Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1744920

ABSTRACT

Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome (ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay between the virus and primary human monocyte-derived macrophages (MDM). MDM were stimulated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human seasonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquantitatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-ß induction, which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings concur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages.


Subject(s)
Inflammation/virology , Macrophages/immunology , Macrophages/virology , SARS-CoV-2/immunology , Virus Replication/genetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Cytokines/analysis , Cytokines/immunology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Interferon-alpha/pharmacology , Macrophages/drug effects , Male , SARS-CoV-2/genetics , SARS-CoV-2/physiology
2.
Front Immunol ; 13: 838328, 2022.
Article in English | MEDLINE | ID: covidwho-1731785

ABSTRACT

Confirmed SARS-coronavirus-2 infection with gastrointestinal symptoms and changes in microbiota associated with coronavirus disease 2019 (COVID-19) severity have been previously reported, but the disease impact on the architecture and cellularity of ileal Peyer's patches (PP) remains unknown. Here we analysed post-mortem tissues from throughout the gastrointestinal (GI) tract of patients who died with COVID-19. When virus was detected by PCR in the GI tract, immunohistochemistry identified virus in epithelium and lamina propria macrophages, but not in lymphoid tissues. Immunohistochemistry and imaging mass cytometry (IMC) analysis of ileal PP revealed depletion of germinal centres (GC), disruption of B cell/T cell zonation and decreased potential B and T cell interaction and lower nuclear density in COVID-19 patients. This occurred independent of the local viral levels. The changes in PP demonstrate that the ability to mount an intestinal immune response is compromised in severe COVID-19, which could contribute to observed dysbiosis.


Subject(s)
Atrophy/immunology , COVID-19/immunology , Germinal Center/immunology , Intestinal Mucosa/immunology , Peyer's Patches/immunology , B-Lymphocytes/immunology , Humans , Lymphoid Tissue/immunology , Macrophages/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology
3.
Nat Rev Immunol ; 22(2): 74-75, 2022 02.
Article in English | MEDLINE | ID: covidwho-1713174
4.
Front Immunol ; 13: 842535, 2022.
Article in English | MEDLINE | ID: covidwho-1702591

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are generated under biological stress such as cancer, inflammatory tissue damage, and viral infection. In recent years, with occurrence of global infectious diseases, new discovery on MDSCs functions has been significantly expanded during viral infection and COVID-19. For a successful viral infection, pathogens viruses develop immune evasion strategies to avoid immune recognition. Numerous viruses induce the differentiation and expansion of MDSCs in order to suppress host immune responses including natural killer cells, antigen presenting cells, and T-cells. Moreover, MDSCs play an important role in regulation of immunopathogenesis by balancing viral infection and tissue damage. In this review article, we describe the overview of immunomodulation and genetic regulation of MDSCs during viral infection in the animal model and human studies. In addition, we include up-to-date review of role of MDSCs in SARS-CoV-2 infection and COVID-19. Finally, we discuss potential therapeutics targeting MDSCs.


Subject(s)
Immunomodulation/immunology , Macrophages/immunology , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , Disease Models, Animal , Humans , Immune Evasion/immunology , Macrophages/cytology , Monocytes/cytology , Monocytes/immunology , Myeloid-Derived Suppressor Cells/cytology
5.
Immunity ; 55(3): 423-441.e9, 2022 03 08.
Article in English | MEDLINE | ID: covidwho-1693372

ABSTRACT

Cell death plays an important role during pathogen infections. Here, we report that interferon-γ (IFNγ) sensitizes macrophages to Toll-like receptor (TLR)-induced death that requires macrophage-intrinsic death ligands and caspase-8 enzymatic activity, which trigger the mitochondrial apoptotic effectors, BAX and BAK. The pro-apoptotic caspase-8 substrate BID was dispensable for BAX and BAK activation. Instead, caspase-8 reduced pro-survival BCL-2 transcription and increased inducible nitric oxide synthase (iNOS), thus facilitating BAX and BAK signaling. IFNγ-primed, TLR-induced macrophage killing required iNOS, which licensed apoptotic caspase-8 activity and reduced the BAX and BAK inhibitors, A1 and MCL-1. The deletion of iNOS or caspase-8 limited SARS-CoV-2-induced disease in mice, while caspase-8 caused lethality independent of iNOS in a model of hemophagocytic lymphohistiocytosis. These findings reveal that iNOS selectively licenses programmed cell death, which may explain how nitric oxide impacts disease severity in SARS-CoV-2 infection and other iNOS-associated inflammatory conditions.


Subject(s)
COVID-19/immunology , Caspase 8/metabolism , Interferon-gamma/metabolism , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophages/immunology , Mitochondria/metabolism , SARS-CoV-2/physiology , Animals , Caspase 8/genetics , Cells, Cultured , Cytotoxicity, Immunologic , Humans , Interferon-gamma/genetics , Macrophage Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide Synthase Type II/metabolism , Pathogen-Associated Molecular Pattern Molecules/immunology , Signal Transduction , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
6.
Front Immunol ; 13: 780839, 2022.
Article in English | MEDLINE | ID: covidwho-1686482

ABSTRACT

Macrophages are essential innate immune cells that contribute to host defense during infection. An important feature of macrophages is their ability to respond to extracellular cues and to adopt different phenotypes and functions in response to these stimuli. The evidence accumulated in the last decade has highlighted the crucial role of metabolic reprogramming during macrophage activation in infectious context. Thus, understanding and manipulation of macrophage immunometabolism during infection could be of interest to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis, tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and regulate macrophage immune function in response to parasitic, bacterial and viral infections as well as trained immunity. At the end, we assess whether some drugs including those used in clinic and in development can target macrophage immunometabolism for potential therapy during infection with an emphasis on SARS-CoV2 infection.


Subject(s)
Infections/immunology , Infections/metabolism , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Animals , COVID-19/immunology , Humans , Immunity, Innate/immunology , SARS-CoV-2
7.
Front Immunol ; 12: 828115, 2021.
Article in English | MEDLINE | ID: covidwho-1680008

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.


Subject(s)
Gene Expression Regulation , Macrophages/immunology , Macrophages/metabolism , Signal Transduction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Animals , Carrier Proteins , Disease Management , Disease Susceptibility , Energy Metabolism , Humans , Ligands , Macrophage Activation/genetics , Macrophage Activation/immunology , Mechanotransduction, Cellular , Molecular Targeted Therapy , Protein Binding
8.
Nat Commun ; 13(1): 679, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671560

ABSTRACT

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Subject(s)
COVID-19/immunology , Interferons/pharmacology , Myeloid Cells/immunology , SARS-CoV-2/drug effects , Animals , Antiviral Agents , Bronchoalveolar Lavage , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Lung/immunology , Lung/pathology , Macaca mulatta , Macrophages/immunology , T-Lymphocytes/immunology
9.
Oxid Med Cell Longev ; 2022: 2523066, 2022.
Article in English | MEDLINE | ID: covidwho-1662340

ABSTRACT

Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.


Subject(s)
Epigenesis, Genetic , Pneumoconiosis/genetics , COVID-19/genetics , COVID-19/pathology , DNA Methylation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Pneumoconiosis/pathology , RNA, Untranslated/metabolism , SARS-CoV-2/isolation & purification
10.
Nature ; 603(7899): 145-151, 2022 03.
Article in English | MEDLINE | ID: covidwho-1631700

ABSTRACT

COVID-19, which is caused by infection with SARS-CoV-2, is characterized by lung pathology and extrapulmonary complications1,2. Type I interferons (IFNs) have an essential role in the pathogenesis of COVID-19 (refs 3-5). Although rapid induction of type I IFNs limits virus propagation, a sustained increase in the levels of type I IFNs in the late phase of the infection is associated with aberrant inflammation and poor clinical outcome5-17. Here we show that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, which controls immunity to cytosolic DNA, is a critical driver of aberrant type I IFN responses in COVID-19 (ref. 18). Profiling COVID-19 skin manifestations, we uncover a STING-dependent type I IFN signature that is primarily mediated by macrophages adjacent to areas of endothelial cell damage. Moreover, cGAS-STING activity was detected in lung samples from patients with COVID-19 with prominent tissue destruction, and was associated with type I IFN responses. A lung-on-chip model revealed that, in addition to macrophages, infection with SARS-CoV-2 activates cGAS-STING signalling in endothelial cells through mitochondrial DNA release, which leads to cell death and type I IFN production. In mice, pharmacological inhibition of STING reduces severe lung inflammation induced by SARS-CoV-2 and improves disease outcome. Collectively, our study establishes a mechanistic basis of pathological type I IFN responses in COVID-19 and reveals a principle for the development of host-directed therapeutics.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Interferon Type I/immunology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , SARS-CoV-2/immunology , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Disease Progression , Endothelial Cells/pathology , Female , Gene Expression Regulation/immunology , Humans , Immunity, Innate , Lung/immunology , Lung/metabolism , Lung/pathology , Lung/virology , Macrophages/immunology , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/virology , SARS-CoV-2/pathogenicity , Signal Transduction , Skin/immunology , Skin/metabolism , Skin/pathology
11.
Chem Commun (Camb) ; 58(13): 2120-2123, 2022 Feb 10.
Article in English | MEDLINE | ID: covidwho-1639577

ABSTRACT

The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.


