have unambiguously demonstrated the vertical transmission of SARS-CoV-2 from infected pregnant women to fetuses, which creates yet another challenge for disease prevention. In this review, we will summarize the molecular mechanism for entry of SARS-CoV-2 into host cells, the basis for the failure of the lungs and other organs in severe acute cases, and the evidence for congenital transmission.


Subject(s)
COVID-19/transmission , Infectious Disease Transmission, Vertical , SARS-CoV-2/genetics , Virus Internalization , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Female , Fetus/virology , Humans , Lung/pathology , Lung/virology , Pandemics , Pregnancy , SARS-CoV-2/pathogenicity
4.
Bull Exp Biol Med ; 174(4): 527-532, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2288895

ABSTRACT

RNA interference in vertebrates acts as an antiviral mechanism only in undifferentiated embryonic stem cells and is mediated by microRNAs. In somatic cells, host microRNAs also bind to the genomes of RNA viruses, regulating their translation and replication. It has been shown that viral (+)RNA can evolve under the influence of host cell miRNAs. In more than two years of the pandemic, the SARS-CoV-2 virus has mutated significantly. It is quite possible that some mutations could be retained in the virus genome under the influence of miRNAs produced by alveolar cells. We demonstrated that microRNAs in human lung tissue exert evolutionary pressure on the SARS-CoV-2 genome. Moreover, a significant number of sites of host microRNA binding with the virus genome are located in the NSP3-NSP5 region responsible for autoproteolysis of viral polypeptides.


Subject(s)
Alveolar Epithelial Cells , COVID-19 , MicroRNAs , SARS-CoV-2 , Humans , Alveolar Epithelial Cells/metabolism , COVID-19/genetics , Host Microbial Interactions/genetics , Lung/metabolism , Lung/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Mutation , SARS-CoV-2/genetics
5.
J Virol ; 97(2): e0171922, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2213880

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Subject(s)
COVID-19 , Host Specificity , Pangolins , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Cell Line , China , COVID-19/transmission , COVID-19/virology , Lung/pathology , Lung/virology , Mice, Transgenic , Pangolins/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Swine , Chiroptera
6.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index , COVID-19 Drug Treatment
7.
Shock ; 58(6): 514-523, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2191214

ABSTRACT

ABSTRACT: Background: Severe progression of coronavirus disease 2019 (COVID-19) causes respiratory failure and critical illness. Recently, COVID-19 has been associated with heparanase (HPSE)-induced endothelial barrier dysfunction and inflammation, so called endothelitis, and therapeutic treatment with heparin or low-molecular-weight heparin (LMWH) targeting HPSE has been postulated. Because, up to this date, clinicians are unable to measure the severity of endothelitis, which can lead to multiorgan failure and concomitant death, we investigated plasma levels of HPSE and heparin-binding protein (HBP) in COVID-19 intensive care patients to render a possible link between endothelitis and these plasma parameters. Therefore, a prospective prolonged cohort study was conducted, including 47 COVID-19 patients from the intensive care unit. Plasma levels of HPSE, and HBP were measured daily by enzyme-linked immunosorbent assay in survivors (n = 35) and nonsurvivors (n = 12) of COVID-19 from admission until discharge or death. All patients were either treated with heparin or LMWH, aiming for an activated partial thromboplastin time of ≥60 seconds or an anti-Xa level of >0.8 IU/mL using enoxaparin, depending on the clinical status of the patient (patients with extracorporeal membrane oxygenation or >0.1 µg/kg/min noradrenaline received heparin, all others enoxaparin). Results: We found significantly higher plasma levels of HPSE and HBP in survivors and nonsurvivors of COVID-19, compared with healthy controls. Still, interestingly, plasma HPSE levels were significantly higher ( P < 0.001) in survivors compared with nonsurvivors of COVID-19. In contrast, plasma HBP levels were significantly reduced ( P < 0.001) in survivors compared with nonsurvivors of COVID-19. Furthermore, when patients received heparin, they had significantly lower HPSE ( P = 2.22 e - 16) and significantly higher HBP ( P = 0.00013) plasma levels as when they received LMWH. Conclusion: Our results demonstrated that patients, who recover from COVID-19-induced vascular and pulmonary damage and were discharged from the intensive care unit, have significantly higher plasma HPSE level than patients who succumb to COVID-19. Therefore, HPSE is not suitable as marker for disease severity in COVID-19 but maybe as marker for patient's recovery. In addition, patients receiving therapeutic heparin treatment displayed significantly lower heparanse plasma level than upon therapeutic treatment with LMWH.


