Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1480798


Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.

Amides/therapeutic use , Blood Coagulation Disorders/drug therapy , Disseminated Intravascular Coagulation/drug therapy , Ethanolamines/therapeutic use , Palmitic Acids/therapeutic use , Sepsis/complications , Amides/chemistry , Amides/pharmacology , Animals , Blood Coagulation Disorders/etiology , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Disseminated Intravascular Coagulation/etiology , Ethanolamines/chemistry , Ethanolamines/pharmacology , Fibrin Fibrinogen Degradation Products/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Male , Mast Cells/cytology , Mast Cells/drug effects , Mast Cells/metabolism , Palmitic Acids/chemistry , Palmitic Acids/pharmacology , Partial Thromboplastin Time , Prothrombin Time , Rats , Rats, Sprague-Dawley , SARS-CoV-2/isolation & purification , Sepsis/pathology , Serine Proteases/metabolism
Cells ; 10(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1470798


Basophils and mast cells are among the principal inducers of Th2 responses and have a crucial role in allergic and anti-parasitic protective immunity. Basophils can function as antigen-presenting cells that bind antigens on their surface and boost humoral immune responses, inducing Th2 cell differentiation. Their depletion results in lower humoral memory activation and greater infection susceptibility. Basophils seem to have an active role upon immune response to SARS-CoV-2. In fact, a coordinate adaptive immune response to SARS-CoV-2 is magnified by basophils. It has been observed that basophil amount is lower during acute disease with respect to the recovery phase and that the grade of this depletion is an important determinant of the antibody response to the virus. Moreover, mast cells, present in a great quantity in the nasal epithelial and lung cells, participate in the first immune response to SARS-CoV-2. Their activation results in a hyperinflammatory syndrome through the release of inflammatory molecules, participating to the "cytokine storm" and, in a longer period, inducing pulmonary fibrosis. The literature data suggest that basophil counts may be a useful prognostic tool for COVID-19, since their reduction is associated with a worse prognosis. Mast cells, on the other hand, represent a possible therapeutic target for reducing the airway inflammation characteristic of the hyperacute phase of the disease.

Basophils/cytology , COVID-19/immunology , COVID-19/physiopathology , Mast Cells/cytology , Adaptive Immunity , Animals , COVID-19/blood , Cell Differentiation , Cytokines/metabolism , Granulocytes/cytology , Humans , Hypersensitivity/metabolism , Immune System , Immunity, Humoral , Immunity, Innate , Inflammation , Macrophages/cytology , Mice , SARS-CoV-2 , Th17 Cells/cytology , Th2 Cells/cytology
J Biol Regul Homeost Agents ; 35(4 Suppl. 1): 65-70, 2021.
Article in English | MEDLINE | ID: covidwho-1371071


Mast cells play important roles in the maintenance of many physiological functions as well as in the pathophysiology of diseases. Mast cells are involved in the inflammatory mechanisms of many systemic diseases. In this pandemic period, their role in physiological and pathological host inflammatory reactions in tissue disruption following SARS-CoV-2 infection has been stressed. A review of the literature was carried out by entering the key words "Mast Cells" AND "Oral Diseases" AND "Role of Mast Cells in Periodontitis". The results show us that mast cells are definitely involved in many oral diseases including periodontitis. Further in vivo and in vitro studies are needed to further investigate the specific role of the cells in physiological and pathological inflammation.

Mast Cells/cytology , Periodontitis , COVID-19 , Humans , Inflammation