Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Sci Rep ; 11(1): 24432, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1585772

ABSTRACT

Despite the initial success of some drugs and vaccines targeting COVID-19, understanding the mechanism underlying SARS-CoV-2 disease pathogenesis remains crucial for the development of further approaches to treatment. Some patients with severe Covid-19 experience a cytokine storm and display evidence of inflammasome activation leading to increased levels of IL-1ß and IL-18; however, other reports have suggested reduced inflammatory responses to Sars-Cov-2. In this study we have examined the effects of the Sars-Cov-2 envelope (E) protein, a virulence factor in coronaviruses, on inflammasome activation and pulmonary inflammation. In cultured macrophages the E protein suppressed inflammasome priming and NLRP3 inflammasome activation. Similarly, in mice transfected with E protein and treated with poly(I:C) to simulate the effects of viral RNA, the E protein, in an NLRP3-dependent fashion, reduced expression of pro-IL-1ß, levels of IL-1ß and IL-18 in broncho-alveolar lavage fluid, and macrophage infiltration in the lung. To simulate the effects of more advanced infection, macrophages were treated with both LPS and poly(I:C). In this setting the E protein increased NLRP3 inflammasome activation in both murine and human macrophages. Thus, the Sars-Cov-2 E protein may initially suppress the host NLRP3 inflammasome response to viral RNA while potentially increasing NLRP3 inflammasome responses in the later stages of infection. Targeting the Sars-Cov-2 E protein especially in the early stages of infection may represent a novel approach to Covid-19 therapy.


Subject(s)
Coronavirus Envelope Proteins/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , SARS-CoV-2/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , COVID-19/pathology , COVID-19/virology , Coronavirus Envelope Proteins/genetics , Down-Regulation/drug effects , Endoplasmic Reticulum Stress , Humans , Inflammasomes/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Janus Kinases/genetics , Janus Kinases/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Poly I-C/pharmacology , RNA, Viral/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification
2.
Cell Rep ; 37(12): 110126, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1556413

ABSTRACT

Previous studies have shown that the high mortality caused by viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus primarily results from complications of a cytokine storm. Therefore, it is critical to identify the key factors participating in the cytokine storm. Here we demonstrate that interferon-induced protein 35 (IFP35) plays an important role in the cytokine storm induced by SARS-CoV-2 and influenza virus infection. We find that the levels of serum IFP35 in individuals with SARS-CoV-2 correlates with severity of the syndrome. Using mouse model and cell assays, we show that IFP35 is released by lung epithelial cells and macrophages after SARS-CoV-2 or influenza virus infection. In addition, we show that administration of neutralizing antibodies against IFP35 considerably reduces lung injury and, thus, the mortality rate of mice exposed to viral infection. Our findings suggest that IFP35 serves as a biomarker and as a therapeutic target in virus-induced syndromes.


Subject(s)
COVID-19/blood , COVID-19/drug therapy , Influenza, Human/blood , Influenza, Human/drug therapy , Intracellular Signaling Peptides and Proteins/blood , Animals , Antibodies, Neutralizing/administration & dosage , Biomarkers/blood , COVID-19/pathology , COVID-19/physiopathology , Disease Models, Animal , Humans , Inflammation/metabolism , Influenza, Human/pathology , Lung/metabolism , Lung/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Patient Acuity , SARS-CoV-2/physiology
3.
Cells ; 10(12)2021 11 24.
Article in English | MEDLINE | ID: covidwho-1542427

ABSTRACT

Hyperactivation of immune responses resulting in excessive release of pro-inflammatory mediators in alveoli/lung structures is the principal pathological feature of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The cytokine hyperactivation in COVID-19 appears to be similar to those seen in rheumatoid arthritis (RA), an autoimmune disease. Emerging evidence conferred the severity and risk of COVID-19 to RA patients. Amid the evidence of musculoskeletal manifestations involving immune-inflammation-dependent mechanisms and cases of arthralgia and/or myalgia in COVID-19, crosstalk between COVID-19 and RA is often debated. The present article sheds light on the pathological crosstalk between COVID-19 and RA, the risk of RA patients in acquiring SARS-CoV-2 infection, and the aspects of SARS-CoV-2 infection in RA development. We also conferred whether RA can exacerbate COVID-19 outcomes based on available clinical readouts. The mechanistic overlapping in immune-inflammatory features in both COVID-19 and RA was discussed. We showed the emerging links of angiotensin-converting enzyme (ACE)-dependent and macrophage-mediated pathways in both diseases. Moreover, a detailed review of immediate challenges and key recommendations for anti-rheumatic drugs in the COVID-19 setting was presented for better clinical monitoring and management of RA patients. Taken together, the present article summarizes available knowledge on the emerging COVID-19 and RA crosstalk and their mechanistic overlaps, challenges, and therapeutic options.


Subject(s)
Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/therapy , COVID-19/complications , COVID-19/therapy , Animals , COVID-19/virology , Humans , Inflammation/pathology , Macrophages/metabolism , Models, Biological , SARS-CoV-2/physiology
4.
mBio ; 12(5): e0198721, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1494967

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/pathogenicity , Animals , Antibody-Dependent Enhancement/physiology , Cell Line , Cricetinae , Humans , Real-Time Polymerase Chain Reaction , Receptors, IgG/genetics
5.
Front Immunol ; 12: 741502, 2021.
Article in English | MEDLINE | ID: covidwho-1477825

ABSTRACT

Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation, it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways, specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding end-organ tissue damage.


Subject(s)
COVID-19/virology , Immunity, Innate , Macrophages/virology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Proteome , Proteomics , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Signal Transduction , Transcriptome
6.
Biol Direct ; 16(1): 18, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1477451

ABSTRACT

Skeletal muscle has an extraordinary regenerative capacity reflecting the rapid activation and effective differentiation of muscle stem cells (MuSCs). In the course of muscle regeneration, MuSCs are reprogrammed by immune cells. In turn, MuSCs confer immune cells anti-inflammatory properties to resolve inflammation and facilitate tissue repair. Indeed, MuSCs can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory ability, including effects primed by interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). At the molecular level, the tryptophan metabolites, kynurenine or kynurenic acid, produced by indoleamine 2,3-dioxygenase (IDO), augment the expression of TNF-stimulated gene 6 (TSG6) through the activation of the aryl hydrocarbon receptor (AHR). In addition, insulin growth factor 2 (IGF2) produced by MuSCs can endow maturing macrophages oxidative phosphorylation (OXPHOS)-dependent anti-inflammatory functions. Herein, we summarize the current understanding of the immunomodulatory characteristics of MuSCs and the issues related to their potential applications in pathological conditions, including COVID-19.


Subject(s)
COVID-19/therapy , Immune System/physiology , Muscles/physiology , Regeneration/physiology , Stem Cells/cytology , Animals , COVID-19/immunology , Cell Adhesion Molecules/metabolism , Cell Differentiation , Cell Proliferation , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation , Insulin-Like Growth Factor II/metabolism , Interferon-gamma/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Macrophages/metabolism , Mice , Muscles/metabolism , Oxidative Phosphorylation , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/chemistry , Tumor Necrosis Factor-alpha/metabolism
7.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: covidwho-1470935

ABSTRACT

Excessive host inflammation following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with severity and mortality in coronavirus disease 2019 (COVID-19). We recently reported that the SARS-CoV-2 spike protein S1 subunit (S1) induces pro-inflammatory responses by activating toll-like receptor 4 (TLR4) signaling in macrophages. A standardized extract of Asparagus officinalis stem (EAS) is a unique functional food that elicits anti-photoaging effects by suppressing pro-inflammatory signaling in hydrogen peroxide and ultraviolet B-exposed skin fibroblasts. To elucidate its potential in preventing excessive inflammation in COVID-19, we examined the effects of EAS on pro-inflammatory responses in S1-stimulated macrophages. Murine peritoneal exudate macrophages were co-treated with EAS and S1. Concentrations and mRNA levels of pro-inflammatory cytokines were assessed using enzyme-linked immunosorbent assay and reverse transcription and real-time polymerase chain reaction, respectively. Expression and phosphorylation levels of signaling proteins were analyzed using western blotting and fluorescence immunomicroscopy. EAS significantly attenuated S1-induced secretion of interleukin (IL)-6 in a concentration-dependent manner without reducing cell viability. EAS also markedly suppressed the S1-induced transcription of IL-6 and IL-1ß. However, among the TLR4 signaling proteins, EAS did not affect the degradation of inhibitor κBα, nuclear translocation of nuclear factor-κB p65 subunit, and phosphorylation of c-Jun N-terminal kinase p54 subunit after S1 exposure. In contrast, EAS significantly suppressed S1-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and Akt. Attenuation of S1-induced transcription of IL-6 and IL-1ß by the MAPK kinase inhibitor U0126 was greater than that by the Akt inhibitor perifosine, and the effects were potentiated by simultaneous treatment with both inhibitors. These results suggest that EAS attenuates S1-induced IL-6 and IL-1ß production by suppressing p44/42 MAPK and Akt signaling in macrophages. Therefore, EAS may be beneficial in regulating excessive inflammation in patients with COVID-19.


Subject(s)
Asparagus Plant/chemistry , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Macrophages/drug effects , Plant Extracts/pharmacology , Signal Transduction/drug effects , Animals , Asparagus Plant/metabolism , Butadienes/pharmacology , Cell Survival/drug effects , Interleukin-1beta/genetics , Interleukin-6/genetics , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism , Nitriles/pharmacology , Phosphorylation/drug effects , Plant Extracts/chemistry , Plant Stems/chemistry , Plant Stems/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , Toll-Like Receptor 4/metabolism , Transcription, Genetic/drug effects
9.
Int J Med Sci ; 18(15): 3533-3543, 2021.
Article in English | MEDLINE | ID: covidwho-1409698

ABSTRACT

Importance: Despite the availability of a vaccine against the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), humans will have to live with this virus and the after-effects of the coronavirus disease 2019 (COVID-19) infection for a long time. Cholesterol plays an important role in the infection and prognosis of SARS-CoV-2, and the study of its mechanism is of great significance not only for the treatment of COVID-19 but also for research on generic antiviral drugs. Observations: Cholesterol promotes the development of atherosclerosis by activating NLR family pyrin domain containing 3 (NLRP3), and the resulting inflammatory environment indirectly contributes to COVID-19 infection and subsequent deterioration. In in vitro studies, membrane cholesterol increased the number of viral entry sites on the host cell membrane and the number of angiotensin-converting enzyme 2 (ACE2) receptors in the membrane fusion site. Previous studies have shown that the fusion protein of the virus interacts with cholesterol, and the spike protein of SARS-CoV-2 also requires cholesterol to enter the host cells. Cholesterol in blood interacts with the spike protein to promote the entry of spike cells, wherein the scavenger receptor class B type 1 (SR-B1) plays an important role. Because of the cardiovascular protective effects of lipid-lowering therapy and the additional anti-inflammatory effects of lipid-lowering drugs, it is currently recommended to continue lipid-lowering therapy for patients with COVID-19, but the safety of extremely low LDL-C is questionable. Conclusions and Relevance: Cholesterol can indirectly increase the susceptibility of patients to SARS-CoV-2 and increase the risk of death from COVID-19, which are mediated by NLRP3 and atherosclerotic plaques, respectively. Cholesterol present in the host cell membrane, virus, and blood may also directly participate in the virus cell entry process, but the specific mechanism still needs further study. Patients with COVID-19 are recommended to continue lipid-lowering therapy.


Subject(s)
COVID-19/complications , Hypercholesterolemia/complications , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , Atherosclerosis/physiopathology , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/therapy , Cell Membrane/metabolism , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Endocytosis , Humans , Hypercholesterolemia/diagnosis , Hypercholesterolemia/therapy , Inflammation , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/blood , Prognosis , SARS-CoV-2 , Scavenger Receptors, Class B/metabolism
10.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1392993

ABSTRACT

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Subject(s)
Coronavirus/metabolism , Diabetes Mellitus, Type 2/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Inflammation Mediators/metabolism , Inflammation/virology , Macrophages/metabolism , Animals , COVID-19/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome , Cytokines/metabolism , Diabetes Mellitus, Type 2/genetics , Female , Histone-Lysine N-Methyltransferase/genetics , Humans , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Signal Transduction
11.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1390789

ABSTRACT

SARS-CoV-2 uses ACE2 and TMPRSS2 to gain entry into the cell. However, recent studies have shown that SARS-CoV-2 may use additional host factors that are required for the viral lifecycle. Here we used publicly available datasets, CoV-associated genes, and machine learning algorithms to explore the SARS-CoV-2 interaction landscape in different tissues. We found that in general a small fraction of cells express ACE2 in the different tissues, including nasal, bronchi, and lungs. We show that a small fraction of immune cells (including T cells, macrophages, dendritic cells) found in tissues also express ACE2. We show that healthy circulating immune cells do not express ACE2 and TMPRSS2. However, a small fraction of circulating immune cells (including dendritic cells, monocytes, T cells) in the PBMC of COVID-19 patients express ACE2 and TMPRSS2. Additionally, we found that a large spectrum of cells (in tissues and circulation) in both healthy and COVID-19-positive patients were significantly enriched for SARS-CoV-2 factors, such as those associated with RHOA and RAB GTPases, mRNA translation proteins, COPI- and COPII-mediated transport, and integrins. Thus, we propose that further research is needed to explore if SARS-CoV-2 can directly infect tissue and circulating immune cells to better understand the virus' mechanism of action.


Subject(s)
COVID-19/etiology , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , SARS-CoV-2/physiology , Virus Internalization , COVID-19/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Immune System/immunology , Immune System/metabolism , Immunity, Innate , Macrophages/immunology , Macrophages/metabolism , Single-Cell Analysis
13.
FASEB J ; 35(9): e21870, 2021 09.
Article in English | MEDLINE | ID: covidwho-1373669

ABSTRACT

COVID-19 is often characterized by dysregulated inflammatory and immune responses. It has been shown that the Traditional Chinese Medicine formulation Qing-Fei-Pai-Du decoction (QFPDD) is effective in the treatment of the disease, especially for patients in the early stage. Our network pharmacology analyses indicated that many inflammation and immune-related molecules were the targets of the active components of QFPDD, which propelled us to examine the effects of the decoction on inflammation. We found in the present study that QFPDD effectively alleviated dextran sulfate sodium-induced intestinal inflammation in mice. It inhibited the production of pro-inflammatory cytokines IL-6 and TNFα, and promoted the expression of anti-inflammatory cytokine IL-10 by macrophagic cells. Further investigations found that QFPDD and one of its active components wogonoside markedly reduced LPS-stimulated phosphorylation of transcription factor ATF2, an important regulator of multiple cytokines expression. Our data revealed that both QFPDD and wogonoside decreased the half-life of ATF2 and promoted its proteasomal degradation. Of note, QFPDD and wogonoside down-regulated deubiquitinating enzyme USP14 along with inducing ATF2 degradation. Inhibition of USP14 with the small molecular inhibitor IU1 also led to the decrease of ATF2 in the cells, indicating that QFPDD and wogonoside may act through regulating USP14 to promote ATF2 degradation. To further assess the importance of ubiquitination in regulating ATF2, we generated mice that were intestinal-specific KLHL5 deficiency, a CUL3-interacting protein participating in substrate recognition of E3s. In these mice, QFPDD mitigated inflammatory reaction in the spleen, but not intestinal inflammation, suggesting CUL3-KLHL5 may function as an E3 for ATF2 degradation.


Subject(s)
Activating Transcription Factor 2/metabolism , Down-Regulation/drug effects , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Glucosides/pharmacology , Inflammation/drug therapy , Proteolysis/drug effects , Ubiquitin Thiolesterase/deficiency , Animals , Cell Line , Colitis/chemically induced , Colitis/drug therapy , Cullin Proteins/metabolism , Cytokines/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Flavanones/therapeutic use , Glucosides/therapeutic use , Inflammation/chemically induced , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Pyrroles/pharmacology , Pyrrolidines/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitination
14.
Cell Rep ; 36(8): 109614, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1370458

ABSTRACT

Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1ß. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.


Subject(s)
Carnivora/metabolism , Evolution, Molecular , Inflammasomes/metabolism , Zoonoses/pathology , Animals , Caspase 1/genetics , Caspase 1/metabolism , Caspase 8/metabolism , Caspases, Initiator/genetics , Caspases, Initiator/metabolism , Cell Death , Cell Line , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , NLR Proteins/genetics , NLR Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salmonella typhi/pathogenicity , Zoonoses/immunology , Zoonoses/parasitology
15.
JCI Insight ; 6(13)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1346128

ABSTRACT

We explored the potential link between chronic inflammatory arthritis and COVID-19 pathogenic and resolving macrophage pathways and their role in COVID-19 pathogenesis. We found that bronchoalveolar lavage fluid (BALF) macrophage clusters FCN1+ and FCN1+SPP1+ predominant in severe COVID-19 were transcriptionally related to synovial tissue macrophage (STM) clusters CD48hiS100A12+ and CD48+SPP1+ that drive rheumatoid arthritis (RA) synovitis. BALF macrophage cluster FABP4+ predominant in healthy lung was transcriptionally related to STM cluster TREM2+ that governs resolution of synovitis in RA remission. Plasma concentrations of SPP1 and S100A12 (key products of macrophage clusters shared with active RA) were high in severe COVID-19 and predicted the need for Intensive Care Unit transfer, and they remained high in the post-COVID-19 stage. High plasma levels of SPP1 were unique to severe COVID-19 when compared with other causes of severe pneumonia, and IHC localized SPP1+ macrophages in the alveoli of COVID-19 lung. Investigation into SPP1 mechanisms of action revealed that it drives proinflammatory activation of CD14+ monocytes and development of PD-L1+ neutrophils, both hallmarks of severe COVID-19. In summary, COVID-19 pneumonitis appears driven by similar pathogenic myeloid cell pathways as those in RA, and their mediators such as SPP1 might be an upstream activator of the aberrant innate response in severe COVID-19 and predictive of disease trajectory including post-COVID-19 pathology.


Subject(s)
Arthritis, Rheumatoid/immunology , COVID-19/immunology , Monocytes/immunology , Neutrophils/immunology , Osteopontin/immunology , Arthritis, Rheumatoid/metabolism , B7-H1 Antigen/immunology , Bronchoalveolar Lavage Fluid/immunology , CD48 Antigen/immunology , COVID-19/chemically induced , COVID-19/metabolism , Fatty Acid-Binding Proteins/immunology , Humans , Lectins/immunology , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Lung/diagnostic imaging , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/immunology , Monocytes/metabolism , Neutrophils/metabolism , Osteopontin/blood , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Immunologic/immunology , S100A12 Protein/immunology , S100A12 Protein/metabolism , Synovial Membrane/immunology , Tomography, X-Ray Computed
16.
Nat Commun ; 12(1): 4567, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328845

ABSTRACT

Few studies have used a longitudinal approach to describe the immune response to SARS-CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment shows distinct changes in cell proportions and characteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages are classified into 10 distinct subpopulations with transcriptome changes among monocyte-derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi. Moreover, trajectory analysis reveals gene expression changes from monocyte-derived infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage subpopulation that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene modules downregulated by immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response dynamics provoked by SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , COVID-19/metabolism , Macrophages/metabolism , Macrophages/physiology , Animals , Bronchoalveolar Lavage Fluid , Ferrets
17.
J Virol ; 95(15): e0076621, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1305511

ABSTRACT

All coronaviruses (CoVs) contain a macrodomain, also termed Mac1, in nonstructural protein 3 (nsp3) that binds and hydrolyzes mono-ADP-ribose (MAR) covalently attached to proteins. Despite several reports demonstrating that Mac1 is a prominent virulence factor, there is still a limited understanding of its cellular roles during infection. Currently, most of the information regarding the role of CoV Mac1 during infection is based on a single point mutation of a highly conserved asparagine residue, which makes contact with the distal ribose of ADP-ribose. To determine if additional Mac1 activities contribute to CoV replication, we compared the replication of murine hepatitis virus (MHV) Mac1 mutants, D1329A and N1465A, to the previously mentioned asparagine mutant, N1347A. These residues contact the adenine and proximal ribose in ADP-ribose, respectively. N1465A had no effect on MHV replication or pathogenesis, while D1329A and N1347A both replicated poorly in bone marrow-derived macrophages (BMDMs), were inhibited by PARP enzymes, and were highly attenuated in vivo. Interestingly, D1329A was also significantly more attenuated than N1347A in all cell lines tested. Conversely, D1329A retained some ability to block beta interferon (IFN-ß) transcript accumulation compared to N1347A, indicating that these mutations have different effects on Mac1 functions. Combining these two mutations resulted in a virus that was unrecoverable, suggesting that the combined activities of Mac1 are essential for MHV replication. We conclude that Mac1 has multiple functions that promote the replication of MHV, and that these results provide further evidence that Mac1 is a prominent target for anti-CoV therapeutics. IMPORTANCE In the wake of the COVID-19 epidemic, there has been a surge to better understand how CoVs replicate and to identify potential therapeutic targets that could mitigate disease caused by SARS-CoV-2 and other prominent CoVs. The highly conserved macrodomain, also termed Mac1, is a small domain within nonstructural protein 3. It has received significant attention as a potential drug target, as previous studies demonstrated that it is essential for CoV pathogenesis in multiple animal models of infection. However, the functions of Mac1 during infection remain largely unknown. Here, using targeted mutations in different regions of Mac1, we found that Mac1 has multiple functions that promote the replication of MHV, a model CoV, and, therefore, is more important for MHV replication than previously appreciated. These results will help guide the discovery of these novel functions of Mac1 and the development of inhibitory compounds targeting this domain.


Subject(s)
Murine hepatitis virus/physiology , Mutation, Missense , Viral Nonstructural Proteins , Virus Replication/genetics , Amino Acid Substitution , Animals , HeLa Cells , Humans , Macrophages/metabolism , Macrophages/virology , Mice , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
18.
Int J Mol Sci ; 22(13)2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1304673

ABSTRACT

Macrophages (Mφs) are instrumental regulators of the immune response whereby they acquire diverse functional phenotypes following their exposure to microenvironmental cues that govern their differentiation from monocytes and their activation. The complexity and diversity of the mycobacterial cell wall have empowered mycobacteria with potent immunomodulatory capacities. A heat-killed (HK) whole-cell preparation of Mycobacterium obuense (M. obuense) has shown promise as an adjunctive immunotherapeutic agent for the treatment of cancer. Moreover, HK M. obuense has been shown to trigger the differentiation of human monocytes into a monocyte-derived macrophage (MDM) type named Mob-MDM. However, the transcriptomic profile and functional properties of Mob-MDMs remain undefined during an activation state. Here, we characterized cytokine/chemokine release patterns and transcriptomic profiles of lipopolysaccharide (LPS)/interferon γ (IFNγ)-activated human MDMs that were differentiated with HK M. obuense (Mob-MDM(LPS/IFNγ)), macrophage colony-stimulating factor M-MDM(LPS/IFNγ)), or granulocyte/macrophage colony-stimulating factor (GM-MDM(LPS/IFNγ)). Mob-MDM(LPS/IFNγ) demonstrated a unique cytokine/chemokine release pattern (interleukin (IL)-10low, IL-12/23p40low, IL-23p19/p40low, chemokine (C-x-C) motif ligand (CXCL)9low) that was distinct from those of M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ). Furthermore, M-MDM(LPS/IFNγ) maintained IL-10 production at significantly higher levels compared to GM-MDM(LPS/IFNγ) and Mob-MDM(LPS/IFNγ) despite being activated with M1-Mφ-activating stimuli. Comparative RNA sequencing analysis pointed to a distinct transcriptome profile for Mob-MDM(LPS/IFNγ) relative to both M-MDM(LPS/IFNγ) and GM-MDM(LPS/IFNγ) that comprised 417 transcripts. Functional gene-set enrichment analysis revealed significant overrepresentation of signaling pathways and biological processes that were uniquely related to Mob-MDM(LPS/IFNγ). Our findings lay a foundation for the potential integration of HK M. obuense in specific cell-based immunotherapeutic modalities such as adoptive transfer of Mφs (Mob-MDM(LPS/IFNγ)) for cancer treatment.


Subject(s)
Chemokines/metabolism , Cytokines/metabolism , Macrophages/immunology , Nontuberculous Mycobacteria/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacokinetics , Humans , Immunologic Factors/pharmacology , In Vitro Techniques , Interferon-gamma/pharmacology , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/cytology , Macrophages/metabolism , Transcriptome
19.
Aging (Albany NY) ; 13(12): 15770-15784, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1282781

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), and is highly contagious and pathogenic. TMPRSS2 and Neuropilin-1, the key components that facilitate SARS-CoV-2 infection, are potential targets for treatment of COVID-19. Here we performed a comprehensive analysis on NRP1 and TMPRSS2 in lung to provide information for treating comorbidity of COVID-19 with lung cancer. NRP1 is widely expressed across all the human tissues while TMPRSS2 is expressed in a restricted pattern. High level of NRP1 associates with worse prognosis in multiple cancers, while high level of TMPRSS2 is associated with better survival of Lung Adenocarcinoma (LUAD). Moreover, NRP1 positively correlates with the oncogenic Cancer Associated Fibroblast (CAF), macrophage and endothelial cells infiltration, negatively correlates with infiltration of CD8+ T cell, the tumor killer cell in Lung Squamous cell carcinoma (LUSC). TMPRSS2 shows negative correlation with the oncogenic events in LUAD. RNA-seq data show that NRP1 level is slightly decreased in peripheral blood of ICU admitted COVID-19 patients, unaltered in lung, while TMPRSS2 level is significantly decreased in lung of COVID-19 patients. Our analysis suggests NRP1 as a potential therapeutic target, while sets an alert on targeting TMPRSS2 for treating comorbidity of COVID-19 and lung cancers.


Subject(s)
Adenocarcinoma of Lung/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Neuropilin-1/physiology , Serine Endopeptidases/physiology , Adenocarcinoma of Lung/mortality , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , COVID-19/metabolism , Cancer-Associated Fibroblasts/metabolism , Computer Simulation , Endothelial Cells/metabolism , Humans , Lung Neoplasms/mortality , Macrophages/metabolism , Neuropilin-1/genetics , RNA-Seq , SARS-CoV-2 , Serine Endopeptidases/genetics
20.
Front Immunol ; 12: 647824, 2021.
Article in English | MEDLINE | ID: covidwho-1268248

ABSTRACT

The exact role of innate immune cells upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their contribution to the formation of the corona virus-induced disease (COVID)-19 associated cytokine storm is not yet fully understood. We show that human in vitro differentiated myeloid dendritic cells (mDC) as well as M1 and M2 macrophages are susceptible to infection with SARS-CoV-2 but are not productively infected. Furthermore, infected mDC, M1-, and M2 macrophages show only slight changes in their activation status. Surprisingly, none of the infected innate immune cells produced the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, or interferon (IFN)-α. Moreover, even in co-infection experiments using different stimuli, as well as non-influenza (non-flu) or influenza A (flu) viruses, only very minor IL-6 production was induced. In summary, we conclude that mDC and macrophages are unlikely the source of the first wave of cytokines upon infection with SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , SARS-CoV-2/immunology , Biomarkers , COVID-19/virology , Dendritic Cells/immunology , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunophenotyping , Macrophages/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...