ABSTRACT
The ongoing COVID-19 pandemic represents a considerable risk for the general public and especially for health care workers. To avoid an overloading of the health care system and to control transmission chains, the development of rapid and cost-effective techniques allowing for the reliable diagnosis of individuals with acute respiratory infections are crucial. Uniquely, the present study focuses on the development of a direct face mask sampling approach, as worn (i.e., used) disposable face masks contain exogenous environmental constituents, as well as endogenously exhaled breath aerosols. Optical techniques-and specifically infrared (IR) molecular spectroscopic techniques-are promising tools for direct virus detection at the surface of such masks. In the present study, a rapid and non-destructive approach for monitoring exposure scenarios via medical face masks using attenuated total reflection infrared spectroscopy is presented. Complementarily, IR external reflection spectroscopy was evaluated in comparison for rapid mask analysis. The utility of a face mask-based sampling approach was demonstrated by differentiating water, proteins, and virus-like particles sampled onto the mask. Data analysis using multivariate statistical algorithms enabled unambiguously classifying spectral signatures of individual components and biospecies. This approach has the potential to be extended towards the rapid detection of SARS-CoV-2-as shown herein for the example of virus-like particles which are morphologically equivalent to authentic virus-without any additional sample preparation or elaborate testing equipment at laboratory facilities. Therefore, this strategy may be implemented as a routine large-scale monitoring routine, e.g., at health care institutions, nursing homes, etc. ensuring the health and safety of medical personnel.
Subject(s)
Masks/virology , SARS-CoV-2/isolation & purification , Spectrophotometry, InfraredABSTRACT
During the present Sars-CoV-2 pandemic, there has been an increase in the development of UVC disinfection systems. Researchers and members of the lighting community shifted their interests to this new field to help develop systems for disinfecting facemasks and other small equipment. In this paper we show that it is possible to use DIALux to simulate the irradiance distribution provided by a lamp emitting in the UVC range. We will compare the results provided by DIALux with those obtained from Zemax OpticStudio in three different scenarios. We compared the minimum, maximum, and mean irradiance at the detection plane. The differences between the two software were less than 12%, 2%, and 6%, respectively. We also compared the contour maps of isoirradiance lines. We conclude that DIALux is well suited for UVC lighting design in the UVC range. We think that this finding will contribute to increasing the design and manufacturing of new UVC disinfection systems needed to fight against the Sars-CoV-2 pandemic.
Subject(s)
COVID-19/prevention & control , Disinfection/methods , Masks/virology , SARS-CoV-2/radiation effects , Software , Ultraviolet Rays , COVID-19/transmission , COVID-19/virology , Computer Simulation , Disinfection/instrumentation , Disinfection/statistics & numerical data , Equipment Design , Humans , Models, Theoretical , Optical Devices , Optical Phenomena , Pandemics/prevention & controlABSTRACT
INTRODUCTION: During the coronavirus disease 2019 (COVID-19) pandemic, endoscopists have high risks of exposure to exhaled air from patients during gastroscopy. To minimize this risk, we transformed the oxygen mask into a fully closed negative-pressure gastroscope isolation mask. This study aimed to evaluate the effectiveness, safety, and feasibility of use of this mask during gastroscopy. METHODS: From February 28, 2020, to March 10, 2020, 320 patients undergoing gastroscopy were randomly assigned into the mask group (n = 160) or conventional group (n = 160). Patients in the mask group wore the isolation mask during gastroscopy, whereas patients in the conventional group did not wear the mask. The adenosine triphosphate fluorescence and carbon dioxide (CO2) concentration in patients' exhaled air were measured to reflect the degree of environmental pollution by exhaled air. Patients' vital signs, operation time, and adverse events during endoscopy were also evaluated. RESULTS: Four patients were excluded because of noncooperation or incomplete data. A total of 316 patients were included in the final analysis. The difference between the highest CO2 concentration around patients' mouth and CO2 concentration in the environment was significantly decreased in the mask group compared with the conventional group. There was no significant difference in the adenosine triphosphate fluorescence, vital signs, and operation time between the 2 groups. No severe adverse events related to the isolation mask, endoscopy failure, or new coronavirus infection during follow-up were recorded. DISCUSSION: This new isolation mask showed excellent feasibility of use and safety compared with routine gastroscopy during the COVID-19 pandemic.
Subject(s)
COVID-19/transmission , Gastroscopy/adverse effects , Masks/virology , Patient Isolators/virology , Adenosine Triphosphate/metabolism , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Carbon Dioxide/analysis , Case-Control Studies , Equipment Design/methods , Exhalation/physiology , Feasibility Studies , Female , Fluorescence , Gastroscopy/methods , Humans , Male , Masks/adverse effects , Masks/statistics & numerical data , Middle Aged , Operative Time , Prospective Studies , SARS-CoV-2/genetics , Safety , Treatment OutcomeABSTRACT
OBJECTIVES: Non-traditional materials are used for mask construction to address personal protective equipment shortages during the coronavirus disease 2019 (COVID-19) pandemic. Reusable masks made from surgical sterilization wrap represent such an innovative approach with social media frequently referring to them as "N95 alternatives." This material was tested for particle filtration efficiency and breathability to clarify what role they might have in infection prevention and control. METHODS: A heavyweight, double layer sterilization wrap was tested when new and after 2, 4, 6, and 10 autoclave sterilizing cycles and compared with an approved N95 respirator and a surgical mask via testing procedures using a sodium chloride aerosol for N95 efficiency testing similar to 42 CFR 84.181. Pressure testing to indicate breathability was also conducted. RESULTS: The particle filtration efficiency for the sterilization wrap ranged between 58% to 66%, with similar performance when new and after sterilizing cycles. The N95 respirator and surgical mask performed at 95% and 68% respectively. Pressure drops for the sterilization wrap, N95 and surgical mask were 10.4 mmH2O, 5.9 mmH2O, and 5.1 mmH2O, respectively, well below the National Institute for Occupational Safety and Health limits of 35 mmH2O during initial inhalation and 25 mmH2O during initial exhalation. CONCLUSIONS: The sterilization wrap's particle filtration efficiency is much lower than a N95 respirator, but falls within the range of a surgical mask, with acceptable breathability. Performance testing of non-traditional mask materials is crucial to determine potential protection efficacy and for correcting misinterpretation propagated through popular media.
Subject(s)
Filtration/standards , Masks/standards , Filtration/instrumentation , Filtration/statistics & numerical data , Humans , Masks/microbiology , Masks/virology , Occupational Exposure/prevention & control , Pandemics/prevention & control , Personal Protective Equipment/standards , Personal Protective Equipment/statistics & numerical data , Sterilization/methods , Sterilization/standards , Sterilization/statistics & numerical dataABSTRACT
The seasonality of respiratory diseases has been linked, among other factors, to low outdoor absolute humidity and low indoor relative humidity, which increase evaporation of water in the mucosal lining of the respiratory tract. We demonstrate that normal breathing results in an absorption-desorption cycle inside facemasks, in which supersaturated air is absorbed by the mask fibers during expiration, followed by evaporation during inspiration of dry environmental air. For double-layered cotton masks, which have considerable heat capacity, the temperature of inspired air rises above room temperature, and the effective increase in relative humidity can exceed 100%. We propose that the recently reported, disease-attenuating effect of generic facemasks is dominated by the strong humidity increase of inspired air. This elevated humidity promotes mucociliary clearance of pathogens from the lungs, both before and after an infection of the upper respiratory tract has occurred. Effective mucociliary clearance can delay and reduce infection of the lower respiratory tract, thus mitigating disease severity. This mode of action suggests that masks can benefit the wearer even after an infection in the upper respiratory tract has occurred, complementing the traditional function of masks to limit person-to-person disease transmission. This potential therapeutical use should be studied further.
Subject(s)
COVID-19/pathology , COVID-19/prevention & control , Masks/virology , Respiratory System/virology , Severity of Illness Index , COVID-19/virology , Humans , Humidity , SARS-CoV-2/physiologyABSTRACT
Since the emergence of the COVID-19 pandemic outbreak, the increasing demand and disposal of surgical masks has resulted in significant economic costs and environmental impacts. Here, we applied a dual-channel spray-assisted nanocoating hybrid of shellac/copper nanoparticles (CuNPs) to a nonwoven surgical mask, thereby increasing the hydrophobicity of the surface and repelling aqueous droplets. The resulting surface showed outstanding photoactivity (combined photocatalytic and photothermal properties) for antimicrobial action, conferring reusability and self-sterilizing ability to the masks. Under solar illumination, the temperature of this photoactive antiviral mask (PAM) rapidly increased to >70 °C, generating a high level of free radicals that disrupted the membrane of nanosized (â¼100 nm) virus-like particles and made the masks self-cleaning and reusable. This PAM design can provide significant protection against the transmission of viral aerosols in the fight against the COVID-19 pandemic.
Subject(s)
Antiviral Agents/chemistry , COVID-19/prevention & control , Copper/chemistry , Masks/virology , Metal Nanoparticles/chemistry , Sterilization/methods , Catalysis , Humans , Hydrophobic and Hydrophilic Interactions , Photochemical Processes , SARS-CoV-2/isolation & purification , TemperatureABSTRACT
OBJECTIVES: The coronavirus disease 2019 pandemic increased global demand for personal protective equipment (PPE) and resulted in shortages. The study evaluated the re-use of surgical masks and respirators by analysing their performance and safety before and after reprocessing using the following methods: oven, thermal drying, autoclave, and hydrogen peroxide plasma vapour. METHODS: In total, 45 surgical masks and 69 respirators were decontaminated. Visual integrity, air permeability, burst resistance, pressure differential and particulate filtration efficiency of new and decontaminated surgical masks and respirators were evaluated. In addition, 14 used respirators were analysed after work shifts before and after decontamination using reverse transcription polymerase chain reaction (RT-PCR) and viral culturing. Finally, reprocessed respirators were evaluated by users in terms of functionality and comfort. RESULTS: Oven decontamination (75 °C for 45 min) was found to be the simplest decontamination method. Physical and filtration assays indicated that all reprocessing methods were safe after one cycle. Oven decontamination maintained the characteristics of surgical masks and respirators for at least five reprocessing cycles. Viral RNA was detected by RT-PCR in two of the 14 used respirators. Four respirators submitted to viral culture were PCR-negative and culture-negative. Reprocessed respirators used in work shifts were evaluated positively by users, even after three decontamination cycles. CONCLUSION: Oven decontamination is a safe method for reprocessing surgical masks and respirators for at least five cycles, and is feasible in the hospital setting.
Subject(s)
COVID-19/prevention & control , Decontamination/methods , Masks/virology , Pandemics , Personal Protective Equipment/virology , SARS-CoV-2/isolation & purification , Ventilators, Mechanical/virology , COVID-19/epidemiology , COVID-19/virology , Equipment Reuse , Hospitals , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , SARS-CoV-2/geneticsABSTRACT
INTRODUCTION: The COVID-19 pandemic has made well-fitting face masks a critical piece of protective equipment for healthcare workers and civilians. While the importance of wearing face masks has been acknowledged, there remains a lack of understanding about the role of good fit in rendering protective equipment useful. In addition, supply chain constraints have caused some organizations to abandon traditional quantitative or/and qualitative fit testing, and instead, have implemented subjective fit checking. Our study seeks to quantitatively evaluate the level of fit offered by various types of masks, and most importantly, assess the accuracy of implementing fit checks by comparing fit check results to quantitative fit testing results. METHODS: Seven participants first evaluated N95 and KN95 respirators by performing a fit check. Participants then underwent quantitative fit testing wearing five N95 respirators, a KN95 respirator, a surgical mask, and fabric masks. RESULTS: N95 respirators offered higher degrees of protection than the other categories of masks tested; however, it should be noted that most N95 respirators failed to fit the participants adequately. Fit check responses had poor correlation with quantitative fit factor scores. KN95, surgical, and fabric masks achieved low fit factor scores, with little protective difference recorded between respiratory protection options. In addition, small facial differences were observed to have a significant impact on quantitative fit. CONCLUSION: Fit is critical to the level of protection offered by respirators. For an N95 respirator to provide the promised protection, it must fit the participant. Performing a fit check via NHS self-assessment guidelines was an unreliable way of determining fit.
Subject(s)
COVID-19/prevention & control , Masks , N95 Respirators , Textiles , Adolescent , Adult , Aged , COVID-19/virology , Female , Humans , Male , Masks/standards , Masks/virology , Middle Aged , N95 Respirators/standards , N95 Respirators/virology , Occupational Exposure/prevention & control , SARS-CoV-2/isolation & purification , Textiles/virology , Young AdultABSTRACT
Coronaviruses present a considerable concern for humans and animals. The current world- wide pandemic of SARS-CoV-2 virus showed many gaps in understanding of coronaviruses spread and transmission. Because of lack of effective vaccine against SARS-CoV-2 the only preventive measures are represented by wearing protective masks and gloves thus limiting potential risk of contact with the airborne virus. Inversely, the limited time of protective function of the masks presents another drawback of their use. Therefore, the application of disinfection agent dispersed on the surface of protective masks may enhance their effectivity and safety of their application. The aim of the study was to examine the virucidal efficacy of low-concentra- ted sodium hypochlorite dispersed using ultrasonic humidifier on the surface of surgery masks. The study was conducted using SARS-CoV-2 surrogate virus, namely porcine epidemic diarrhea virus (PEDV) representing a model with similar biophysical properties and genomic structure to human coronaviruses. Five different concentrations of the disinfectant with different content of sodium hypochlorite were selected for the study. A final concentration of 0.228 g/L sodium hypochlorite effectively inactivated the PED virus and may support the biosafety of masks usage.
Subject(s)
COVID-19/prevention & control , Disinfectants/administration & dosage , Masks/virology , Porcine epidemic diarrhea virus/drug effects , SARS-CoV-2 , Sodium Hypochlorite/administration & dosage , Animals , Chlorocebus aethiops , Disinfectants/pharmacology , Humans , Humidifiers , Porcine epidemic diarrhea virus/isolation & purification , Sodium Hypochlorite/pharmacology , Ultrasonics , Vero CellsABSTRACT
BACKGROUND AND AIMS: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the Coronaviridae family, is agent of 2019 novel coronavirus disease (COVID-19). COVID-19 emerged in Wuhan, Hubei province of China, in early December 2019 and is now considered a pandemic. This study aimed to investigate the airborne transmission of COVID-19 and the role of face mask to prevent it. METHODS: A systematic search for English-language literature was done via PUBMED/Medline and Google Scholar up to October 2020. There was two search strategy; for airborne transmission and the role of face mask for prevention of SARS-CoV-2 infection. Based on a fixed and random effects model, the RR and 95% CI were used to evaluate the combined risk. This meta-analysis followed Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) Guidelines. RESULTS: After eligibility assessment, four articles with a total of 7688 participants were included in this meta-analysis. The result of this meta-analysis has shown significant reduction in infection with face mask use; the pooled RR (95%CI) was 0.12 [0.06, 0.27] (P < 0.001). CONCLUSION: In conclusion, this meta-analysis suggests that there is association between face mask use and reduction of COVID-19. However, COVID-19 spreads primarily with contact routes and respiratory droplets, but its transmissibility has many mysteries yet and there is controversy about airborne transmission of COVID-19.
Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Masks/virology , SARS-CoV-2/pathogenicity , HumansABSTRACT
BACKGROUND: Shortages of personal protective equipment during the coronavirus disease 2019 (COVID-19) pandemic have led to the extended use or reuse of single-use respirators and surgical masks by frontline healthcare workers. The evidence base underpinning such practices warrants examination. OBJECTIVES: To synthesize current guidance and systematic review evidence on extended use, reuse, or reprocessing of single-use surgical masks or filtering face-piece respirators. DATA SOURCES: We used the World Health Organization, the European Centre for Disease Prevention and Control, the US Centers for Disease Control and Prevention, and Public Health England websites to identify guidance. We used Medline, PubMed, Epistemonikos, Cochrane Database, and preprint servers for systematic reviews. METHODS: Two reviewers conducted screening and data extraction. The quality of included systematic reviews was appraised using AMSTAR-2. Findings were narratively synthesized. RESULTS: In total, 6 guidance documents were identified. Levels of detail and consistency across documents varied. They included 4 high-quality systematic reviews: 3 focused on reprocessing (decontamination) of N95 respirators and 1 focused on reprocessing of surgical masks. Vaporized hydrogen peroxide and ultraviolet germicidal irradiation were highlighted as the most promising reprocessing methods, but evidence on the relative efficacy and safety of different methods was limited. We found no well-established methods for reprocessing respirators at scale. CONCLUSIONS: Evidence on the impact of extended use and reuse of surgical masks and respirators is limited, and gaps and inconsistencies exist in current guidance. Where extended use or reuse is being practiced, healthcare organizations should ensure that policies and systems are in place to ensure these practices are carried out safely and in line with available guidance.
Subject(s)
COVID-19 , Equipment Reuse/standards , Infection Control/instrumentation , Masks/virology , N95 Respirators/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Infection Control/methods , Practice Guidelines as Topic , Risk Management/methods , Risk Management/standardsABSTRACT
In March of 2020, the World Health Organization declared a pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pandemic led to a shortage of N95-grade filtering facepiece respirators (FFRs), especially surgical-grade N95 FFRs for protection of healthcare professionals against airborne transmission of SARS-CoV-2. We and others have previously reported promising decontamination methods that may be applied to the recycling and reuse of FFRs. In this study we tested disinfection of three viruses, including SARS-CoV-2, dried on a piece of meltblown fabric, the principal component responsible for filtering of fine particles in N95-level FFRs, under a range of temperatures (60-95 °C) at ambient or 100% relative humidity (RH) in conjunction with filtration efficiency testing. We found that heat treatments of 75 °C for 30 min or 85 °C for 20 min at 100% RH resulted in efficient decontamination from the fabric of SARS-CoV-2, human coronavirus NL63 (HCoV-NL63), and another enveloped RNA virus, chikungunya virus vaccine strain 181/25 (CHIKV-181/25), without lowering the meltblown fabric's filtration efficiency.
Subject(s)
Disinfection/methods , Hot Temperature , Humidity , Masks/virology , Textiles/virology , Betacoronavirus/pathogenicity , Masks/standards , Polypropylenes/chemistry , SARS-CoV-2 , Textiles/standardsABSTRACT
Efficient strategies to contain the coronavirus disease 2019 (COVID-19) pandemic are peremptory to relieve the negatively impacted public health and global economy, with the full scope yet to unfold. In the absence of highly effective drugs, vaccines, and abundant medical resources, many measures are used to manage the infection rate and avoid exhausting limited hospital resources. Wearing masks is among the non-pharmaceutical intervention (NPI) measures that could be effectively implemented at a minimum cost and without dramatically disrupting social practices. The mask-wearing guidelines vary significantly across countries. Regardless of the debates in the medical community and the global mask production shortage, more countries and regions are moving forward with recommendations or mandates to wear masks in public. Our study combines mathematical modeling and existing scientific evidence to evaluate the potential impact of the utilization of normal medical masks in public to combat the COVID-19 pandemic. We consider three key factors that contribute to the effectiveness of wearing a quality mask in reducing the transmission risk, including the mask aerosol reduction rate, mask population coverage, and mask availability. We first simulate the impact of these three factors on the virus reproduction number and infection attack rate in a general population. Using the intervened viral transmission route by wearing a mask, we further model the impact of mask-wearing on the epidemic curve with increasing mask awareness and availability. Our study indicates that wearing a face mask can be effectively combined with social distancing to flatten the epidemic curve. Wearing a mask presents a rational way to implement as an NPI to combat COVID-19. We recognize our study provides a projection based only on currently available data and estimates potential probabilities. As such, our model warrants further validation studies.
Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Transmission, Infectious/prevention & control , Infection Control/methods , Masks/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , COVID-19 , Coronavirus Infections/virology , Humans , Masks/supply & distribution , Models, Theoretical , Pneumonia, Viral/virology , SARS-CoV-2Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Disease Transmission, Infectious/prevention & control , Masks/trends , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Masks/virology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , SARS-CoV-2ABSTRACT
OBJECTIVES: Surgical masks and N95 filtering facepiece respirators (FFRs) prevent the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and protect medical personnel. Increased demands for surgical masks and N95 FFRs during the coronavirus disease 2019 (COVID-19) pandemic has resulted in the shortage crisis. However, there is no standard protocol for safe reuse of the N95 FFRs. In this systematic review, we aimed to evaluate the effectiveness of existing decontamination methods of surgical masks and N95 FFRs and provide evidence-based recommendations for selecting an appropriate decontamination method. METHODS: We performed systematic searches of Ovid MEDLINE and Ovid EMBASE electronic databases. The last search was performed April 11, 2020. Any trials studying surgical masks and/or N95 FFRs decontamination were included. Outcomes were disinfections of virus and bacteria, restoration of the filtration efficiency, and maintenance of the physical structure of the mask. RESULTS: Overall, 15 studies and 14 decontamination methods were identified. A low level of evidence supported 4 decontamination methods: ultraviolet (UV) germicidal irradiation (9 studies), moist heat (5 studies), microwave-generated steam (4 studies), and hydrogen peroxide vapor (4 studies). Therefore, we recommended these 4 methods, and we recommended against use were given for the other 10 methods. CONCLUSIONS: A low level of evidence supported the use of UV germicidal irradiation, moist heat, microwave-generated steam, and hydrogen peroxide vapor for decontamination and reuse of N95 FFRs. These decontamination methods were effective for viral and bacterial disinfection as well as restoration of the filtration efficiency, and the physical structure of the FFRs.
Subject(s)
COVID-19 , Disinfection/methods , Infection Control/instrumentation , Masks/virology , N95 Respirators/virology , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/prevention & control , Equipment Reuse , Humans , Infection Control/methodsABSTRACT
Although the benefit of population-level public facial masking to protect others during the COVID-19 pandemic has received a great deal of attention, we discuss for one of the first times the hypothesis that universal masking reduces the "inoculum" or dose of the virus for the mask-wearer, leading to more mild and asymptomatic infection manifestations. Masks, depending on type, filter out the majority of viral particles, but not all. We first discuss the near-century-old literature around the viral inoculum and severity of disease (conceptualized as the LD50 or lethal dose of the virus). We include examples of rising rates of asymptomatic infection with population-level masking, including in closed settings (e.g., cruise ships) with and without universal masking. Asymptomatic infections may be harmful for spread but could actually be beneficial if they lead to higher rates of exposure. Exposing society to SARS-CoV-2 without the unacceptable consequences of severe illness with public masking could lead to greater community-level immunity and slower spread as we await a vaccine. This theory of viral inoculum and mild or asymptomatic disease with SARS-CoV-2 in light of population-level masking has received little attention so this is one of the first perspectives to discuss the evidence supporting this theory.
Subject(s)
Coronavirus Infections/prevention & control , Masks/virology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Global Health , Humans , Pneumonia, Viral/transmission , Risk Assessment , SARS-CoV-2ABSTRACT
BACKGROUND: The pandemic coronavirus disease 2019 (COVID-19) has taken a heavy toll on human life and has upended the medical system in many countries. The disease has created a system wide worsening shortage of N95, medical masks, and other personal protective equipment (PPE) that is regularly used by healthcare personnel and emergency service providers for their protection. AIM: Considering the number of infected patients and the stressed supplies of PPE, reuse of PPE can serve as an efficient contingency plan. Multiple studies have investigated the effect of different decontamination methods. METHODS: We chose the most user-friendly, easily scalable viral decontamination methods, including ultraviolet irradiation and heat treatment. In this paper, we investigated a unique approach to reuse the mask by creating a hybrid model that efficiently sanitizes the infected mask. RESULTS: The advantages of the proposed hybrid model as compared to the respective single arms is its decontamination efficacy, operational speed, as well as the number of reuse cycles as verified by mathematical analysis and simulation. This model is mainly intended for medical PPE but can also be used for other domestic and personal sanitization during the COVID-19 pandemic. As per the situation, the hybrid system can be used as standalone systems also. This sanitization process is not only limited to the elimination of Severe acute respiratory syndrome coronavirus 2 but can be extended to any other infectious agents. Thus, our results indicate that the proposed hybrid system is more effective, meets disinfection criterion and time saving for the reuse of respirators and PPE.
Subject(s)
Disinfection/methods , Hot Temperature , Personal Protective Equipment/virology , SARS-CoV-2/radiation effects , Ultraviolet Rays , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Masks/virology , Respiratory Protective Devices/virologyABSTRACT
There is limited information concerning the viral load of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols deposited on environmental surfaces and the effectiveness of infection prevention and control procedures on eliminating SARS-CoV-2 contamination in hospital settings. We examined the concentration of SARS-CoV-2 in aerosol samples and on environmental surfaces in a hospital designated for treating severe COVID-19 patients. Aerosol samples were collected by a microbial air sampler, and environmental surfaces were sampled using sterile premoistened swabs at multiple sites. Ninety surface swabs and 135 aerosol samples were collected. Only two swabs, sampled from the inside of a patient's mask, were positive for SARS-CoV-2 RNA. All other swabs and aerosol samples were negative for the virus. Our study indicated that strict implementation of infection prevention and control procedures was highly effective in eliminating aerosol and environmental borne SARS-CoV-2 RNA thereby reducing the risk of cross-infection in hospitals.
Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Infection/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , RNA, Viral/isolation & purification , Viral Load , Aerosols , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/transmission , Cross Infection/transmission , Cross Infection/virology , Environment , Environmental Microbiology , Hospitals, University , Humans , Masks/virology , Pneumonia, Viral/transmission , SARS-CoV-2ABSTRACT
The use of surgical sterilization wrap for respirator masks during the COVID-19 crisis has become a popularized personal protective equipment alternative option due to claims supporting its ability to meet N95 standards. This study sought to assess these claims using standardized filter testing. The tested material failed to meet N95 standards and suggests its use may place medical personnel at increased risk of harm when managing COVID-19 patients.