Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Environ Res Public Health ; 19(5)2022 02 23.
Article in English | MEDLINE | ID: covidwho-1736891

ABSTRACT

The conventional paper-based system for malaria surveillance is time-consuming, difficult to track and resource-intensive. Few digital platforms are in use but wide-scale deployment and acceptability remain to be seen. To address this issue, we created a malaria surveillance mobile app that offers real-time data to stakeholders and establishes a centralised data repository. The MoSQuIT app was designed to collect data from the field and was integrated with a web-based platform for data integration and analysis. The MoSQuIT app was deployed on mobile phones of accredited social health activists (ASHA) working in international border villages in the northeast (NE) Indian states of Assam, Tripura and Arunachal Pradesh for 20 months in a phased manner. This paper shares the challenges and opportunities associated with the use of MoSQuIT for malaria surveillance. MoSQuIT employs the same data entry formats as the NVBDCP's malaria surveillance programme. Using this app, a total of 8221 fever cases were recorded, which included 1192 (14.5%) cases of P. falciparum malaria, 280 (3.4%) cases of P. vivax malaria and 52 (0.6%) mixed infection cases. Depending on network availability, GPS coordinates of the fever cases were acquired by the app. The present study demonstrated that mobile-phone-based malaria surveillance facilitates the quick transmission of data from the field to decision makers. Geospatial tagging of cases helped with easy visualisation of the case distribution for the identification of malaria-prone areas and potential outbreaks, especially in hilly and remote regions of Northeast India. However, to achieve the full operational potential of the system, operational challenges have to be overcome.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Mobile Applications , Telemedicine , Fever , Humans , India/epidemiology , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology
2.
Front Immunol ; 12: 565625, 2021.
Article in English | MEDLINE | ID: covidwho-1574690

ABSTRACT

Sub-Saharan Africa has generally experienced few cases and deaths of coronavirus disease 2019 (COVID-19). In addition to other potential explanations for the few cases and deaths of COVID-19 such as the population socio-demographics, early lockdown measures and the possibility of under reporting, we hypothesize in this mini review that individuals with a recent history of malaria infection may be protected against infection or severe form of COVID-19. Given that both the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium falciparum (P. falciparum) merozoites bind to the cluster of differentiation 147 (CD147) immunoglobulin, we hypothesize that the immunological memory against P. falciparum merozoites primes SARS-CoV-2 infected cells for early phagocytosis, hence protecting individuals with a recent P. falciparum infection against COVID-19 infection or severity. This mini review therefore discusses the potential biological link between P. falciparum infection and COVID-19 infection or severity and further highlights the importance of CD147 immunoglobulin as an entry point for both SARS-CoV-2 and P. falciparum into host cells.


Subject(s)
Basigin/immunology , COVID-19 , Immunologic Memory , Malaria, Falciparum , Plasmodium falciparum/immunology , SARS-CoV-2/immunology , Africa South of the Sahara/epidemiology , COVID-19/epidemiology , COVID-19/immunology , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Merozoites/immunology , Severity of Illness Index
3.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: covidwho-1513059

ABSTRACT

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/drug effects , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Africa , Antimalarials/pharmacology , Asia , Cambodia , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Molecular Epidemiology
4.
Malar J ; 20(1): 272, 2021 Jun 16.
Article in English | MEDLINE | ID: covidwho-1277944

ABSTRACT

Malaria is one of the leading causes of mortality and morbidity in Guinea. The entire country is considered at risk of the disease. Transmission occurs all year round with peaks occurring from July through October with Plasmodium falciparum as the primary parasite species. Chloroquine (CQ) was the first-line drug against uncomplicated P. falciparum in Guinea until 2005, prior to the adoption of artemisinin-based combination therapy (ACT). In this review, data on therapeutic efficacy of CQ and artemisinin-based combinations reported in published literature is summarized. Against CQ, a failure rate of 27% (12/44) was reported in a study in 1992; a median failure rate of 15.6% [range: 7.7-28.3; 8 studies] was observed during 1996-2001, and 81% (17/21) of the patients failed to clear parasitaemia in a study conducted in 2007. For artemisinin-based combinations, three published studies were identified (1495 patients; 2004-2016); all three studies demonstrated day 28 polymerase chain reaction corrected efficacy > 95%. One study characterized kelch-13 mutations (389 tested; samples collected in 2016) with no evidence of mutations currently known to be associated with artemisinin resistance. The impact of the ongoing COVID-19 pandemic and widespread usage of counterfeit medicines are immediate challenges to malaria control activities in Guinea.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Antimalarials/administration & dosage , COVID-19/complications , Guinea/epidemiology , Humans , Malaria, Falciparum/complications , SARS-CoV-2
5.
Int J Infect Dis ; 108: 137-144, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1272471

ABSTRACT

OBJECTIVES: Our objective was to systematically investigate false-negative histidine-rich protein 2 rapid diagnostic tests (HRP2-RDT) in imported Plasmodium falciparum malaria cases from travelers to the UK and the Republic of Ireland (RoI). METHODS: Five imported malaria cases in travellers returning to the UK and RoI from East Africa were reported to the PHE Malaria Reference Laboratory as negative according to histidine-rich protein (HRP2)-RDT. The cases were systematically investigated using microscopic, RDT, molecular, genomic, and in in vitro approaches. RESULTS: In each case, HRP2-RDT was negative, whereas microscopy confirmed the presence of P. falciparum. Further analysis revealed that the genes encoding HRP2 and HRP3 were deleted in three of the five cases. Whole-genome sequencing in one of these isolates confirmed deletions in P. falciparum chromosomes 8 and 13. Our study produced evidence that the fourth case, which had high parasitemia at clinical presentation, was a rare example of antigen saturation ('prozone-like effect'), leading to a false negative in the HRP2-RDT, while the fifth case was due to low parasitemia. CONCLUSIONS: False-negative HRP2-RDT results with P. falciparum are concerning. Our findings emphasise the necessity of supporting the interpretation of RDT results with microscopy, in conjunction with clinical observations, and sets out a systematic approach to identifying parasites carrying pfhrp2 and pfhrp3 deletions.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Antigens, Protozoan/genetics , Diagnostic Tests, Routine , Gene Deletion , Humans , Ireland/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , United Kingdom/epidemiology
6.
Malar J ; 20(1): 88, 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1090664

ABSTRACT

BACKGROUND: Malaria remains a serious health threat in the Amazonas Region of Peru and approximately 95% of the cases, mainly Plasmodium vivax, are found in native communities of The Rio Santiago District, Condorcanqui Province. In 2019, more than one thousand malaria cases were reported, with an unusual number of Plasmodium falciparum autochthonous cases. The present study aims to report this P. falciparum outbreak while describing the epidemiology of malaria and the risk factors associated in the native communities of Amazonas, Peru. METHODS: The DIRESA-Amazonas in collaboration with the Condorcanqui Health Network and the Institute of Tropical Diseases of the UNTRM carried out a malaria Active Case Detection (ACD III) between January 31st and February 10th of 2020. A total of 2718 (47.4%) individuals from 21 native communities grouped in eight sanitary districts, were screened for malaria infections. Each participant was screened for malaria using microscopy. Follow-up surveys were conducted for all malaria positive individuals to collect socio-demographic data. Spatial clustering of infection risk was calculated using a generalized linear model (GLM). Analysis of risk considered factors such as gender, age, type of infection, symptomatology, and parasitaemia. RESULTS: The study suggests that the P. falciparum index case was imported from Loreto and later spread to other communities of Rio Santiago during 2019. The ACD III reported 220 (8.1%) malaria cases, 46 P. falciparum, 168 P. vivax and 6 mixed infections. SaTScan analysis detected a cluster of high infection risk in Middle Rio Santiago and a particular high P. falciparum infection risk cluster in Upper Rio Santiago. Interestingly, the evaluation of different risk factors showed significant associations between low parasitaemia and P. falciparum asymptomatic cases. CONCLUSION: This is the first report of a P. falciparum outbreak in native communities of Condorcanqui, Amazonas. Timely identification and treatment of symptomatic and asymptomatic cases are critical to achieve malaria control and possible elimination in this area. However, the current malaria situation in Condorcanqui is uncertain, given that malaria ACD activities have been postponed due to COVID-19.


Subject(s)
Disease Outbreaks , Malaria, Falciparum/epidemiology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Peru/epidemiology , Rural Population , Young Adult
7.
Malar J ; 20(1): 88, 2021 Feb 12.
Article in English | MEDLINE | ID: covidwho-1083011

ABSTRACT

BACKGROUND: Malaria remains a serious health threat in the Amazonas Region of Peru and approximately 95% of the cases, mainly Plasmodium vivax, are found in native communities of The Rio Santiago District, Condorcanqui Province. In 2019, more than one thousand malaria cases were reported, with an unusual number of Plasmodium falciparum autochthonous cases. The present study aims to report this P. falciparum outbreak while describing the epidemiology of malaria and the risk factors associated in the native communities of Amazonas, Peru. METHODS: The DIRESA-Amazonas in collaboration with the Condorcanqui Health Network and the Institute of Tropical Diseases of the UNTRM carried out a malaria Active Case Detection (ACD III) between January 31st and February 10th of 2020. A total of 2718 (47.4%) individuals from 21 native communities grouped in eight sanitary districts, were screened for malaria infections. Each participant was screened for malaria using microscopy. Follow-up surveys were conducted for all malaria positive individuals to collect socio-demographic data. Spatial clustering of infection risk was calculated using a generalized linear model (GLM). Analysis of risk considered factors such as gender, age, type of infection, symptomatology, and parasitaemia. RESULTS: The study suggests that the P. falciparum index case was imported from Loreto and later spread to other communities of Rio Santiago during 2019. The ACD III reported 220 (8.1%) malaria cases, 46 P. falciparum, 168 P. vivax and 6 mixed infections. SaTScan analysis detected a cluster of high infection risk in Middle Rio Santiago and a particular high P. falciparum infection risk cluster in Upper Rio Santiago. Interestingly, the evaluation of different risk factors showed significant associations between low parasitaemia and P. falciparum asymptomatic cases. CONCLUSION: This is the first report of a P. falciparum outbreak in native communities of Condorcanqui, Amazonas. Timely identification and treatment of symptomatic and asymptomatic cases are critical to achieve malaria control and possible elimination in this area. However, the current malaria situation in Condorcanqui is uncertain, given that malaria ACD activities have been postponed due to COVID-19.


Subject(s)
Disease Outbreaks , Malaria, Falciparum/epidemiology , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Peru/epidemiology , Rural Population , Young Adult
8.
BMC Res Notes ; 13(1): 497, 2020 Oct 27.
Article in English | MEDLINE | ID: covidwho-895028

ABSTRACT

OBJECTIVE: Nigeria bears 25% of global malaria burden despite concerted efforts towards its control and elimination. The emergence of drug resistance to first line drugs, artemisinin combination therapies (ACTs), indicates an urgent need for continuous molecular surveillance of drug resistance especially in high burden countries where drug interventions are heavily relied on. This study describes mutations in Plasmodium falciparum genes associated with drug resistance in malaria; Pfk13, Pfmdr1, PfATPase6 and Pfcrt in isolates obtained from 83 symptomatic malaria patients collected in August 2014, aged 1-61 years old from South-west Nigeria. RESULTS: Two Pfmdr1, N86 and Y184 variants were present at a prevalence of 56% and 13.25% of isolates respectively. There was one synonymous (S679S) and two non-synonymous (M699V, S769M) mutations in the PATPase6 gene, while Pfcrt genotype (CVIET), had a prevalence of 45%. The Pfk13 C580Y mutant allele was suspected by allelic discrimination in two samples with mixed genotypes although this could not be validated with independent isolation or additional methods. Our findings call for robust molecular surveillance of antimalarial drug resistance markers in west Africa especially with increased use of antimalarial drugs as prophylaxis for Covid-19.


Subject(s)
Artemether, Lumefantrine Drug Combination/therapeutic use , Calcium-Transporting ATPases/genetics , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/genetics , Multidrug Resistance-Associated Proteins/genetics , Mutation , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Adolescent , Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , COVID-19 , Child , Child, Preschool , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Drug Resistance/genetics , Female , Gene Expression , Genotype , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Middle Aged , Molecular Epidemiology , Nigeria/epidemiology , Pandemics/prevention & control , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control
9.
Am J Trop Med Hyg ; 103(2): 558-560, 2020 08.
Article in English | MEDLINE | ID: covidwho-608342

ABSTRACT

Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/epidemiology , Africa , Antigens, Protozoan/analysis , Betacoronavirus , COVID-19 , Humans , Malaria, Falciparum/epidemiology , Pandemics , Protozoan Proteins/analysis , SARS-CoV-2
10.
Med Hypotheses ; 140: 109756, 2020 07.
Article in English | MEDLINE | ID: covidwho-620753
SELECTION OF CITATIONS
SEARCH DETAIL