Subject(s)
COVID-19 , Endothelium, Vascular , Glucuronidase , Lung , Vascular Diseases , Humans , Cohort Studies , COVID-19/blood , COVID-19/complications , COVID-19/diagnosis , Enoxaparin , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Prospective Studies , Survivors , Glucuronidase/blood , Recovery of Function , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Vascular Diseases/diagnosis , Vascular Diseases/virology , Lung/physiopathology , Lung/virology , COVID-19 Drug Treatment
8.
Nature ; 615(7950): 143-150, 2023 03.
Article in English | MEDLINE | ID: covidwho-2185940

ABSTRACT

The SARS-CoV-2 Omicron variant is more immune evasive and less virulent than other major viral variants that have so far been recognized1-12. The Omicron spike (S) protein, which has an unusually large number of mutations, is considered to be the main driver of these phenotypes. Here we generated chimeric recombinant SARS-CoV-2 encoding the S gene of Omicron (BA.1 lineage) in the backbone of an ancestral SARS-CoV-2 isolate, and compared this virus with the naturally circulating Omicron variant. The Omicron S-bearing virus robustly escaped vaccine-induced humoral immunity, mainly owing to mutations in the receptor-binding motif; however, unlike naturally occurring Omicron, it efficiently replicated in cell lines and primary-like distal lung cells. Similarly, in K18-hACE2 mice, although virus bearing Omicron S caused less severe disease than the ancestral virus, its virulence was not attenuated to the level of Omicron. Further investigation showed that mutating non-structural protein 6 (nsp6) in addition to the S protein was sufficient to recapitulate the attenuated phenotype of Omicron. This indicates that although the vaccine escape of Omicron is driven by mutations in S, the pathogenicity of Omicron is determined by mutations both in and outside of the S protein.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virulence Factors , Virulence , Animals , Mice , Cell Line , Immune Evasion , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Humans , COVID-19 Vaccines/immunology , Lung/cytology , Lung/virology , Virus Replication , Mutation
9.
Nature ; 614(7948): 530-538, 2023 02.
Article in English | MEDLINE | ID: covidwho-2185938

ABSTRACT

Resident-tissue macrophages (RTMs) arise from embryonic precursors1,2, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15-/- mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E2 production. A compromised AM compartment resulted in increased susceptibility to acute lung injury induced by lipopolysaccharide and to pulmonary infections with influenza A virus or SARS-CoV-2. Our results highlight the complexity of prenatal RTM programming and reveal their dependency on in trans eicosanoid production by neutrophils for lifelong self-renewal.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Cell Self Renewal , Macrophages, Alveolar , Neutrophils , Animals , Mice , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Acute Lung Injury , Animals, Newborn , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 15-Lipoxygenase/deficiency , COVID-19 , Influenza A virus , Lipopolysaccharides , Lung/cytology , Lung/virology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Orthomyxoviridae Infections , Prostaglandins E , SARS-CoV-2 , Disease Susceptibility
10.
Cells ; 11(17)2022 09 04.
Article in English | MEDLINE | ID: covidwho-2009960

ABSTRACT

Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic and has severely affected socio-economic conditions and people's life. The lung is the major target organ infected and (seriously) damaged by SARS-CoV-2, so a comprehensive understanding of the virus and the mechanism of infection are the first choices to overcome COVID-19. Recent studies have demonstrated the enormous value of human organoids as platforms for virological research, making them an ideal tool for researching host-pathogen interactions. In this study, the various existing lung organoids and their identification biomarkers and applications are summarized. At the same time, the seven coronaviruses currently capable of infecting humans are outlined. Finally, a detailed summary of existing studies on SARS-CoV-2 using lung organoids is provided and includes pathogenesis, drug development, and precision treatment. This review highlights the value of lung organoids in studying SARS-CoV-2 infection, bringing hope that research will alleviate COVID-19-associated lung infections.


Subject(s)
COVID-19 , Lung , Models, Anatomic , Organoids , Humans , Lung/virology , Organoids/virology , SARS-CoV-2
11.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1997031

ABSTRACT

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Subject(s)
COVID-19 , Lung , Orthomyxoviridae Infections , Animals , Antiviral Agents/pharmacology , COVID-19/pathology , Fluoxetine/pharmacology , Humans , Influenza A virus/physiology , Influenza, Human/pathology , Interferons , Lung/virology , Mice , Orthomyxoviridae Infections/pathology , SARS-CoV-2/physiology , Tissue Culture Techniques , Virus Replication
12.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1960624

ABSTRACT

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Subject(s)
COVID-19 , Lung , Myosin Light Chains , SARS-CoV-2 , Severity of Illness Index , Thromboinflammation , Vasculitis , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Humans , Leukocytes, Mononuclear , Lung/blood supply , Lung/metabolism , Lung/pathology , Lung/virology , Myosin Light Chains/blood , RNA-Seq , SARS-CoV-2/isolation & purification , Single-Cell Analysis , Spectrometry, X-Ray Emission , Thromboinflammation/pathology , Thromboinflammation/virology , Vasculitis/pathology , Vasculitis/virology
13.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: covidwho-1957450

ABSTRACT

SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a difference, which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron replication in the lung tissues. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron.


Subject(s)
COVID-19 , Interferons , Lung , COVID-19/immunology , Humans , Interferons/immunology , Lung/immunology , Lung/virology , SARS-CoV-2/physiology , Virus Replication
14.
Front Immunol ; 12: 785349, 2021.
Article in English | MEDLINE | ID: covidwho-1911033

ABSTRACT

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


Subject(s)
CD40 Ligand/immunology , COVID-19/immunology , Mesocricetus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , Female , HEK293 Cells , Humans , Lung/immunology , Lung/virology , Mesocricetus/virology , Models, Animal , Vaccination/methods , Vaccines, Inactivated/immunology
15.
Front Immunol ; 13: 835156, 2022.
Article in English | MEDLINE | ID: covidwho-1902991

ABSTRACT

Complement plays an important role in the direct defense to pathogens, but can also activate immune cells and the release of pro-inflammatory cytokines. However, in critically ill patients with COVID-19 the immune system is inadequately activated leading to severe acute respiratory syndrome (SARS) and acute kidney injury, which is associated with higher mortality. Therefore, we characterized local complement deposition as a sign of activation in both lungs and kidneys from patients with severe COVID-19. Using immunohistochemistry we investigated deposition of complement factors C1q, MASP-2, factor D (CFD), C3c, C3d and C5b-9 as well as myeloperoxidase (MPO) positive neutrophils and SARS-CoV-2 virus particles in lungs and kidneys from 38 patients who died from COVID-19. In addition, tissue damage was analyzed using semi-quantitative scores followed by correlation with complement deposition. Autopsy material from non-COVID patients who died from cardiovascular causes, cerebral hemorrhage and pulmonary embolism served as control (n=8). Lung injury in samples from COVID-19 patients was significantly more pronounced compared to controls with formation of hyaline membranes, thrombi and edema. In addition, in the kidney tubular injury was higher in these patients and correlated with lung injury (r=0.361*). In autopsy samples SARS-CoV-2 spike protein was detected in 22% of the lungs of COVID-19 patients but was lacking in kidneys. Complement activation was significantly stronger in lung samples from patients with COVID-19 via the lectin and alternative pathway as indicated by deposition of MASP-2, CFD, C3d and C5b9. Deposits in the lung were predominantly detected along the alveolar septa, the hyaline membranes and in the alveolar lumina. In the kidney, complement was significantly more deposited in patients with COVID-19 in peritubular capillaries and tubular basement membranes. Renal COVID-19-induced complement activation occurred via the lectin pathway, while activation of the alternative pathway was similar in both groups. Furthermore, MPO-positive neutrophils were found in significantly higher numbers in lungs and kidneys of COVID-19 patients and correlated with local MASP-2 deposition. In conclusion, in patients who died from SARS-CoV-2 infection complement was activated in both lungs and kidneys indicating that complement might be involved in systemic worsening of the inflammatory response. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury in COVID-19.


Subject(s)
COVID-19/immunology , Complement Pathway, Alternative/immunology , Lectins/immunology , Aged , Aged, 80 and over , Autopsy , COVID-19/pathology , COVID-19/virology , Complement System Proteins/immunology , Female , Humans , Kidney/immunology , Kidney/pathology , Kidney/virology , Lung/immunology , Lung/pathology , Lung/virology , Male , Middle Aged , Neutrophils/immunology , Peroxidase/immunology , SARS-CoV-2/immunology
16.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1851815

ABSTRACT

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Epithelial Cells , Inflammasomes , NLR Proteins , SARS-CoV-2 , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Caspase 3/metabolism , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Epithelial Cells/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Lung/metabolism , Lung/virology , NLR Proteins/genetics , NLR Proteins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Pyroptosis , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
17.
J Virol ; 96(11): e0059422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1840553

ABSTRACT

It has recently been shown that an early SARS-CoV-2 isolate (NL-02-2020) hijacks interferon-induced transmembrane proteins (IFITMs) for efficient replication in human lung cells, cardiomyocytes, and gut organoids. To date, several "variants of concern" (VOCs) showing increased infectivity and resistance to neutralization have emerged and globally replaced the early viral strains. Here, we determined whether the five current SARS-CoV-2 VOCs (Alpha, Beta, Gamma, Delta, and Omicron) maintained the dependency on IFITM proteins for efficient replication. We found that depletion of IFITM2 strongly reduces viral RNA production by all VOCs in the human epithelial lung cancer cell line Calu-3. Silencing of IFITM1 had modest effects, while knockdown of IFITM3 resulted in an intermediate phenotype. Strikingly, depletion of IFITM2 generally reduced infectious virus production by more than 4 orders of magnitude. In addition, an antibody directed against the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells, thought to represent major viral target cells in the lung. In conclusion, endogenously expressed IFITM proteins (especially IFITM2) are critical cofactors for efficient replication of genuine SARS-CoV-2 VOCs, including the currently dominant Omicron variant. IMPORTANCE Recent data indicate that SARS-CoV-2 requires endogenously expressed IFITM proteins for efficient infection. However, the results were obtained with an early SARS-CoV-2 isolate. Thus, it remained to be determined whether IFITMs are also important cofactors for infection of emerging SARS-CoV-2 VOCs that outcompeted the original strains in the meantime. This includes the Omicron VOC, which currently dominates the pandemic. Here, we show that depletion of endogenous IFITM2 expression almost entirely prevents productive infection of Alpha, Beta, Gamma, Delta, and Omicron SARS-CoV-2 VOCs in human lung cells. In addition, an antibody targeting the N terminus of IFITM2 inhibited SARS-CoV-2 VOC replication in iPSC-derived alveolar epithelial type II cells. Our results show that SARS-CoV-2 VOCs, including the currently dominant Omicron variant, are strongly dependent on IFITM2 for efficient replication, suggesting a key proviral role of IFITMs in viral transmission and pathogenicity.


Subject(s)
Lung , Membrane Proteins , SARS-CoV-2 , Virus Replication , COVID-19/virology , Cell Line, Tumor , Humans , Lung/virology , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Virus Internalization
18.
Nature ; 606(7914): 585-593, 2022 06.
Article in English | MEDLINE | ID: covidwho-1815563

ABSTRACT

Severe COVID-19 is characterized by persistent lung inflammation, inflammatory cytokine production, viral RNA and a sustained interferon (IFN) response, all of which are recapitulated and required for pathology in the SARS-CoV-2-infected MISTRG6-hACE2 humanized mouse model of COVID-19, which has a human immune system1-20. Blocking either viral replication with remdesivir21-23 or the downstream IFN-stimulated cascade with anti-IFNAR2 antibodies in vivo in the chronic stages of disease attenuates the overactive immune inflammatory response, especially inflammatory macrophages. Here we show that SARS-CoV-2 infection and replication in lung-resident human macrophages is a critical driver of disease. In response to infection mediated by CD16 and ACE2 receptors, human macrophages activate inflammasomes, release interleukin 1 (IL-1) and IL-18, and undergo pyroptosis, thereby contributing to the hyperinflammatory state of the lungs. Inflammasome activation and the accompanying inflammatory response are necessary for lung inflammation, as inhibition of the NLRP3 inflammasome pathway reverses chronic lung pathology. Notably, this blockade of inflammasome activation leads to the release of infectious virus by the infected macrophages. Thus, inflammasomes oppose host infection by SARS-CoV-2 through the production of inflammatory cytokines and suicide by pyroptosis to prevent a productive viral cycle.


Subject(s)
COVID-19 , Inflammasomes , Macrophages , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Animals , COVID-19/pathology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammasomes/metabolism , Interleukin-1 , Interleukin-18 , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/metabolism , Pneumonia/virology , Pyroptosis , Receptors, IgG , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
19.
J Cell Physiol ; 237(7): 2913-2928, 2022 07.
Article in English | MEDLINE | ID: covidwho-1802326

ABSTRACT

The COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects the lung, particularly the proximal airway and distal alveolar cells. NKX2.1+ primordial lung progenitors of the foregut (anterior) endoderm are the developmental precursors to all adult lung epithelial lineages and are postulated to play an important role in viral tropism. Here, we show that SARS-CoV-2 readily infected and replicated in human-induced pluripotent stem cell-derived proximal airway cells, distal alveolar cells, and lung progenitors. In addition to the upregulation of antiviral defense and immune responses, transcriptomics data uncovered a robust epithelial cell-specific response, including perturbation of metabolic processes and disruption in the alveolar maturation program. We also identified spatiotemporal dysregulation of mitochondrial heme oxygenase 1 (HMOX1), which is associated with defense against antioxidant-induced lung injury. Cytokines, such as TNF-α, INF-γ, IL-6, and IL-13, were upregulated in infected cells sparking mitochondrial ROS production and change in electron transport chain complexes. Increased mitochondrial ROS then activated additional proinflammatory cytokines leading to an aberrant cell cycle resulting in apoptosis. Notably, we are the first to report a chemosensory response resulting from SARS-CoV-2 infection similar to that seen in COVID-19 patients. Some of our key findings were validated using COVID-19-affected postmortem lung tissue sections. These results suggest that our in vitro system could serve as a suitable model to investigate the pathogenetic mechanisms of SARS-CoV-2 infection and to discover and test therapeutic drugs against COVID-19 or its consequences.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Adult , COVID-19/immunology , COVID-19/pathology , Cytokines , Humans , Induced Pluripotent Stem Cells/pathology , Induced Pluripotent Stem Cells/virology , Lung/pathology , Lung/virology , Mitochondria/metabolism , Reactive Oxygen Species , SARS-CoV-2
20.
J Am Soc Nephrol ; 33(7): 1293-1307, 2022 07.
Article in English | MEDLINE | ID: covidwho-1799028

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) uses full-length angiotensin converting enzyme 2 (ACE2) as a main receptor to enter target cells. The goal of this study was to demonstrate the preclinical efficacy of a novel soluble ACE2 protein with increased duration of action and binding capacity in a lethal mouse model of COVID-19. METHODS: A human soluble ACE2 variant fused with an albumin binding domain (ABD) was linked via a dimerization motif hinge-like 4-cysteine dodecapeptide (DDC) to improve binding capacity to SARS-CoV-2. This novel soluble ACE2 protein (ACE2-1-618-DDC-ABD) was then administered intranasally and intraperitoneally to mice before intranasal inoculation of SARS-CoV-2 and then for two additional days post viral inoculation. RESULTS: Untreated animals became severely ill, and all had to be humanely euthanized by day 6 or 7 and had pulmonary alveolar hemorrhage with mononuclear infiltrates. In contrast, all but one mouse infected with a lethal dose of SARS-CoV-2 that received ACE2-1-618-DDC-ABD survived. In the animals inoculated with SARS-CoV-2 that were untreated, viral titers were high in the lungs and brain, but viral titers were absent in the kidneys. Some untreated animals, however, had variable degrees of kidney proximal tubular injury as shown by attenuation of the proximal tubular brush border and increased NGAL and TUNEL staining. Viral titers in the lung and brain were reduced or nondetectable in mice that received ACE2-1-618-DDC-ABD, and the animals developed only moderate disease as assessed by a near-normal clinical score, minimal weight loss, and improved lung and kidney injury. CONCLUSIONS: This study demonstrates the preclinical efficacy of a novel soluble ACE2 protein, termed ACE2-1-618-DDC-ABD, in a lethal mouse model of SARS-CoV-2 infection that develops severe lung injury and variable degrees of moderate kidney proximal tubular injury.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/therapeutic use , Animals , COVID-19/therapy , Kidney/virology , Lung/virology , Mice , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL