Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1493827

ABSTRACT

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


Subject(s)
COVID-19/complications , Lymphopenia/blood , SARS-CoV-2/immunology , T-Lymphocytes/pathology , Adolescent , Adult , Age Factors , Aged , Apoptosis/immunology , Autophagy , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
2.
Front Immunol ; 12: 735922, 2021.
Article in English | MEDLINE | ID: covidwho-1477823

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major public health issue. COVID-19 is considered an airway/multi-systemic disease, and demise has been associated with an uncontrolled immune response and a cytokine storm in response to the virus. However, the lung pathology, immune response, and tissue damage associated with COVID-19 demise are poorly described and understood due to safety concerns. Using post-mortem lung tissues from uninfected and COVID-19 deadly cases as well as an unbiased combined analysis of histology, multi-viral and host markers staining, correlative microscopy, confocal, and image analysis, we identified three distinct phenotypes of COVID-19-induced lung damage. First, a COVID-19-induced hemorrhage characterized by minimal immune infiltration and large thrombus; Second, a COVID-19-induced immune infiltration with excessive immune cell infiltration but no hemorrhagic events. The third phenotype correspond to the combination of the two previous ones. We observed the loss of alveolar wall integrity, detachment of lung tissue pieces, fibroblast proliferation, and extensive fibrosis in all three phenotypes. Although lung tissues studied were from lethal COVID-19, a strong immune response was observed in all cases analyzed with significant B cell and poor T cell infiltrations, suggesting an exhausted or compromised immune cellular response in these patients. Overall, our data show that SARS-CoV-2-induced lung damage is highly heterogeneous. These individual differences need to be considered to understand the acute and long-term COVID-19 consequences.


Subject(s)
COVID-19/mortality , COVID-19/pathology , Lung Injury/pathology , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/pathology , Aged , Aged, 80 and over , Autopsy , CD8-Positive T-Lymphocytes/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/pathology , Epithelial Cells/pathology , Female , Hemorrhage/pathology , Humans , Inflammation/pathology , Lung/pathology , Lung Injury/virology , Lymphopenia/pathology , Macrophage Activation/immunology , Macrophages/immunology , Male , Middle Aged , Myocytes, Smooth Muscle/pathology , Neutrophils/immunology , SARS-CoV-2 , Thrombosis/pathology
4.
Cell ; 181(5): 969-977, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-1385208

ABSTRACT

SARS-CoV-2 infection is mild in the majority of individuals but progresses into severe pneumonia in a small proportion of patients. The increased susceptibility to severe disease in the elderly and individuals with co-morbidities argues for an initial defect in anti-viral host defense mechanisms. Long-term boosting of innate immune responses, also termed "trained immunity," by certain live vaccines (BCG, oral polio vaccine, measles) induces heterologous protection against infections through epigenetic, transcriptional, and functional reprogramming of innate immune cells. We propose that induction of trained immunity by whole-microorganism vaccines may represent an important tool for reducing susceptibility to and severity of SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Immunity, Innate , Immunomodulation , Pneumonia, Viral/immunology , SARS Virus/physiology , Animals , BCG Vaccine/immunology , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Coronavirus Infections/transmission , Humans , Immunity, Innate/drug effects , Lung/immunology , Lung/pathology , Lymphopenia/pathology , Middle East Respiratory Syndrome Coronavirus/physiology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/transmission , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/pathology , Virus Replication
5.
Sci Rep ; 11(1): 13840, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1383121

ABSTRACT

To characterize the new SARS-Co-V-2 related multisystem inflammatory syndrome in children (MIS-C) among Israeli children and to compare it with Kawasaki disease (KD). We compared, in two medical centers, the clinical and laboratory characteristics of MIS-C, KD and an intermediate group, which met the case definitions of both conditions. MIS-C patients were older, were more likely to be hypotensive, to have significant gastrointestinal symptoms, lymphopenia and thrombocytopenia and to have non-coronary abnormal findings in their echocardiogram. Lymphopenia was an independent predictor of MIS-C. Most of our MIS-C patients responded promptly to corticosteroid therapy. KD incidence in both centers was similar in 2019 and 2020. Although there is clinical overlap between KD and MIS-C, these are separate entities. Lymphopenia clearly differentiates between these entities. MIS-C patients may benefit from corticosteroids as first-line therapy.


Subject(s)
COVID-19/complications , COVID-19/pathology , Lymphopenia/pathology , Mucocutaneous Lymph Node Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/diagnosis , Adolescent , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/virology , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Lymphopenia/diagnosis , Male , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/pathology , Mucocutaneous Lymph Node Syndrome/virology , Risk Factors , SARS-CoV-2/pathogenicity , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/virology , Young Adult
6.
J Infect Dis ; 224(8): 1333-1344, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1349787

ABSTRACT

BACKGROUND: Lymphopenia is a key feature for adult patients with coronavirus disease 2019 (COVID-19), although it is rarely observed in children. The underlying mechanism remains unclear. METHODS: Immunohistochemical and flow cytometric analyses were used to compare the apoptotic rate of T cells from COVID-19 adults and children and apoptotic responses of adult and child T cells to COVID-19 pooled plasma. Biological properties of caspases and reactive oxygen species were assessed in T cells treated by COVID-19 pooled plasma. RESULTS: Mitochondria apoptosis of peripheral T cells were identified in COVID-19 adult patient samples but not in the children. Furthermore, increased tumor necrosis factor-α and interleukin-6 in COVID-19 plasma induced mitochondria apoptosis and caused deoxyribonucleic acid damage by elevating reactive oxygen species levels of the adult T cells. However, the child T cells showed tolerance to mitochondrial apoptosis due to mitochondria autophagy. Activation of autophagy could decrease apoptotic sensitivity of the adult T cells to plasma from COVID-19 patients. CONCLUSIONS: Our results indicated that the mitochondrial apoptosis pathway was activated in T cells of COVID-19 adult patients specifically, which may shed light on the pathophysiological difference between adults and children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 ).


Subject(s)
COVID-19/complications , Lymphopenia/blood , SARS-CoV-2/immunology , T-Lymphocytes/pathology , Adolescent , Adult , Age Factors , Aged , Apoptosis/immunology , Autophagy , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Humans , Infant , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , Male , Middle Aged , Mitochondria/immunology , Mitochondria/pathology , Reactive Oxygen Species/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology
7.
J Immunol Res ; 2021: 6657894, 2021.
Article in English | MEDLINE | ID: covidwho-1314178

ABSTRACT

BACKGROUND: The 2019 novel coronavirus SARS-CoV-2 caused large outbreaks of COVID-19 worldwide. COVID-19 resembles community-acquired pneumonia (CAP). Our aim was to identify lymphocyte subpopulations to distinguish between COVID-19 and CAP. METHODS: We compared the peripheral blood lymphocytes and their subsets in 296 patients with COVID-19 and 130 patients with CAP. Parameters for independent prediction of COVID-19 were calculated by logistic regression. RESULTS: The main lymphocyte subpopulations (CD3+CD4+, CD16+CD56+, and CD4+/CD8+ ratio) and cytokines (TNF-α and IFN-γ) of COVID-19 patients were significantly different from that of CAP patients. CD16+CD56+%, CD4+/CD8+ratio, CD19+, and CD3+CD4+ were identified as predictors of COVID-19 diagnosis by logistic regression. In addition, the CD3+CD4+counts, CD3+CD8+ counts, andTNF-α are independent predictors of disease severity in patients. CONCLUSIONS: Lymphopenia is an important part of SARS-CoV-2 infection, and lymphocyte subsets and cytokines may be useful to predict the severity and clinical outcomes of the disease.


Subject(s)
CD4-CD8 Ratio , COVID-19/blood , Interferon-gamma/blood , Lymphocyte Subsets/cytology , Pneumonia/blood , Tumor Necrosis Factor-alpha/blood , Adult , Aged , COVID-19/immunology , COVID-19/pathology , COVID-19 Testing , Community-Acquired Infections/microbiology , Female , Humans , Lymphocyte Subsets/immunology , Lymphopenia/blood , Lymphopenia/pathology , Male , Middle Aged , Pneumonia/immunology , Pneumonia/pathology , Prognosis , SARS-CoV-2/immunology , Severity of Illness Index
8.
Virulence ; 12(1): 1771-1794, 2021 12.
Article in English | MEDLINE | ID: covidwho-1305404

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Laboratory findings from a significant number of patients with COVID-19 indicate the occurrence of leukocytopenia, specifically lymphocytopenia. Moreover, infected patients can experience contrasting outcomes depending on lymphocytopenia status. Patients with resolved lymphocytopenia are more likely to recover, whereas critically ill patients with signs of unresolved lymphocytopenia develop severe complications, sometimes culminating in death. Why immunodepression manifests in patients with COVID-19 remains unclear. Therefore, the evaluation of clinical symptoms and laboratory findings from infected patients is critical for understanding the disease course and its consequences. In this review, we take a logical approach to unravel the reasons for immunodepression in patients with COVID-19. Following the footprints of the virus within host tissues, from entry to exit, we extrapolate the mechanisms underlying the phenomenon of immunodepression.


Subject(s)
COVID-19/immunology , Immune Tolerance , SARS-CoV-2/pathogenicity , COVID-19/pathology , Cell Death , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Humans , Immunity , Lymphopenia/immunology , Lymphopenia/pathology , SARS-CoV-2/physiology , Virus Replication
10.
Front Immunol ; 12: 659018, 2021.
Article in English | MEDLINE | ID: covidwho-1236672

ABSTRACT

Information on the immunopathobiology of coronavirus disease 2019 (COVID-19) is rapidly increasing; however, there remains a need to identify immune features predictive of fatal outcome. This large-scale study characterized immune responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection using multidimensional flow cytometry, with the aim of identifying high-risk immune biomarkers. Holistic and unbiased analyses of 17 immune cell-types were conducted on 1,075 peripheral blood samples obtained from 868 COVID-19 patients and on samples from 24 patients presenting with non-SARS-CoV-2 infections and 36 healthy donors. Immune profiles of COVID-19 patients were significantly different from those of age-matched healthy donors but generally similar to those of patients with non-SARS-CoV-2 infections. Unsupervised clustering analysis revealed three immunotypes during SARS-CoV-2 infection; immunotype 1 (14% of patients) was characterized by significantly lower percentages of all immune cell-types except neutrophils and circulating plasma cells, and was significantly associated with severe disease. Reduced B-cell percentage was most strongly associated with risk of death. On multivariate analysis incorporating age and comorbidities, B-cell and non-classical monocyte percentages were independent prognostic factors for survival in training (n=513) and validation (n=355) cohorts. Therefore, reduced percentages of B-cells and non-classical monocytes are high-risk immune biomarkers for risk-stratification of COVID-19 patients.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Adaptive Immunity , Adult , Aged , Aged, 80 and over , B-Lymphocytes/immunology , Biomarkers , COVID-19/pathology , Female , Humans , Immunity, Innate , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/pathology , Male , Middle Aged , Monocytes/immunology , Prognosis , SARS-CoV-2 , Survival Analysis , Young Adult
11.
Front Immunol ; 12: 661052, 2021.
Article in English | MEDLINE | ID: covidwho-1229177

ABSTRACT

While lymphocytopenia is a common characteristic of coronavirus disease 2019 (COVID-19), the mechanisms responsible for this lymphocyte depletion are unclear. Here, we retrospectively reviewed the clinical and immunological data from 18 fatal COVID-19 cases, results showed that these patients had severe lymphocytopenia, together with high serum levels of inflammatory cytokines (IL-6, IL-8 and IL-10), and elevation of many other mediators in routine laboratory tests, including C-reactive protein, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase and natriuretic peptide type B. The spleens and hilar lymph nodes (LNs) from six additional COVID-19 patients with post-mortem examinations were also collected, histopathologic detection showed that both organs manifested severe tissue damage and lymphocyte apoptosis in these six cases. In situ hybridization assays illustrated that SARS-CoV-2 viral RNA accumulates in these tissues, and transmission electronic microscopy confirmed that coronavirus-like particles were visible in the LNs. SARS-CoV-2 Spike and Nucleocapsid protein (NP) accumulated in the spleens and LNs, and the NP antigen restricted in angiotensin-converting enzyme 2 (ACE2) positive macrophages and dendritic cells (DCs). Furthermore, SARS-CoV-2 triggered the transcription of Il6, Il8 and Il1b genes in infected primary macrophages and DCs in vitro, and SARS-CoV-2-NP+ macrophages and DCs also manifested high levels of IL-6 and IL-1ß, which might directly decimate human spleens and LNs and subsequently lead to lymphocytopenia in vivo. Collectively, these results demonstrated that SARS-CoV-2 induced lymphocytopenia by promoting systemic inflammation and direct neutralization in human spleen and LNs.


Subject(s)
COVID-19/immunology , Lymph Nodes/immunology , Lymphopenia/immunology , SARS-CoV-2/immunology , Spleen/immunology , Angiotensin-Converting Enzyme 2/immunology , COVID-19/complications , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Cytokines/immunology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Lymph Nodes/ultrastructure , Lymphopenia/etiology , Lymphopenia/pathology , Middle Aged , Phosphoproteins/immunology , RNA, Messenger/immunology , Retrospective Studies , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Spleen/ultrastructure
12.
J Microbiol Immunol Infect ; 54(4): 547-556, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1225299

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by SARS-CoV-2, a newly discovered coronavirus that exhibits many similarities with the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses (SARS-CoV and MERS-CoV, respectively). The definite pathogenesis and immunological influences of SARS-CoV-2 have not been fully elucidated. Therefore, we constructed a brief summary comparison of SARS-CoV-2, SARS-CoV, and MERS-CoV infections regarding their immunological changes. In addition, we further investigated the immunological differences between severe and nonsevere COVID-19 cases, and we searched for possible immunological predictors of the patient outcome by reviewing case series studies to date. Possible immunological predictors of a poor outcome are leukocytosis, neutrophilia, lymphopenia (both CD4 and CD8 T cells), an increased neutrophil-to-lymphocyte ratio (NLR), and increased levels of pro-inflammatory cytokines (IL-6 and TNF-α), Th1 cytokines (IL-2 and IFN-γ), regulatory T cell cytokines (IL-10) and Th17 cytokines (IL-17). A more precise immunological map needs to be established, which may assist in diagnosing this disease and facilitate immunological precision medicine treatment.


Subject(s)
COVID-19/pathology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/pathology , COVID-19/immunology , Cytokines/blood , Humans , Leukocytosis/pathology , Lymphopenia/pathology , Receptors, Virus/metabolism , Severe Acute Respiratory Syndrome/immunology
13.
J Med Virol ; 93(9): 5474-5480, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1219314

ABSTRACT

In this study, laboratorial parameters of hospitalized novel coronavirus (COVID-19) patients, who were complicated with severe pneumonia, were compared with the findings of cytokine storm developing in macrophage activation syndrome (MAS)/secondary hemophagocytic lymphohistiocytosis (sHLH). Severe pneumonia occurred as a result of cytokine storm in some patients who needed intensive care unit (ICU), and it is aimed to determine the precursive parameters in this situation. Also in this study, the aim is to identify laboratory criteria that predict worsening disease and ICU intensification, as well as the development of cytokine storm. This article comprises a retrospective cohort study of patients admitted to a single institution with COVID-19 pneumonia. This study includes 150 confirmed COVID-19 patients with severe pneumonia. When they were considered as severe pneumonia patients, the clinic and laboratory parameters of this group are compared with H-score criteria. Patients are divided into two subgroups; patients with worsened symptoms who were transferred into tertiary ICU, and patients with stable symptoms followed in the clinic. For the patients with confirmed COVID-19 infection, after they become complicated with severe pneumonia, lymphocytopenia (55.3%), anemia (12.0%), thrombocytopenia (19.3%), hyperferritinemia (72.5%), hyperfibrinogenemia (63.7%) and elevated lactate dehydrogenase (LDH) (90.8%), aspartate aminotransaminase (AST) (31.3%), alanine aminotransaminase (ALT) (20.7%) are detected. There were no significant changes in other parameters. Blood parameters between the pre-ICU period and the ICU period (in which their situation had been worsened and acute respiratory distress syndrome [ARDS] was developed) were also compared. In the latter group lymphocyte levels were found significantly reduced (p = 0.01), and LDH, highly sensitive troponin (hs-troponin), procalcitonin, and triglyceride levels were significantly increased (p < 0.05). In addition, there was no change in hemoglobin, leukocyte, platelet, ferritin, and liver function test levels, including patients who developed ARDS, similar to the cytokine storm developed in MAS/sHLH. COVID-19 pneumonia has similar findings as hyperinflammatory syndromes but does not seem to have typical features as in cytokine storm developed in MAS/sHLH. In the severe patient group who has started to develop ARDS signs, a decrease in lymphocyte level in addition to the elevated LDH, hs-troponin, procalcitonin, and triglyceride levels can be a predictor in progression to ICU admission and could help in the planning of anti-cytokine therapy.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/pathology , Lymphohistiocytosis, Hemophagocytic/pathology , Macrophage Activation Syndrome/pathology , SARS-CoV-2/pathogenicity , Aged , Alanine Transaminase/blood , Anemia/blood , Anemia/diagnosis , Anemia/immunology , Anemia/pathology , Aspartate Aminotransferases/blood , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/immunology , Diagnosis, Differential , Disease Progression , Female , Fibrinogen/metabolism , Humans , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Hyperferritinemia/immunology , Hyperferritinemia/pathology , Intensive Care Units , L-Lactate Dehydrogenase/blood , Lymphohistiocytosis, Hemophagocytic/blood , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphopenia/blood , Lymphopenia/diagnosis , Lymphopenia/immunology , Lymphopenia/pathology , Macrophage Activation Syndrome/blood , Macrophage Activation Syndrome/diagnosis , Macrophage Activation Syndrome/immunology , Male , Middle Aged , Procalcitonin/blood , Retrospective Studies , Thrombocytopenia/blood , Thrombocytopenia/diagnosis , Thrombocytopenia/immunology , Thrombocytopenia/pathology , Triglycerides/blood , Troponin/blood
14.
AIDS Res Ther ; 18(1): 28, 2021 05 05.
Article in English | MEDLINE | ID: covidwho-1216906

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first detected in December 2019. In March 2020, the World Health Organization declared COVID-19 a pandemic. People with underlying medical conditions may be at greater risk of infection and experience complications from COVID-19. COVID-19 has the potential to affect People living with HIV (PLWH) in various ways, including be increased risk of COVID-19 acquisition and interruptions of HIV treatment and care. The purpose of this review article is to evaluate the impact of COVID-19 among PLWH. The contents focus on 4 topics: (1) the pathophysiology and host immune response of people infected with both SARS-CoV-2 and HIV, (2) present the clinical manifestations and treatment outcomes of persons with co-infection, (3) assess the impact of antiretroviral HIV drugs among PLWH infected with COVID-19 and (4) evaluate the impact of the COVID-19 pandemic on HIV services.


Subject(s)
Anti-Retroviral Agents/therapeutic use , COVID-19/pathology , Coinfection/pathology , HIV Infections/pathology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Adult , COVID-19/complications , COVID-19/drug therapy , COVID-19/immunology , Coinfection/immunology , Cytokines/blood , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Humans , Immunocompromised Host/immunology , Immunocompromised Host/physiology , Lymphopenia/pathology , Middle Aged , Treatment Outcome
15.
J Med Virol ; 93(2): 794-802, 2021 02.
Article in English | MEDLINE | ID: covidwho-1196404

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in the intestines and feces, but its clinical significance is not completely clear. We aim to characterize the longitudinal test results of SARS-CoV-2 RNA in anal swabs and to explore the association with disease severity. METHODS: We included laboratory-confirmed coronavirus disease 2019 (COVID-19) patients, who were hospitalized in Guangzhou Eighth People's Hospital and excluded those who had not received anal swabs for SARS-COV-2 RNA testing. Epidemiological, clinical, and laboratory data were obtained. Throat swabs and anal swabs were collected periodically for SARS-COV-2 RNA detection. RESULTS: Two hundred and seventeen eligible patients (median aged 50 years, 50.2% were females) were analyzed. 21.2% (46/217) of the patients were detected with SARS-CoV-2 RNA in anal swabs. The duration of viral RNA was longer, but the viral load was lower in anal swabs than throat swabs in the early stage of the disease. During a median follow-up of 20 days, 30 (13.8%) patients were admitted to the intensive care unit (ICU) for high-flow nasal cannula or higher-level oxygen support measures to correct hypoxemia. Detectable viral RNA in anal swabs (adjusted hazard ratio [aHR], 2.50; 95% confidence interval [CI], 1.20-5.24), increased C-reactive protein (aHR, 3.14; 95% CI, 1.35-7.32) and lymphocytopenia (aHR, 3.12; 95% CI, 1.46-6.67) were independently associated with ICU admission. The cumulative incidence of ICU admission was higher among patients with detectable viral RNA in anal swabs (26.3% vs 10.7%, P = .006). CONCLUSION: Detectable SARS-CoV-2 RNA in the digestive tract was a potential warning indicator of severe disease.


Subject(s)
Anal Canal/virology , COVID-19/diagnosis , Lymphopenia/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Adult , Antiviral Agents/therapeutic use , C-Reactive Protein/metabolism , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Testing , Chloroquine/therapeutic use , Female , Hospitalization/statistics & numerical data , Humans , Indoles/therapeutic use , Intensive Care Units/statistics & numerical data , Lymphopenia/pathology , Lymphopenia/therapy , Lymphopenia/virology , Male , Middle Aged , Oseltamivir/therapeutic use , Pharynx/virology , Retrospective Studies , SARS-CoV-2/pathogenicity , Severity of Illness Index , Viral Load/drug effects
16.
Virulence ; 12(1): 918-936, 2021 12.
Article in English | MEDLINE | ID: covidwho-1147910

ABSTRACT

The coronavirus disease 19 (COVID-19) caused by the novel coronavirus known as SARS-CoV-2 has caused a global public health crisis. As of 7 January 2021, 87,640,402 confirmed cases and 1,891,692 mortalities have been reported worldwide. Studies focusing on the epidemiological and clinical characteristics of COVID-19 patients have suggested a dysregulated immune response characterized by lymphopenia and cytokine storm in these patients. The exaggerated immune response induced by the cytokine storm causes septic shock, acute respiratory distress syndrome (ARDS), and/or multiple organs failure, which increases the fatality rate of patients with SARS-CoV-2 infection. Herein, we review the recent research progress on epidemiology, clinical features, and system pathology in COVID-19. Moreover, we summarized the recent therapeutic strategies, which are either approved, under clinical trial, and/or under investigation by the local or global health authorities. We assume that treatments should focus on the use of antiviral drugs in combination with immunomodulators as well as treatment of the underlying comorbidities.


Subject(s)
COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/pathogenicity , Adaptive Immunity , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Lymphopenia/drug therapy , Lymphopenia/immunology , Lymphopenia/pathology , Lymphopenia/virology , SARS-CoV-2/immunology , Viral Load
17.
Front Immunol ; 12: 581469, 2021.
Article in English | MEDLINE | ID: covidwho-1119544

ABSTRACT

Background: Epidemiological factors, clinical characteristics, and risk factors for the mortality of COVID-19 patients have been studied, but the role of complementary systems, possible inflammatory and immune response mechanisms, and detailed clinical courses are uncertain and require further study. Methods: In this single center, retrospective case-control study, we included all COVID-19 inpatients transferred or admitted to Wuhan Tongji Hospital from January 3 to March 30 2020 who had definite clinical outcomes (cured or deceased) with complete laboratory and radiological results. Clinical data were extracted from the electronic medical records, and compared between the cured and deceased patients. ROC curves were used to evaluate the prognostic value of the clinical parameters, and multivariable logistic regression analysis was performed to explore the risk factors for mortality. The correlation between the variables was evaluated by Spearman correlation analysis. Results: 208 patients were included in this study, 182 patients were cured and discharged, 26 patients died from COVID-2019. Most patients had comorbidities, with hypertension as the most common chronic disease (80; 38%). The most common symptoms at onset were fever (149; 72%), cough (137; 66%), and dyspnea (113; 54%). Elevated leucocytes, neutrophils, inflammatory biomarkers (CRP, ferritin, IL6, IL8, procalcitonin), PT, D-dimer, myocardial enzymes, BUN, decreased lymphocyte and subsets (T cells, CD4 T cells, CD8 T cells, NK cells, T cells + B cells + NK cells), and immunological factors (C3, C4) indicated poor outcome. PT, C3, and T cells were confirmed as independent prognostic factors for mortality by logistic regression models. IL6 and CPR were positively correlated with neutrophils, but negatively with lymphocytes and lymphocyte subsets except B cells. IL8 and ferritin were negatively related to T cells and CD4 T cells. Positive associations existed between C3 and T cells, CD4 T cells, and CD8 T cells, whereas there was no significant correlation between C4 and lymphocyte subsets. PT was found positively correlated with IL6, IL8, and CRP. Reverse correlations were explored between C3, C4, and PT, CK-MB, total bilirubin. Conclusions: T cells, C3, and PT were identified as independent prognostic factors for mortality. Decreased C3 and C4, dysregulation of lymphocyte subsets and cytokines may lead to death after SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , COVID-19/mortality , Complement C3/analysis , Cytokines/blood , T-Lymphocyte Subsets/immunology , Aged , COVID-19/pathology , Case-Control Studies , Comorbidity , Female , Humans , Hypertension/complications , Killer Cells, Natural/immunology , Lymphocyte Count , Lymphopenia/pathology , Male , Middle Aged , Neutrophils/immunology , Prognosis , Retrospective Studies , Risk Factors , SARS-CoV-2
18.
J Gerontol A Biol Sci Med Sci ; 76(8): e97-e101, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1060193

ABSTRACT

Profound T-cell lymphopenia is the hallmark of severe coronavirus disease 2019 (COVID-19). T-cell proliferation is telomere length (TL) dependent and telomeres shorten with age. Older COVID-19 patients, we hypothesize, are, therefore, at a higher risk of having TL-dependent lymphopenia. We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting (SB) of the terminal restriction fragments in peripheral blood mononuclear cells of 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields 2 key metrics: the proportions of telomeres with different lengths (expressed in %) and their mean (TeSLA mTL), (expressed in kb). Lymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (p < .001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (p = .005) and positively correlated with TeSLA mTL (p = .03). Lymphocyte count was not significantly correlated with SB mTL in either COVID-19 or non-COVID-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to COVID-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons. Clinical Trials Registration Number: NCT04325646.


Subject(s)
COVID-19/physiopathology , Hospitalization , Lymphocyte Count , Lymphopenia , Telomere Shortening/physiology , Aged, 80 and over , Cellular Senescence , Humans , Lymphopenia/etiology , Lymphopenia/pathology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology
19.
PLoS One ; 16(1): e0245532, 2021.
Article in English | MEDLINE | ID: covidwho-1045570

ABSTRACT

BACKGROUND: Understanding the T cell response to SARS-CoV-2 is critical to vaccine development, epidemiological surveillance and disease control strategies. This systematic review critically evaluates and synthesises the relevant peer-reviewed and pre-print literature published from 01/01/2020-26/06/2020. METHODS: For this systematic review, keyword-structured literature searches were carried out in MEDLINE, Embase and COVID-19 Primer. Papers were independently screened by two researchers, with arbitration of disagreements by a third researcher. Data were independently extracted into a pre-designed Excel template and studies critically appraised using a modified version of the MetaQAT tool, with resolution of disagreements by consensus. Findings were narratively synthesised. RESULTS: 61 articles were included. 55 (90%) studies used observational designs, 50 (82%) involved hospitalised patients with higher acuity illness, and the majority had important limitations. Symptomatic adult COVID-19 cases consistently show peripheral T cell lymphopenia, which positively correlates with increased disease severity, duration of RNA positivity, and non-survival; while asymptomatic and paediatric cases display preserved counts. People with severe or critical disease generally develop more robust, virus-specific T cell responses. T cell memory and effector function has been demonstrated against multiple viral epitopes, and, cross-reactive T cell responses have been demonstrated in unexposed and uninfected adults, but the significance for protection and susceptibility, respectively, remains unclear. CONCLUSION: A complex pattern of T cell response to SARS-CoV-2 infection has been demonstrated, but inferences regarding population level immunity are hampered by significant methodological limitations and heterogeneity between studies, as well as a striking lack of research in asymptomatic or pauci-symptomatic individuals. In contrast to antibody responses, population-level surveillance of the T cell response is unlikely to be feasible in the near term. Focused evaluation in specific sub-groups, including vaccine recipients, should be prioritised.


Subject(s)
COVID-19/pathology , Lymphopenia/pathology , SARS-CoV-2/physiology , T-Lymphocytes/pathology , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Host-Pathogen Interactions , Humans , Immunity, Cellular , Lymphopenia/etiology , Lymphopenia/immunology , Lymphopenia/virology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology
20.
Front Immunol ; 11: 596631, 2020.
Article in English | MEDLINE | ID: covidwho-1004678

ABSTRACT

COVID-19 is a distinctive infection characterized by elevated inter-human transmission and presenting from absence of symptoms to severe cytokine storm that can lead to dismal prognosis. Like for HIV, lymphopenia and drastic reduction of CD4+ T cell counts in COVID-19 patients have been linked with poor clinical outcome. As CD4+ T cells play a critical role in orchestrating responses against viral infections, important lessons can be drawn by comparing T cell response in COVID-19 and in HIV infection and by studying HIV-infected patients who became infected by SARS-CoV-2. We critically reviewed host characteristics and hyper-inflammatory response in these two viral infections to have a better insight on the large difference in clinical outcome in persons being infected by SARS-CoV-2. The better understanding of mechanism of T cell dysfunction will contribute to the development of targeted therapy against severe COVID-19 and will help to rationally design vaccine involving T cell response for the long-term control of viral infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , HIV Infections/immunology , Lymphopenia/pathology , SARS-CoV-2/immunology , CD4 Lymphocyte Count , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/blood , Dysbiosis/pathology , Gastrointestinal Microbiome/physiology , HIV Infections/pathology , Humans , Tight Junctions/pathology
SELECTION OF CITATIONS
SEARCH DETAIL