Subject(s)
COVID-19/prevention & control , Lipopeptides/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccines, Conjugate/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Formation , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , COVID-19/virology , Female , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , Protein Binding , Protein Domains/immunology , RAW 264.7 Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/chemistry
12.
EBioMedicine ; 75: 103803, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587923

ABSTRACT

BACKGROUND: The Coronavirus Disease 2019 (COVID-19) pandemic has been a great threat to global public health since 2020. Although the advance on vaccine development has been largely achieved, a strategy to alleviate immune overactivation in severe COVID-19 patients is still needed. The NLRP3 inflammasome is activated upon SARS-CoV-2 infection and associated with COVID-19 severity. However, the processes by which the NLRP3 inflammasome is involved in COVID-19 disease remain unclear. METHODS: We infected THP-1 derived macrophages, NLRP3 knockout mice, and human ACE2 transgenic mice with live SARS-CoV-2 in Biosafety Level 3 (BSL-3) laboratory. We performed quantitative real-time PCR for targeted viral or host genes from SARS-CoV-2 infected mouse tissues, conducted histological or immunofluorescence analysis in SARS-CoV-2 infected mouse tissues. We also injected intranasally AAV-hACE2 or intraperitoneally NLRP3 inflammasome inhibitor MCC950 before SARS-CoV-2 infection in mice as indicated. FINDINGS: We have provided multiple lines of evidence that the NLRP3 inflammasome plays an important role in the host immune response to SARS-CoV-2 invasion of the lungs. Inhibition of the NLRP3 inflammasome attenuated the release of COVID-19 related pro-inflammatory cytokines in cell cultures and mice. The severe pathology induced by SARS-CoV-2 in lung tissues was reduced in Nlrp3-/- mice compared to wild-type C57BL/6 mice. Finally, specific inhibition of the NLRP3 inflammasome by MCC950 alleviated excessive lung inflammation and thus COVID-19 like pathology in human ACE2 transgenic mice. INTERPRETATION: Inflammatory activation induced by SARS-CoV-2 is an important stimulator of COVID-19 related immunopathology. Targeting the NLRP3 inflammasome is a promising immune intervention against severe COVID-19 disease. FUNDING: This work was supported by grants from the Bureau of Frontier Sciences and Education, CAS (grant no. QYZDJ-SSW-SMC005 to Y.G.Y.), the key project of the CAS "Light of West China" Program (to D.Y.) and Yunnan Province (202001AS070023 to D.Y.).


Subject(s)
COVID-19 , Lung , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Disease Models, Animal , Humans , Lung/immunology , Lung/pathology , Lung/virology , Macrophages/immunology , Macrophages/pathology , Macrophages/virology , Male , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2/genetics , THP-1 Cells
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1559206

ABSTRACT

Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, "multi-omics" immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokines/blood , Sepsis/pathology , Anti-Inflammatory Agents/therapeutic use , Bacteria/immunology , Bacterial Infections/pathology , Cytokines/metabolism , Humans , Inflammation/pathology , Macrophages/immunology , SARS-CoV-2/immunology , Sepsis/microbiology
15.
J Med Virol ; 93(12): 6519-6524, 2021 12.
Article in English | MEDLINE | ID: covidwho-1544297

ABSTRACT

The COVID-19 pandemic, which has ravaged our world for more than a year, still shapes our agenda with a scale of intensity that fluctuates over time. In our study, we aimed to determine the correlation between serum migration inhibitory factor (MIF) level and disease severity in COVID-19 with different prognoses. Between 15 October 2020 and 20 January 2021, 110 patients over the age of 18 who were diagnosed with COVID-19 and 40 volunteer healthcare personnel were included in our study. MIF levels were measured by enzyme-linked immunosorbent assay. In the comparison of serum MIF values in the patient and control group, it was observed that the MIF level was significantly higher in patients with both moderate and severe COVID-19 levels compared to the control group (p = 0.001, 0.001). In the comparison of serum MIF values of moderate to severe COVID-19 patients, it was observed that MIF level was higher in severe patients (p = 0.001). In the receiver operating characteristic curve analysis performed to differentiate between severe and moderate COVID-19 patients with MIF levels, the area under the curve was observed as 0.78. When the cutoff value of the MIF level was taken as 4.455 ng/ml, the sensitivity was 83% and the specificity was 62%. Failure to adequately balance the pro-inflammatory cytokines synthesized in COVID-19 with anti-inflammatory effect is the most important reason for the aggravation of the disease course. Playing a role in pro-inflammatory cytokine synthesis, MIF can provide important information about the disease prognosis in the early period.


Subject(s)
COVID-19/pathology , Cytokine Release Syndrome/blood , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Macrophages/immunology , SARS-CoV-2/immunology , Case-Control Studies , Cytokine Release Syndrome/pathology , Disease Progression , Enzyme-Linked Immunosorbent Assay , Female , Humans , Macrophage Activation/immunology , Male , Middle Aged , Prognosis , Severity of Illness Index
16.
Front Immunol ; 12: 767319, 2021.
Article in English | MEDLINE | ID: covidwho-1538373

ABSTRACT

The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.


Subject(s)
Immunity, Innate/immunology , Macrophages/immunology , Mechanotransduction, Cellular/immunology , Neutrophils/immunology , Signal Transduction/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , Humans , Ion Channels/immunology , Ion Channels/metabolism , Macrophages/metabolism , Neutrophils/metabolism , TRPV Cation Channels/immunology , TRPV Cation Channels/metabolism
17.
Blood ; 139(8): 1222-1233, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1528672

ABSTRACT

The newly identified 13-series (T-series) resolvins (RvTs) regulate phagocyte functions and accelerate resolution of infectious inflammation. Because severe acute respiratory syndrome coronavirus 2 elicits uncontrolled inflammation involving neutrophil extracellular traps (NETs), we tested whether stereochemically defined RvTs regulate NET formation. Using microfluidic devices capturing NETs in phorbol 12-myristate 13-acetate-stimulated human whole blood, the RvTs (RvT1-RvT4; 2.5 nM each) potently reduced NETs. With interleukin-1ß-stimulated human neutrophils, each RvT dose and time dependently decreased NETosis, conveying ∼50% potencies at 10 nM, compared with a known NETosis inhibitor (10 µM). In a murine Staphylococcus aureus infection, RvTs (50 ng each) limited neutrophil infiltration, bacterial titers, and NETs. In addition, each RvT enhanced NET uptake by human macrophages; RvT2 was the most potent of the four RvTs, giving a >50% increase in NET-phagocytosis. As part of the intracellular signaling mechanism, RvT2 increased cyclic adenosine monophosphate and phospho-AMP-activated protein kinase (AMPK) within human macrophages, and RvT2-stimulated NET uptake was abolished by protein kinase A and AMPK inhibition. RvT2 also stimulated NET clearance by mouse macrophages in vivo. Together, these results provide evidence for novel pro-resolving functions of RvTs, namely reducing NETosis and enhancing macrophage NET clearance via a cyclic adenosine monophosphate-protein kinase A-AMPK axis. Thus, RvTs open opportunities for regulating NET-mediated collateral tissue damage during infection as well as monitoring NETs.


Subject(s)
Extracellular Traps/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus/immunology , Animals , COVID-19/immunology , Humans , Inflammation/immunology , Macrophages/immunology , Mice , Neutrophils/immunology , Phagocytosis , SARS-CoV-2/immunology
18.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528615

ABSTRACT

BACKGROUNDInfluenza A virus (IAV) and SARS-CoV-2 are pandemic viruses causing millions of deaths, yet their clinical manifestations are distinctly different.METHODSWith the hypothesis that upper airway immune and epithelial cell responses are also distinct, we performed single-cell RNA sequencing (scRNA-Seq) on nasal wash cells freshly collected from adults with either acute COVID-19 or influenza or from healthy controls. We focused on major cell types and subtypes in a subset of donor samples.ResultsNasal wash cells were enriched for macrophages and neutrophils for both individuals with influenza and those with COVID-19 compared with healthy controls. Hillock-like epithelial cells, M2-like macrophages, and age-dependent B cells were enriched in COVID-19 samples. A global decrease in IFN-associated transcripts in neutrophils, macrophages, and epithelial cells was apparent in COVID-19 samples compared with influenza samples. The innate immune response to SARS-CoV-2 appears to be maintained in macrophages, despite evidence for limited epithelial cell immune sensing. Cell-to-cell interaction analyses revealed a decrease in epithelial cell interactions in COVID-19 and highlighted differences in macrophage-macrophage interactions for COVID-19 and influenza.ConclusionsOur study demonstrates that scRNA-Seq can define host and viral transcriptional activity at the site of infection and reveal distinct local epithelial and immune cell responses for COVID-19 and influenza that may contribute to their divergent disease courses.FundingMassachusetts Consortium on Pathogen Readiness, the Mathers Foundation, and the Department of Defense (W81XWH2110029) "COVID-19 Expansion for AIRe Program."


