Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Otol Neurotol ; 42(4): 614-622, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1313901

ABSTRACT

HYPOTHESIS: Aerosols are generated during mastoidectomy and mitigation strategies may effectively reduce aerosol spread. BACKGROUND: An objective understanding of aerosol generation and the effectiveness of mitigation strategies can inform interventions to reduce aerosol risk from mastoidectomy and other open surgeries involving drilling. METHODS: Cadaveric and fluorescent three-dimensional printed temporal bone models were drilled under variable conditions and mitigation methods. Aerosol production was measured with a cascade impactor set to detect particle sizes under 14.1 µm. Field contamination was determined with examination under UV light. RESULTS: Drilling of cadaveric bones and three-dimensional models resulted in strongly positive aerosol production, measuring positive in all eight impactor stages for the cadaver trials. This occurred regardless of using coarse or cutting burs, irrigation, a handheld suction, or an additional parked suction. The only mitigation factor that led to a completely negative aerosol result in all eight stages was placing an additional microscope drape to surround the field. Bone dust was scattered in all directions from the drill, including on the microscope, the surgeon, and visually suspended in the air for all but the drape trial. CONCLUSIONS: Aerosols are generated with drilling the mastoid. Using an additional microscope drape to cover the surgical field was an effective mitigation strategy to prevent fine aerosol dispersion while drilling.


Subject(s)
COVID-19/prevention & control , Mastoidectomy/adverse effects , Aerosols , COVID-19/transmission , Cadaver , Humans , Mastoidectomy/instrumentation , Mastoidectomy/methods , SARS-CoV-2
2.
Otol Neurotol ; 42(3): e378-e379, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1109359

ABSTRACT

OBJECTIVE: The recent COVID-19 pandemic has required careful reconsideration of safe operating room practices. We describe our initial experiences performing otologic surgery with the exoscope during the COVID-19 pandemic. METHOD: The exoscope was used for several semiurgent otologic surgeries in combination with complete eye protection, a "tent" drape, a smoke evacuator with ultra-low particulate air filter, and betadine irrigation. These techniques are demonstrated in the accompanying video. This was compared with our experiences using the microscope. RESULTS: The described modified goggles allowed complete eye protection while providing a fully three-dimensional view of the surgical site. The other safety measures described are simple and efficient techniques which can easily be adopted for otologic surgery using the microscope. CONCLUSION: Use of the exoscope for otologic surgery during the COVID-19 pandemic allows full three-dimensional visualization of the surgical field while simultaneously providing complete eye protection. Use of the "tent" drape, ultra-low particulate air filter, and betadine irrigation are also options that otologic surgeons may consider for additional safety.


Subject(s)
COVID-19/prevention & control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Microscopy/instrumentation , Microscopy/methods , Otologic Surgical Procedures/instrumentation , Otologic Surgical Procedures/methods , Humans , Imaging, Three-Dimensional , Mastoidectomy/instrumentation , Mastoidectomy/methods , Pandemics , Personal Protective Equipment , SARS-CoV-2
3.
J Laryngol Otol ; 134(12): 1115-1117, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-967665

ABSTRACT

BACKGROUND: Mastoid surgery is an aerosol-generating procedure that involves the use of a high-speed drill, which produces a mixture of water, bone, blood and tissue that may contain the viable coronavirus disease 2019 pathogen. This potentially puts the surgeon and other operating theatre personnel at risk of acquiring the severe acute respiratory syndrome coronavirus-2 from contact with droplets or aerosols. The use of an additional drape designed to limit the spread of droplets and aerosols has been described; such drapes include the 'Southampton Tent' and 'OtoTent'. OBJECTIVES: To evaluate the use of a novel drape 'tent' that has advantages over established 'tent' designs in terms of having: (1) a CE marking; (2) no requirement for modification during assembly; and (3) no obstruction to the surgical visual field. RESULTS AND CONCLUSION: During mastoid surgery, the dispersion of macroscopic droplets and other particulate matter was confined within the novel drape 'tent'. Use of this drape 'tent' had no adverse effects upon the surgeon's manual dexterity or efficiency, the view of the surgical field, or the sterility. Hence, our findings support its use during mastoid surgery in the coronavirus disease 2019 era.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , Infection Control/methods , Mastoid/surgery , Surgical Drapes/supply & distribution , Aerosols , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Child, Preschool , Humans , Mastoidectomy/methods , Operating Rooms/standards , SARS-CoV-2/genetics , Surgeons/statistics & numerical data , Surgical Drapes/trends , Surgical Equipment/trends
5.
Otolaryngol Head Neck Surg ; 164(1): 67-73, 2021 01.
Article in English | MEDLINE | ID: covidwho-650363

ABSTRACT

OBJECTIVE: To investigate small-particle aerosolization from mastoidectomy relevant to potential viral transmission and to test source-control mitigation strategies. STUDY DESIGN: Cadaveric simulation. SETTING: Surgical simulation laboratory. METHODS: An optical particle size spectrometer was used to quantify 1- to 10-µm aerosols 30 cm from mastoid cortex drilling. Two barrier drapes were evaluated: OtoTent1, a drape sheet affixed to the microscope; OtoTent2, a custom-structured drape that enclosed the surgical field with specialized ports. RESULTS: Mastoid drilling without a barrier drape, with or without an aerosol-scavenging second suction, generated large amounts of 1- to 10-µm particulate. Drilling under OtoTent1 generated a high density of particles when compared with baseline environmental levels (P < .001, U = 107). By contrast, when drilling was conducted under OtoTent2, mean particle density remained at baseline. Adding a second suction inside OtoTent1 or OtoTent2 kept particle density at baseline levels. Significant aerosols were released upon removal of OtoTent1 or OtoTent2 despite a 60-second pause before drape removal after drilling (P < .001, U = 0, n = 10, 12; P < .001, U = 2, n = 12, 12, respectively). However, particle density did not increase above baseline when a second suction and a pause before removal were both employed. CONCLUSIONS: Mastoidectomy without a barrier, even when a second suction was added, generated substantial 1- to 10-µm aerosols. During drilling, large amounts of aerosols above baseline levels were detected with OtoTent1 but not OtoTent2. For both drapes, a second suction was an effective mitigation strategy during drilling. Last, the combination of a second suction and a pause before removal prevented aerosol escape during the removal of either drape.


Subject(s)
Aerosols/adverse effects , COVID-19/epidemiology , Disease Transmission, Infectious/prevention & control , Ear Diseases/surgery , Mastoidectomy/methods , Otologic Surgical Procedures/standards , Personal Protective Equipment , Cadaver , Comorbidity , Ear Diseases/epidemiology , Humans , Mastoid/surgery , Otologic Surgical Procedures/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL