Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add filters

Document Type
Year range
1.
PLoS Comput Biol ; 17(12): e1009697, 2021 12.
Article in English | MEDLINE | ID: covidwho-1571974

ABSTRACT

For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.


Subject(s)
Algorithms , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/methods , Age Factors , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/supply & distribution , Computational Biology , Computer Simulation , Health Care Rationing/methods , Health Care Rationing/statistics & numerical data , Humans , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Netherlands/epidemiology , Pandemics/prevention & control , Pandemics/statistics & numerical data , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
4.
Sci Rep ; 11(1): 18812, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434151

ABSTRACT

Different strategies have been used to maximise the effect of COVID-19 vaccination campaigns in Europe. We modelled the impact of different prioritisation choices and dose intervals on infections, hospitalisations, mortality, and public health restrictions. An agent-based model was built to quantify the impact of different vaccination strategies over 6 months. Input parameters were derived from published phase 3 trials and official European figures. We explored the effect of prioritising vulnerable people, care-home staff and residents, versus contagious groups; and the impact of dose intervals ranging from 3 to 12 weeks. Prioritising vulnerable people, rather than the most contagious, led to higher numbers of COVID-19 infections, whilst reducing mortality, hospital admissions, and public health restrictions. At a realistic vaccination speed of ≤ 0·1% population/day, separating doses by 12 weeks (vs a baseline scenario of 3 weeks) reduced hospitalisations, mortality, and restrictions for vaccines with similar first- and second-dose efficacy (e.g., the Oxford-AstraZeneca and Moderna vaccines), but not for those with lower first vs second-dose efficacy (e.g., the Pfizer/BioNTech vaccine). Mass vaccination will dramatically reduce the effect of COVID-19 on Europe's health and economy. Early vaccination of vulnerable populations will reduce mortality, hospitalisations, and public health restrictions compared to prioritisation of the most contagious people. The choice of interval between doses should be based on expected vaccine availability and first-dose efficacy, with 12-week intervals preferred over shorter intervals in most realistic scenarios.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , COVID-19/epidemiology , Cohort Studies , Computer Simulation , Disease Susceptibility , Europe/epidemiology , Hospitalization/statistics & numerical data , Humans , Immunization Schedule , Models, Theoretical , Public Health/methods , Time Factors , Vulnerable Populations
8.
Expert Rev Vaccines ; 20(9): 1059-1063, 2021 09.
Article in English | MEDLINE | ID: covidwho-1348017

ABSTRACT

INTRODUCTION: The Development of the SARS-CoV-2 virus vaccine and its update on an ongoing pandemic is the first subject of the world health agenda. AREAS COVERED: First, we will scrutinize the biological features of the measles virus (MV), variola virus (smallpox virus), influenza virus, and their vaccines to compare them with the SARS-CoV-2 virus and vaccine. Next, we will discuss the statistical details of measuring the effectiveness of an improved vaccine. EXPERT OPINION: Amidst the pandemic, we ought to acknowledge our prior experiences with respiratory viruses and vaccines. In the planning stage of observational Phase-III vaccine effectiveness studies, the sample size, sampling method, statistical model, and selection of variables are crucial in obtaining high-quality and valid results.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Cellular/immunology , SARS-CoV-2/immunology , COVID-19/pathology , Humans , Influenza Vaccines/immunology , Mass Vaccination/methods , Measles virus/immunology , Measles-Mumps-Rubella Vaccine/immunology , Orthomyxoviridae/immunology , Smallpox Vaccine/immunology , Vaccination , Vaccines, Attenuated/immunology , Variola virus/immunology
9.
Nat Commun ; 12(1): 4673, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1340997

ABSTRACT

Dynamically adapting the allocation of COVID-19 vaccines to the evolving epidemiological situation could be key to reduce COVID-19 burden. Here we developed a data-driven mechanistic model of SARS-CoV-2 transmission to explore optimal vaccine prioritization strategies in China. We found that a time-varying vaccination program (i.e., allocating vaccines to different target groups as the epidemic evolves) can be highly beneficial as it is capable of simultaneously achieving different objectives (e.g., minimizing the number of deaths and of infections). Our findings suggest that boosting the vaccination capacity up to 2.5 million first doses per day (0.17% rollout speed) or higher could greatly reduce COVID-19 burden, should a new wave start to unfold in China with reproduction number ≤1.5. The highest priority categories are consistent under a broad range of assumptions. Finally, a high vaccination capacity in the early phase of the vaccination campaign is key to achieve large gains of strategic prioritizations.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Health Care Rationing/methods , Mass Vaccination/methods , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/transmission , China/epidemiology , Health Priorities , Humans , Incidence , Models, Theoretical , SARS-CoV-2/immunology , Vaccination Coverage
10.
Pan Afr Med J ; 38: 392, 2021.
Article in English | MEDLINE | ID: covidwho-1335406

ABSTRACT

Introduction: since 1971, Cameroon is facing a growing series of cholera epidemics despite all the efforts made by the government to address this huge public health threat. In 2020, in addition to the COVID-19 pandemic, Cameroon recorded a high cholera case fatality rate of 4.3% following epidemics noted in the South, Littoral and South-West regions. The Cameroon Ministry of Public Health, has thus organized a reactive vaccination campaign against cholera to address the high mortality rate in the affected health districts of those regions. The objective of this study was to describe the challenges, best practices and lessons learned drawing from daily experiences from this reactive vaccination campaign against cholera. Methods: we conducted a cross-sectional study drawn from the results of the campaign. We had a target population of 631,109 participants aged 1 year and above resident of the targeted health areas. Results: the overall vaccination coverage was 64.4% with a refusal rate ranging from 0-10% according to health districts. Vaccination coverage was the lowest among people aged 20 years and above. The main challenge was difficulty maintaining physical distanciation, the main best practice was the screening of all actors taking part at the vaccination against COVID-19 and we found that emphasizing on thorough population sensitization through quarter heads and social mobilizers and adequately programming the campaign during a good climate season is crucial to achieving good vaccination coverage. Conclusion: lessons learned from this study could serve to inform various agencies in the event of planning rapid mass vaccination programs during pandemics.


Subject(s)
COVID-19 , Cholera Vaccines/administration & dosage , Cholera/prevention & control , Mass Vaccination/methods , Adolescent , Adult , Aged , Aged, 80 and over , Cameroon , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Public Health , Vaccination/methods , Vaccination Coverage/statistics & numerical data , Young Adult
11.
Ann Ig ; 33(5): 499-512, 2021.
Article in English | MEDLINE | ID: covidwho-1317343

ABSTRACT

Abstract: After SARS-CoV-2 vaccines development came at an unprecedented speed, ensuring safe and efficient mass immunization, vaccine delivery be-came the major public health mandate. Although mass-vaccination sites have been identified as essential to curb COVID-19, their organization and functioning is challenging. In this paper we present the planning, implementation and evalua-tion of a massive vaccination center in Lombardy - the largest Region in Italy and the most heavily hit by the pandemic. The massive hub of Novegro (Milan), managed by the Gruppo Ospedaliero San Donato, opened in April 2021. The Novegro mass-immunization model was developed building a la-yout based on the available scientific evidence, on comparative analysis with other existing models and on the experience of COVID-19 immunization delivery of Gruppo Ospedaliero San Donato. We propose a "vaccine islands" mass-immunization model, where 4 physicians and 2 nurses operate in each island, with up to 10 islands functioning at the same time, with the capacity of providing up to 6,000 vaccinations per day. During the first week of activity a total of 37,900 doses were administered (2,700/day), most of them with Pfizer vaccine (85.8%) and first doses (70.9%). The productivity was 10.5 vaccines/hour/vaccine station. Quality, efficiency and safety were boosted by ad-hoc personnel training, quality technical infrastructure and the presence of a shock room. Constant process monitoring allowed to identify and promptly tackle process pitfalls, including vaccine refusals (0.36%, below expectations) and post-vaccinations adverse reactions (0.4%). Our innovative "vaccine islands" mass-immunization model might be scaled-up or adapted to other settings. The Authors consider that sharing best practices in immunization delivery is fundamen-tal to achieve population health during health emergencies.


Subject(s)
COVID-19/prevention & control , Community Health Centers/organization & administration , Mass Vaccination/organization & administration , Models, Theoretical , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Community Health Centers/statistics & numerical data , Efficiency, Organizational , Facilities and Services Utilization , Facility Design and Construction , Humans , Italy/epidemiology , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Quality Improvement
13.
Nat Commun ; 12(1): 3991, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286457

ABSTRACT

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Female , Finland/epidemiology , Humans , Immunization, Secondary/methods , Immunization, Secondary/statistics & numerical data , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Middle Aged , Neutralization Tests/statistics & numerical data , Reinfection/immunology , Reinfection/prevention & control , Reinfection/virology , SARS-CoV-2/genetics , Young Adult
14.
Lancet Infect Dis ; 21(11): 1539-1548, 2021 11.
Article in English | MEDLINE | ID: covidwho-1281646

ABSTRACT

BACKGROUND: On Dec 8, 2020, deployment of the first SARS-CoV-2 vaccination authorised for UK use (BNT162b2 mRNA vaccine) began, followed by an adenoviral vector vaccine ChAdOx1 nCoV-19 on Jan 4, 2021. Care home residents and staff, frontline health-care workers, and adults aged 80 years and older were vaccinated first. However, few data exist regarding the effectiveness of these vaccines in older people with many comorbidities. In this post-implementation evaluation of two COVID-19 vaccines, we aimed to determine the effectiveness of one dose in reducing COVID-19-related admissions to hospital in people of advanced age. METHODS: This prospective test-negative case-control study included adults aged at least 80 years who were admitted to hospital in two NHS trusts in Bristol, UK with signs and symptoms of respiratory disease. Patients who developed symptoms before receiving their vaccine or those who received their vaccine after admission to hospital were excluded, as were those with symptoms that started more than 10 days before hospital admission. We did logistic regression analysis, controlling for time (week), sex, index of multiple deprivations, and care residency status, and sensitivity analyses matched for time and sex using a conditional logistic model adjusting for index of multiple deprivations and care residency status. This study is registered with ISRCTN, number 39557. FINDINGS: Between Dec 18, 2020, and Feb 26, 2021, 466 adults were eligible (144 test-positive and 322 test-negative). 18 (13%) of 135 people with SARS-CoV-2 infection and 90 (34%) of 269 controls received one dose of BNT162b2. The adjusted vaccine effectiveness was 71·4% (95% CI 46·5-90·6). Nine (25%) of 36 people with COVID-19 infection and 53 (59%) of 90 controls received one dose of ChAdOx1 nCoV-19. The adjusted vaccine effectiveness was 80·4% (95% CI 36·4-94·5). When BNT162b2 effectiveness analysis was restricted to the period covered by ChAdOx1 nCoV-19, the estimate was 79·3% (95% CI 47·0-92·5). INTERPRETATION: One dose of either BNT162b2 or ChAdOx1 nCoV-19 resulted in substantial risk reductions of COVID-19-related hospitalisation in people aged at least 80 years. FUNDING: Pfizer.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Immunogenicity, Vaccine , Age Factors , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , Case-Control Studies , England/epidemiology , Female , Humans , Immunization Schedule , Incidence , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Treatment Outcome
15.
Lancet Infect Dis ; 21(11): 1529-1538, 2021 11.
Article in English | MEDLINE | ID: covidwho-1281643

ABSTRACT

BACKGROUND: The effectiveness of SARS-CoV-2 vaccines in older adults living in long-term care facilities is uncertain. We investigated the protective effect of the first dose of the Oxford-AstraZeneca non-replicating viral-vectored vaccine (ChAdOx1 nCoV-19; AZD1222) and the Pfizer-BioNTech mRNA-based vaccine (BNT162b2) in residents of long-term care facilities in terms of PCR-confirmed SARS-CoV-2 infection over time since vaccination. METHODS: The VIVALDI study is a prospective cohort study that commenced recruitment on June 11, 2020, to investigate SARS-CoV-2 transmission, infection outcomes, and immunity in residents and staff in long-term care facilities in England that provide residential or nursing care for adults aged 65 years and older. In this cohort study, we included long-term care facility residents undergoing routine asymptomatic SARS-CoV-2 testing between Dec 8, 2020 (the date the vaccine was first deployed in a long-term care facility), and March 15, 2021, using national testing data linked within the COVID-19 Datastore. Using Cox proportional hazards regression, we estimated the relative hazard of PCR-positive infection at 0-6 days, 7-13 days, 14-20 days, 21-27 days, 28-34 days, 35-48 days, and 49 days and beyond after vaccination, comparing unvaccinated and vaccinated person-time from the same cohort of residents, adjusting for age, sex, previous infection, local SARS-CoV-2 incidence, long-term care facility bed capacity, and clustering by long-term care facility. We also compared mean PCR cycle threshold (Ct) values for positive swabs obtained before and after vaccination. The study is registered with ISRCTN, number 14447421. FINDINGS: 10 412 care home residents aged 65 years and older from 310 LTCFs were included in this analysis. The median participant age was 86 years (IQR 80-91), 7247 (69·6%) of 10 412 residents were female, and 1155 residents (11·1%) had evidence of previous SARS-CoV-2 infection. 9160 (88·0%) residents received at least one vaccine dose, of whom 6138 (67·0%) received ChAdOx1 and 3022 (33·0%) received BNT162b2. Between Dec 8, 2020, and March 15, 2021, there were 36 352 PCR results in 670 628 person-days, and 1335 PCR-positive infections (713 in unvaccinated residents and 612 in vaccinated residents) were included. Adjusted hazard ratios (HRs) for PCR-positive infection relative to unvaccinated residents declined from 28 days after the first vaccine dose to 0·44 (95% CI 0·24-0·81) at 28-34 days and 0·38 (0·19-0·77) at 35-48 days. Similar effect sizes were seen for ChAdOx1 (adjusted HR 0·32, 95% CI 0·15-0·66) and BNT162b2 (0·35, 0·17-0·71) vaccines at 35-48 days. Mean PCR Ct values were higher for infections that occurred at least 28 days after vaccination than for those occurring before vaccination (31·3 [SD 8·7] in 107 PCR-positive tests vs 26·6 [6·6] in 552 PCR-positive tests; p<0·0001). INTERPRETATION: Single-dose vaccination with BNT162b2 and ChAdOx1 vaccines provides substantial protection against infection in older adults from 4-7 weeks after vaccination and might reduce SARS-CoV-2 transmission. However, the risk of infection is not eliminated, highlighting the ongoing need for non-pharmaceutical interventions to prevent transmission in long-term care facilities. FUNDING: UK Government Department of Health and Social Care.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Nursing Homes/statistics & numerical data , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Vaccines/administration & dosage , England/epidemiology , Female , Humans , Immunization Schedule , Incidence , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Prospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Treatment Outcome
16.
Ann Ig ; 33(5): 499-512, 2021.
Article in English | MEDLINE | ID: covidwho-1266913

ABSTRACT

Abstract: After SARS-CoV-2 vaccines development came at an unprecedented speed, ensuring safe and efficient mass immunization, vaccine delivery be-came the major public health mandate. Although mass-vaccination sites have been identified as essential to curb COVID-19, their organization and functioning is challenging. In this paper we present the planning, implementation and evalua-tion of a massive vaccination center in Lombardy - the largest Region in Italy and the most heavily hit by the pandemic. The massive hub of Novegro (Milan), managed by the Gruppo Ospedaliero San Donato, opened in April 2021. The Novegro mass-immunization model was developed building a la-yout based on the available scientific evidence, on comparative analysis with other existing models and on the experience of COVID-19 immunization delivery of Gruppo Ospedaliero San Donato. We propose a "vaccine islands" mass-immunization model, where 4 physicians and 2 nurses operate in each island, with up to 10 islands functioning at the same time, with the capacity of providing up to 6,000 vaccinations per day. During the first week of activity a total of 37,900 doses were administered (2,700/day), most of them with Pfizer vaccine (85.8%) and first doses (70.9%). The productivity was 10.5 vaccines/hour/vaccine station. Quality, efficiency and safety were boosted by ad-hoc personnel training, quality technical infrastructure and the presence of a shock room. Constant process monitoring allowed to identify and promptly tackle process pitfalls, including vaccine refusals (0.36%, below expectations) and post-vaccinations adverse reactions (0.4%). Our innovative "vaccine islands" mass-immunization model might be scaled-up or adapted to other settings. The Authors consider that sharing best practices in immunization delivery is fundamen-tal to achieve population health during health emergencies.


Subject(s)
COVID-19/prevention & control , Community Health Centers/organization & administration , Mass Vaccination/organization & administration , Models, Theoretical , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Vaccines , Community Health Centers/statistics & numerical data , Efficiency, Organizational , Facilities and Services Utilization , Facility Design and Construction , Humans , Italy/epidemiology , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Quality Improvement
17.
J Med Virol ; 93(7): 4280-4291, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263092

ABSTRACT

BACKGROUND: Vaccine hesitancy poses serious challenges for achieving coverage for population immunity. It is necessary to achieve high COVID-19 vaccination acceptance rates and medical students' coverage as future health care providers. The study aimed to explore the level of COVID-19 vaccine hesitancy and determine the factors and barriers that may affect vaccination decision-making. METHODS: A cross-sectional study was carried out among medical students in Tanta and Kafrelsheikh Universities, Egypt. Data collection was done via an online questionnaire during January 2021 from 2133 students. RESULTS: The majority of the participant students (90.5%) perceived the importance of the COVID-19 vaccine, 46% had vaccination hesitancy, and an equal percentage (6%) either definitely accepted or refused the vaccine. Most of the students had concerns regarding the vaccine's adverse effects (96.8%) and ineffectiveness (93.2%). The most confirmed barriers of COVID-19 vaccination were deficient data regarding the vaccine's adverse effects (potential 74.17% and unknown 56.31%) and insufficient information regarding the vaccine itself (72.76%). CONCLUSION: The government, health authority decision-makers, medical experts, and universities in Egypt need to work together and make efforts to reduce hesitancy and raise awareness about vaccinations, consequently improving the acceptance of COVID-19 vaccines.


Subject(s)
COVID-19/prevention & control , Health Knowledge, Attitudes, Practice , Students, Medical/psychology , Vaccination Refusal/psychology , Vaccination/psychology , COVID-19 Vaccines/therapeutic use , Cross-Sectional Studies , Egypt , Female , Humans , Male , Mass Vaccination/methods , Mass Vaccination/psychology , SARS-CoV-2 , Surveys and Questionnaires , Young Adult
20.
BMC Fam Pract ; 22(1): 84, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1209389

ABSTRACT

BACKGROUND: Influenza is a major public health issue, with the primary preventive measure being an annual influenza vaccination. Nevertheless, vaccination coverage among the at-risk population is low. Our understanding of the behaviour of the influenza virus during the SARS-CoV-2 coronavirus pandemic is limited, meaning influenza vaccination is still recommended for individuals at risk for severe complications due to influenza infection. The aim of the study is to determine the intention to vaccinate against seasonal influenza among the at-risk population in the 2020-21 campaign during the SARS-CoV-2 pandemic and to analyse the factors which influence such intention. METHODS: Cross-sectional telephone survey of adults (aged over 18) with risk factors in central Catalonia where the need for the Seasonal Influenza Vaccine (SIV) was recommended. RESULTS: A total of 434 participants responded to the survey, 43.3% of whom intended to be vaccinated against influenza for the 2020-2021 influenza season, 40.8% had no intention to be vaccinated and 15.9% were uncertain or did not express their opinion. The intention to get vaccinated against influenza is associated with having dependents, the individual's perception of the risk of being infected with influenza and the perceived risk of transmission to dependents. It is also associated with age, whether the individual had received influenza vaccine the previous season or any other season before. The best predictors of the intention to vaccinate are the individual's perception of the risk of catching influenza and whether the individual had been vaccinated in the previous season. CONCLUSIONS: Intention to vaccinate can be a good predictor of individual behaviour in relation to vaccination. During the current SARS-CoV-2 pandemic many individuals are hesitant to influenza vaccination. In order to improve influenza vaccination coverage in people included in risk groups, it is necessary to promote educational actions, especially among those who express doubts.


Subject(s)
COVID-19/epidemiology , Influenza Vaccines/therapeutic use , Influenza, Human , Intention , Mass Vaccination , Cross-Sectional Studies , Female , Health Knowledge, Attitudes, Practice , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Male , Mass Vaccination/methods , Mass Vaccination/psychology , Mass Vaccination/statistics & numerical data , Middle Aged , SARS-CoV-2 , Social Perception , Spain/epidemiology , Vaccination Coverage/statistics & numerical data , Vaccination Refusal/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...