Subject(s)
COVID-19 , Immunity, Innate , Influenza A virus , Influenza, Human , Macrophages , RNA-Seq , SARS-CoV-2 , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Influenza A virus/genetics , Influenza A virus/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Macrophages/immunology , Macrophages/virology , Male , Nasal Lavage , SARS-CoV-2/genetics , SARS-CoV-2/immunology
19.
Front Immunol ; 12: 768695, 2021.
Article in English | MEDLINE | ID: covidwho-1523709

ABSTRACT

A major barrier to human immunodeficiency virus (HIV-1) cure is the latent viral reservoir, which persists despite antiretroviral therapy (ART), including across the non-dividing myeloid reservoir which is found systemically in sanctuary sites across tissues and the central nervous system (CNS). Unlike activated CD4+ T cells that undergo rapid cell death during initial infection (due to rapid viral replication kinetics), viral replication kinetics are delayed in non-dividing myeloid cells, resulting in long-lived survival of infected macrophages and macrophage-like cells. Simultaneously, persistent inflammation in macrophages confers immune dysregulation that is a key driver of co-morbidities including cardiovascular disease (CVD) and neurological deficits in people living with HIV-1 (PLWH). Macrophage activation and dysregulation is also a key driver of disease progression across other viral infections including SARS-CoV-2, influenza, and chikungunya viruses, underscoring the interplay between macrophages and disease progression, pathogenesis, and comorbidity in the viral infection setting. This review discusses the role of macrophages in persistence and pathogenesis of HIV-1 and related comorbidities, SARS-CoV-2 and other viruses. A special focus is given to novel immunomodulatory targets for key events driving myeloid cell dysregulation and reservoir maintenance across a diverse array of viral infections.


Subject(s)
HIV Infections/immunology , Immunologic Factors/immunology , Macrophages/immunology , Virus Diseases/immunology , COVID-19/immunology , HIV-1/immunology , Humans , SARS-CoV-2/immunology
20.
Front Immunol ; 12: 656419, 2021.
Article in English | MEDLINE | ID: covidwho-1506563

ABSTRACT

Tuberculosis (TB) is the global health problem with the second highest number of deaths from a communicable disease after COVID-19. Although TB is curable, poor health infrastructure, long and grueling TB treatments have led to the spread of TB pandemic with alarmingly increasing multidrug-resistant (MDR)-TB prevalence. Alternative host modulating therapies can be employed to improve TB drug efficacies or dampen the exaggerated inflammatory responses to improve lung function. Here, we investigated the adjunct therapy of natural immune-modulatory compound berberine in C57BL/6 mouse model of pulmonary TB. Berberine treatment did not affect Mtb growth in axenic cultures; however, it showed increased bacterial killing in primary murine bone marrow-derived macrophages and human monocyte-derived macrophages. Ad libitum berberine administration was beneficial to the host in combination with rifampicin and isoniazid. Berberine adjunctive treatment resulted in decreased lung pathology with no additive or synergistic effects on bacterial burdens in mice. Lung immune cell flow cytometry analysis showed that adjunctive berberine treatment decreased neutrophil, CD11b+ dendritic cell and recruited interstitial macrophage numbers. Late onset of adjunctive berberine treatment resulted in a similar phenotype with consistently reduced numbers of neutrophils both in lungs and the spleen. Together, our results suggest that berberine can be supplemented as an immunomodulatory agent depending on the disease stage and inflammatory status of the host.


Subject(s)
Antitubercular Agents/therapeutic use , Berberine/therapeutic use , Immunologic Factors/therapeutic use , Isoniazid/therapeutic use , Rifampin/therapeutic use , Tuberculosis, Pulmonary/drug therapy , Animals , Antitubercular Agents/pharmacology , Berberine/pharmacology , Cytokines/immunology , Dendritic Cells/drug effects , Drug Therapy, Combination , Female , Humans , Immunologic Factors/pharmacology , Isoniazid/pharmacology , Lung/drug effects , Lung/immunology , Lung/microbiology , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Male , Mice, Inbred C3H , Mice, Inbred C57BL , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Neutrophils/drug effects , Neutrophils/immunology , Rifampin/pharmacology , Spleen/drug effects , Spleen/immunology , Spleen/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL