Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Immunol Res ; 2022: 4008991, 2022.
Article in English | MEDLINE | ID: covidwho-1891951

ABSTRACT

Phycocyanobilin (PCB) is a linear open-chain tetrapyrrole chromophore that captures and senses light and a variety of biological activities, such as anti-oxidation, anti-cancer, and anti-inflammatory. In this paper, the biological activities of PCB are reviewed, and the related mechanism of PCB and its latest application in disease treatment are introduced. PCB can resist oxidation by scavenging free radicals, inhibiting the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and delaying the activity of antioxidant enzymes. In addition, PCB can also be used as an excellent anti-inflammatory agent to reduce the proinflammatory factors IL-6 and IFN-γ and to up-regulate the production of anti-inflammatory cytokine IL-10 by inhibiting the inflammatory signal pathways NF-κB and mitogen-activated protein kinase (MAPK). Due to the above biological activities of phycocyanobilin PCB, it is expected to become a new effective drug for treating various diseases, such as COVID-19 complications, atherosclerosis, multiple sclerosis (MS), and ischaemic stroke (IS).


Subject(s)
Phycobilins , Phycocyanin , Spirulina , Anti-Inflammatory Agents/pharmacology , Brain Ischemia , Humans , MAP Kinase Signaling System , NADPH Oxidases , NF-kappa B , Phycobilins/pharmacology , Phycocyanin/pharmacology , Spirulina/chemistry
2.
ACS Appl Bio Mater ; 5(2): 483-491, 2022 02 21.
Article in English | MEDLINE | ID: covidwho-1805546

ABSTRACT

Interleukin-mediated deep cytokine storm, an aggressive inflammatory response to SARS-CoV-2 virus infection in COVID-19 patients, is correlated directly with lung injury, multi-organ failure, and poor prognosis of severe COVID-19 patients. Curcumin (CUR), a phenolic antioxidant compound obtained from turmeric (Curcuma longa L.), is well-known for its strong anti-inflammatory activity. However, its in vivo efficacy is constrained due to poor bioavailability. Herein, we report that CUR-encapsulated polysaccharide nanoparticles (CUR-PS-NPs) potently inhibit the release of cytokines, chemokines, and growth factors associated with damage of SARS-CoV-2 spike protein (CoV2-SP)-stimulated liver Huh7.5 and lung A549 epithelial cells. Treatment with CUR-PS-NPs effectively attenuated the interaction of ACE2 and CoV2-SP. The effects of CUR-PS-NPs were linked to reduced NF-κB/MAPK signaling which in turn decreased CoV2-SP-mediated phosphorylation of p38 MAPK, p42/44 MAPK, and p65/NF-κB as well as nuclear p65/NF-κB expression. The findings of the study strongly indicate that organic NPs of CUR can be used to control hyper-inflammatory responses and prevent lung and liver injuries associated with CoV2-SP-mediated cytokine storm.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Curcumin/pharmacology , Cytokine Release Syndrome/prevention & control , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Nanoparticles/chemistry , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacokinetics , Cell Survival/drug effects , Chemokines/biosynthesis , Curcumin/chemistry , Curcumin/pharmacokinetics , Cytokines/biosynthesis , Humans , Intercellular Signaling Peptides and Proteins/biosynthesis , Phosphorylation , Spike Glycoprotein, Coronavirus/physiology
3.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1785736

ABSTRACT

Lysophosphatidylserine (LysoPS) is an amphipathic lysophospholipid that mediates a broad spectrum of inflammatory responses through a poorly characterized mechanism. Because LysoPS levels can rise in a variety of pathological conditions, we sought to investigate LysoPS's potential role in airway epithelial cells that actively participate in lung homeostasis. Here, we report a previously unappreciated function of LysoPS in production of a mucin component, MUC5AC, in the airway epithelial cells. LysoPS stimulated lung epithelial cells to produce MUC5AC via signaling pathways involving TACE, EGFR, and ERK. Specifically, LysoPS- dependent biphasic activation of ERK resulted in TGF-α secretion and strong EGFR phosphorylation leading to MUC5AC production. Collectively, LysoPS induces the expression of MUC5AC via a feedback loop composed of proligand synthesis and its proteolysis by TACE and following autocrine EGFR activation. To our surprise, we were not able to find a role of GPCRs and TLR2, known LyoPS receptors in LysoPS-induced MUC5AC production in airway epithelial cells, suggesting a potential receptor-independent action of LysoPS during inflammation. This study provides new insight into the potential function and mechanism of LysoPS as an emerging lipid mediator in airway inflammation.


Subject(s)
ErbB Receptors , MAP Kinase Signaling System , Epithelial Cells/metabolism , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Mucin 5AC/metabolism , Respiratory Mucosa/metabolism
4.
J Interferon Cytokine Res ; 42(2): 49-61, 2022 02.
Article in English | MEDLINE | ID: covidwho-1692282

ABSTRACT

The interleukin (IL)-1 superfamily of cytokines comprises 11 pro- and anti-inflammatory cytokines, which play essential roles during the immune response. Several pathogenic pathways are initiated by IL-1RL2 (interleukin 1 receptor-like 2) signaling, also known as IL-36R, in the skin, lungs, and gut. IL-36 cytokines promote the secretion of proinflammatory cytokines and chemokines, upregulation of antimicrobial peptides, proliferation mediators, and adhesion molecules on endothelial cells. In addition, the IL-36-IL-1RL2 axis has an essential role against viral infections, including a potential role in COVID-19 pathology. The evidence presented in this review highlights the importance of the axis IL-36-IL-1RL2 in the development of several inflammation-related diseases and the healing process. It suggests that IL-1RL2 ligands have specific roles depending on the tissue or cell source. However, there is still much to discover about this cytokine family, their functions in other organs, and how they accomplish a dual effect in inflammation and healing.


Subject(s)
Inflammation/physiopathology , Receptors, Interleukin-1/physiology , Animals , COVID-19/physiopathology , Cytokine Release Syndrome/physiopathology , Cytokines/physiology , Host-Pathogen Interactions , Humans , Interleukin-1/physiology , Interleukins/classification , Intestines/metabolism , Intestines/pathology , Ligands , Lung/metabolism , Lung/pathology , MAP Kinase Signaling System , Mice , NF-kappa B/metabolism , Protein Domains , Receptors, Interleukin/classification , Receptors, Interleukin-1/agonists , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-1/chemistry , SARS-CoV-2 , Signal Transduction , Skin/metabolism , Skin/pathology
5.
Sci Rep ; 12(1): 1626, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1661980

ABSTRACT

The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory "cytokine storm" (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology. Using these signatures, we interrogated the Connectivity Map (CMap) dataset that contains the effects of over 5000 small molecules on the transcriptome of human cell lines, and looked for molecules which effects on transcription mimic or oppose those of the CS. As expected, molecules that potentiate immune responses such as PKC activators are predicted to worsen the CS. In addition, we identified the negative regulation of female hormones among pathways potentially aggravating the CS, which helps to understand the gender-related differences in COVID-19 mortality. Regarding drugs potentially counteracting the CS, we identified glucocorticoids as a top hit, which validates our approach as this is the primary treatment for this pathology. Interestingly, our analysis also reveals a potential effect of MEK inhibitors in reverting the COVID-19 CS, which is supported by in vitro data that confirms the anti-inflammatory properties of these compounds.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Computer Simulation , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Glucocorticoids/therapeutic use , Pandemics , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/virology , COVID-19/blood , COVID-19/epidemiology , Cytokine Release Syndrome/mortality , Cytokines/blood , Female , Gene Expression Profiling/methods , Glucocorticoids/pharmacology , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Male , Protein Kinase Inhibitors/pharmacology , Sex Factors , Transcriptome/genetics
6.
Expert Rev Mol Med ; 24: e4, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1641781

ABSTRACT

Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.


Subject(s)
Virus Diseases , p38 Mitogen-Activated Protein Kinases , Humans , MAP Kinase Signaling System , Phosphorylation , Virus Replication , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Cell Mol Life Sci ; 79(1): 65, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1616112

ABSTRACT

Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Fenamates/pharmacology , MAP Kinase Signaling System/drug effects , Protein Kinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Animals , COVID-19/metabolism , Cell Line , Cells, Cultured , Chlorocebus aethiops , Cytokines/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/antagonists & inhibitors , MAP Kinase Kinase 2/metabolism , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
8.
Nutrients ; 13(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580557

ABSTRACT

The excessive synthesis of interleukin-6 (IL-6) is related to cytokine storm in COVID-19 patients. Moreover, blocking IL-6 has been suggested as a treatment strategy for inflammatory diseases such as sepsis. Sepsis is a severe systemic inflammatory response syndrome with high mortality. In the present study, we investigated the anti-inflammatory and anti-septic effects and the underlying mechanisms of Dracocephalum moldavica ethanol extract (DMEE) on lipopolysaccharide (LPS)-induced inflammatory stimulation in RAW 264.7 macrophages along with septic mouse models. We found that DMEE suppressed the release of inflammatory mediators NO and PGE2 and inhibited both the mRNA and protein expression levels of iNOS and COX-2, respectively. In addition, DMEE reduced the release of proinflammatory cytokines, mainly IL-6 and IL-1ß, in RAW 264.7 cells by inhibiting the phosphorylation of JNK, ERK and p65. Furthermore, treatment with DMEE increased the survival rate and decreased the level of IL-6 in plasma in LPS-induced septic shock mice. Our findings suggest that DMEE elicits an anti-inflammatory effect in LPS-stimulated RAW 264.7 macrophages and an anti-septic effect on septic mouse model through the inhibition of the ERK/JNK/NF-κB signaling cascades and production of IL-6.


Subject(s)
Interleukin-6/metabolism , Lamiaceae/chemistry , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Transcription Factor RelA/metabolism , Animals , Ethanol/chemistry , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , MAP Kinase Kinase 4/metabolism , Male , Mice , Plant Extracts/chemistry , RAW 264.7 Cells
9.
Phytomedicine ; 95: 153874, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1560696

ABSTRACT

BACKGROUND: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) pose a huge threat to human public health, no specific treatment is available. Jinzhen granule (JZ) is a traditional eight ingredients-Chinese medicine with prominent efficacy for treating viral-induced diseases. However, little is known about the antiviral effect and mechanism of JZ against SARS-CoV-2 and HCoV-229E. PURPOSE: This study aimed to reveal the antiviral effects of JZ against SARS-CoV-2 and HCoV-229E, and to further explore the underlying mechanisms regulating the host immune response. METHODS: The chromatographic separation of JZ was performed using a Shimadzu analytical high-performance liquid chromatograph with UV detection and Alltech ELSD 2000ES. We conducted cytopathic effect (CPE) and plaque reduction assays to evaluate the antiviral effect of JZ. A lethal human angiotensin converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 was established to determine the protective effect of JZ on mortality and lung virus titers. Real-time quantitative PCR assays were used to analyze the expression of proinflammatory cytokines in vitro and in vivo. Western blotting was further performed to determine the activities on regulating the nuclear factor kappa B (NF-κB)/MAPK pathway. Finally, mitochondrial membrane potential assays, flow cytometry analysis and western blotting were used to assess the anti-apoptotic potency toward HCoV-229E infection. RESULTS: The results showed that 13 chemical components were identified and five peaks were determined and quantitated (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g). We found that JZ exerted inhibitory potency against SARS-CoV-2 and HCoV-229E in vitro by using CPE and plaque reduction assays, and it was further found that JZ protected mice infected by SARS-CoV-2 from death and inhibited lung virus titers. JZ also significantly decreased the induction of inflammatory cytokines (IL-1α, IL-6, CCL-5 and MIP-1ß), similar to the observed in vitro effect. Moreover, JZ suppressed the release of inflammatory cytokines in vitro and it decreased the protein expression of p-p38 MAPK, p-JNK, p-NF-κB p65 and p-IκBα induced by HCoV-229E and increased the expression of IκBα. Notably, JZ significantly protected HCoV-229E-infected Huh-7 cells from mitochondrial damage and decreased apoptotic cells. The activation of the mitochondria-mediated apoptotic pathway was inhibited by JZ, as shown by the reduced expression of cleaved caspase-9, caspase-3 and p-PARP. CONCLUSIONS: In conclusion, JZ (gallic acid 1.97 mg/g, baicalin 20.69 mg/g, glycyrrhizic acid 4.92 mg/g, hyodeoxycholic acid 4.86 mg/g, cholic acid 4.07 mg/g) exhibited antiviral activities against SARS-CoV-2 and HCoV-229E by regulating the NF-κB/MAPK pathway and the mitochondria-mediated apoptotic pathway. These findings demonstrated the efficacy of JZ against CoVs and suggested JZ treatment as a novel clinical therapeutic strategy for COVID-19.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19 , Coronavirus 229E, Human/drug effects , Humans , MAP Kinase Signaling System , Mice , NF-kappa B
10.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1437669

ABSTRACT

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Basigin/antagonists & inhibitors , Basigin/metabolism , COVID-19/drug therapy , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Basigin/genetics , COVID-19/genetics , Chlorocebus aethiops , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Vero Cells
11.
IUBMB Life ; 74(1): 93-100, 2022 01.
Article in English | MEDLINE | ID: covidwho-1353459

ABSTRACT

Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1α-mediated transcriptional regulation of stress response genes with anti-inflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Endoplasmic Reticulum Stress/drug effects , NF-kappa B/metabolism , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/virology , Caspase 9/metabolism , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Humans , MAP Kinase Signaling System/drug effects , Models, Biological , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Unfolded Protein Response/drug effects , Vero Cells
12.
Eur J Pharmacol ; 908: 174374, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1322083

ABSTRACT

The efficacy of corticosteroids and its use for the treatment of SARS-CoV-2 infections is controversial. In this study, using data sets of SARS-CoV-2 infected lung tissues and nasopharyngeal swabs, as well as in vitro experiments, we show that SARS-CoV-2 infection significantly downregulates DUSP1 expression. This downregulation of DUSP1 could be the mechanism regulating the enhanced activation of MAPK pathway as well as the reported steroid resistance in SARS-CoV-2 infection. Moreover, chloroquine, an off labeled COVID-19 drug is able to induce DUSP1 and attenuate MAPK pathway; and is expected to improve sensitivity to steroid treatment. However, further mechanistic studies are required to confirm this effect.


Subject(s)
COVID-19/drug therapy , Chloroquine/pharmacology , Dual Specificity Phosphatase 1/genetics , Glucocorticoids/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Chloroquine/therapeutic use , Datasets as Topic , Down-Regulation/drug effects , Drug Resistance/drug effects , Drug Resistance/genetics , Drug Synergism , Dual Specificity Phosphatase 1/metabolism , Fibroblasts , Glucocorticoids/therapeutic use , Healthy Volunteers , Humans , Lung/cytology , Lung/pathology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Middle Aged , Nasopharynx/virology , Off-Label Use , Primary Cell Culture , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
13.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: covidwho-1305742

ABSTRACT

Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.


Subject(s)
Antimalarials/pharmacology , Drug Discovery/trends , Malaria/drug therapy , Plasmodium/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Calcium/metabolism , Casein Kinase I/metabolism , Culicidae , Drug Design , Drug Resistance , Glycogen Synthase Kinase 3/metabolism , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , MAP Kinase Signaling System , Phosphotransferases/chemistry , Plasmodium/enzymology , Pyridines/pharmacology
14.
Biomed Pharmacother ; 141: 111835, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1271574

ABSTRACT

Thymic stromal lymphopoietin (TSLP) produced by mast cells is involved in allergic inflammation pathogenesis. Chloroquine (CQ) is known to be an anti-malarial drug; however, additional protective functions of CQ have been discovered. This study aims to clarify an anti-inflammatory effect of CQ through modulating TSLP levels using an in vitro model of phorbol myristate acetate (PMA) + A23187-activated human mast cell line (HMC-1) and an in vivo model of PMA-irritated ear edema. CQ treatment reduced the production and mRNA expression levels of TSLP in activated HMC-1 cells. CQ down-regulated caspase-1 (CASP1), MAPKs, and NF-κB levels enhanced by stimulation with PMA + A23187. Moreover, ear thickness in ear edema was suppressed following CQ treatment. CQ decreased CASP1 and NF-κB levels in the ear tissue. TSLP levels in the ear tissue and serum were reduced following CQ treatment. Collectively, the above findings elucidate that CQ inhibits the pro-inflammatory mechanisms of TSLP via the down-regulation of distinct intracellular signaling cascade in mast cells. Therefore, CQ may have protective roles against TSLP-mediated inflammatory disorders.


Subject(s)
Caspase 1/drug effects , Caspase Inhibitors/pharmacology , Chloroquine/pharmacology , Cytokines/biosynthesis , Mast Cells/drug effects , Signal Transduction/drug effects , Stromal Cells/metabolism , Thymus Gland/metabolism , Animals , Calcimycin/pharmacology , Cell Line , Ear Diseases/drug therapy , Edema/drug therapy , Humans , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred ICR , NF-kappa B/drug effects , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Stromal Cells/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Thymus Gland/drug effects
15.
Int J Mol Sci ; 22(11)2021 May 24.
Article in English | MEDLINE | ID: covidwho-1273453

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Subject(s)
Acute Lung Injury/drug therapy , Amides/pharmacology , Cytokines/metabolism , Ethanolamines/pharmacology , MAP Kinase Signaling System/drug effects , Palmitic Acids/pharmacology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Amides/therapeutic use , Animals , Ethanolamines/therapeutic use , Immunohistochemistry , Inflammation/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/immunology , Male , Mast Cells/drug effects , Mast Cells/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Palmitic Acids/therapeutic use , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Sci Rep ; 11(1): 11234, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1246399

ABSTRACT

Understanding the molecular basis of fibrosis, the lethal complication of COVID-19, is urgent. By the analysis of RNA-sequencing data of SARS-CoV-2-infected cells combined with data mining we identified genes involved in COVID-19 progression. To characterize their implication in the fibrosis development we established a correlation matrix based on the transcriptomic data of patients with idiopathic pulmonary fibrosis. With this method, we have identified a cluster of genes responsible for SARS-CoV-2-fibrosis including its entry receptor ACE2 and epidermal growth factor EGF. Then, we developed Vi-Fi scoring-a novel drug repurposing approach and simultaneously quantified antiviral and antifibrotic activities of the drugs based on their transcriptomic signatures. We revealed the strong dual antifibrotic and antiviral activity of EGFR/ErbB inhibitors. Before the in vitro validation, we have clustered 277 cell lines and revealed distinct COVID-19 transcriptomic signatures of the cells with similar phenotypes that defines their suitability for COVID-19 research. By ERK activity monitoring in living lung cells, we show that the drugs with predicted antifibrotic activity downregulate ERK in the host lung cells. Overall, our study provides novel insights on SARS-CoV-2 dependence on EGFR/ERK signaling and demonstrates the utility of EGFR/ErbB inhibitors for COVID-19 treatment.


Subject(s)
COVID-19/metabolism , Cytokines/metabolism , Fibrosis/metabolism , MAP Kinase Signaling System/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/drug therapy , COVID-19/genetics , COVID-19/physiopathology , Cell Line, Tumor , Cytokines/genetics , Disease Progression , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Fibrosis/complications , Fibrosis/genetics , Fibrosis/virology , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/metabolism , Multigene Family , RNA-Seq
17.
Dev Cell ; 56(11): 1646-1660.e5, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1233404

ABSTRACT

Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.


Subject(s)
Airway Obstruction/genetics , Metaplasia/genetics , SOX9 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Airway Obstruction/metabolism , Airway Obstruction/pathology , Animals , Cell Transdifferentiation/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Goblet Cells/metabolism , Goblet Cells/pathology , Humans , Interleukin-13/genetics , MAP Kinase Signaling System/genetics , Metaplasia/pathology , Mice , Mucus/metabolism , Single-Cell Analysis
18.
J Clin Invest ; 131(6)2021 03 15.
Article in English | MEDLINE | ID: covidwho-1172783

ABSTRACT

Monocyte homing to the liver and adhesion to the liver sinusoidal endothelial cells (LSECs) are key elements in nonalcoholic steatohepatitis (NASH) pathogenesis. We reported previously that VCAM-1 mediates monocyte adhesion to LSECs. However, the pathogenic role of VCAM-1 in NASH is unclear. Herein, we report that VCAM-1 was a top upregulated adhesion molecule in the NASH mouse liver transcriptome. Open chromatin landscape profiling combined with genome-wide transcriptome analysis showed robust transcriptional upregulation of LSEC VCAM-1 in murine NASH. Moreover, LSEC VCAM-1 expression was significantly increased in human NASH. LSEC VCAM-1 expression was upregulated by palmitate treatment in vitro and reduced with inhibition of the mitogen-activated protein 3 kinase (MAP3K) mixed lineage kinase 3 (MLK3). Likewise, LSEC VCAM-1 expression was reduced in the Mlk3-/- mice with diet-induced NASH. Furthermore, VCAM-1 neutralizing Ab or pharmacological inhibition attenuated diet-induced NASH in mice, mainly via reducing the proinflammatory monocyte hepatic population as examined by mass cytometry by time of flight (CyTOF). Moreover, endothelium-specific Vcam1 knockout mice were also protected against NASH. In summary, lipotoxic stress enhances the expression of LSEC VCAM-1, in part, through MLK3 signaling. Inhibition of VCAM-1 was salutary in murine NASH and might serve as a potential therapeutic strategy for human NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease/etiology , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antibodies, Neutralizing/administration & dosage , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Profiling , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Palmitates/toxicity , RNA, Messenger/genetics , Up-Regulation/drug effects , Vascular Cell Adhesion Molecule-1/antagonists & inhibitors , Vascular Cell Adhesion Molecule-1/genetics
19.
Sci Immunol ; 6(58)2021 04 07.
Article in English | MEDLINE | ID: covidwho-1172732

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Subject(s)
COVID-19/metabolism , Complement Activation , Epithelial Cells/metabolism , Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Lung/metabolism , MAP Kinase Signaling System , SARS-CoV-2/metabolism , COVID-19/pathology , Cell Line, Tumor , Complement C3a/metabolism , Complement Factor B/metabolism , Epithelial Cells/pathology , Humans , Lung/pathology
20.
Cell Rep ; 35(1): 108940, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1157178

ABSTRACT

SARS-CoV-2 has currently precipitated the COVID-19 global health crisis. We developed a medium-throughput drug-screening system and identified a small-molecule library of 34 of 430 protein kinase inhibitors that were capable of inhibiting the SARS-CoV-2 cytopathic effect in human epithelial cells. These drug inhibitors are in various stages of clinical trials. We detected key proteins involved in cellular signaling pathways mTOR-PI3K-AKT, ABL-BCR/MAPK, and DNA-damage response that are critical for SARS-CoV-2 infection. A drug-protein interaction-based secondary screen confirmed compounds, such as the ATR kinase inhibitor berzosertib and torin2 with anti-SARS-CoV-2 activity. Berzosertib exhibited potent antiviral activity against SARS-CoV-2 in multiple cell types and blocked replication at the post-entry step. Berzosertib inhibited replication of SARS-CoV-1 and the Middle East respiratory syndrome coronavirus (MERS-CoV) as well. Our study highlights key promising kinase inhibitors to constrain coronavirus replication as a host-directed therapy in the treatment of COVID-19 and beyond as well as provides an important mechanism of host-pathogen interactions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , DNA Damage , Isoxazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/physiology , Virus Replication/drug effects , A549 Cells , Animals , COVID-19/metabolism , COVID-19/pathology , Chlorocebus aethiops , Drug Evaluation, Preclinical , HEK293 Cells , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Middle East Respiratory Syndrome Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL