Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Environ Public Health ; 2023: 5144345, 2023.
Article in English | MEDLINE | ID: covidwho-2273996

ABSTRACT

Inexpensive cloth masks are widely used to reduce particulate exposures, but their use became ubiquitous after the outbreak of COVID-19. A custom experimental setup (semiactive at 5.1 m/s airflow rate) was fabricated to examine the efficiency of different types of commercial facemasks collected randomly from street vendors. The sample (N = 27) including (n = 16) cloth masks (CMs), (n = 7) surgical masks (SMs), and (n = 4) N95 filtering facepiece respirators (FFRs), of which SMs and N95 FFRs taken as a standard for efficiency comparison were all tested against ambient aerosols (PM2.5 and PM10 µg/m3). The prototype cloth masks (PTCMs) (N = 5) design was tailored, and their performance was assessed and compared with that of standard commercial masks. The filtering efficiency tested against ambient coarse particulates (PM10) ranged from (5% to 34%) for CMs with an average of 16%, (37% to 46%) for SMs with an average of 42%, (59% to 72%) for PTCMs with an average of 65%, and (70% to 75%) for N95 FFRs with an average of 71%, whereas against fine particulates (PM2.5), efficacy ranged from (4% to 29%) for CMs with an average of 13%, (34% to 44%) for SMs with an average of 39%, (53% to 68%) for PTCMs with an average of 60%, and (68% to 73%) for N95 FFRs with an average of 70%, respectively. The efficiency followed the order N95 FFRs > PTCMs > SMs > CMs showing poor exposure reduction potential in CMs and high exposure reduction potential in N95 FFRs and PTCMs. Amendment in existing CMs using eco-friendly cotton fabric with better facial adherence can protect human health from exposure to fine particulates <2.5 µm and can reduce the risk of micro-plastic pollution caused by polypropylene (PP) facemasks.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Masks , Nepal , Inhalation Exposure/prevention & control , Inhalation Exposure/analysis , Filtration , Materials Testing , Respiratory Aerosols and Droplets , Particulate Matter , Occupational Exposure/prevention & control
2.
J Appl Oral Sci ; 31: e20220421, 2023.
Article in English | MEDLINE | ID: covidwho-2276151

ABSTRACT

The demands for dental materials continue to grow, driven by the desire to reach a better performance than currently achieved by the available materials. In the dental restorative ceramic field, the structures evolved from the metal-ceramic systems to highly translucent multilayered zirconia, aiming not only for tailored mechanical properties but also for the aesthetics to mimic natural teeth. Ceramics are widely used in prosthetic dentistry due to their attractive clinical properties, including high strength, biocompatibility, chemical stability, and a good combination of optical properties. Metal-ceramics type has always been the golden standard of dental reconstruction. However, this system lacks aesthetic aspects. For this reason, efforts are made to develop materials that met both the mechanical features necessary for the safe performance of the restoration as well as the aesthetic aspects, aiming for a beautiful smile. In this field, glass and high-strength core ceramics have been highly investigated for applications in dental restoration due to their excellent combination of mechanical properties and translucency. However, since these are recent materials when compared with the metal-ceramic system, many studies are still required to guarantee the quality and longevity of these systems. Therefore, a background on available dental materials properties is a starting point to provoke a discussion on the development of potential alternatives to rehabilitate lost hard and soft tissue structures with ceramic-based tooth and implant-supported reconstructions. This review aims to bring the most recent materials research of the two major categories of ceramic restorations: ceramic-metal system and all-ceramic restorations. The practical aspects are herein presented regarding the evolution and development of materials, technologies applications, strength, color, and aesthetics. A trend was observed to use high-strength core ceramics type due to their ability to be manufactured by CAD/CAM technology. In addition, the impacts of COVID-19 on the market of dental restorative ceramics are presented.


Subject(s)
COVID-19 , Dental Materials , Humans , Dental Materials/chemistry , Ceramics/chemistry , Computer-Aided Design , Dental Porcelain , Zirconium/chemistry , Materials Testing , Surface Properties
3.
PLoS One ; 17(12): e0278889, 2022.
Article in English | MEDLINE | ID: covidwho-2157452

ABSTRACT

This study introduces a customized mask retainer to improve the fit performance of surgical masks using various advanced digital techniques. The participant's 3D face scans with and without a surgical mask were taken by using a smartphone. The mask retainer was designed using the 3D face scan data based on the facial anthropometric landmarks. The fitting was inspected and adjusted using the masked face scan data. The retainer was fabricated using a 3D printer. The effectiveness of the retainer on the augmentation of the fit of the surgical mask was tested according to the Chinese Standard (GB 19083-2010). A questionnaire was used to assess the effect of wearing surgical masks with and without retainers and N95 respirators on subjective perception of discomfort. The effectiveness test of the retainer on the augmentation of the fit performance showed a better than 25-fold increase in the overall fit factor, meeting the fit requirement for KN95 respirators in China. The subjective perception of discomfort of wearing N95 was significantly greater than surgical mask with and without retainers. The fit factor results indicated that by using the retainer, the overall fit factors and that of each exercise significantly increased compared to that of the group with the surgical mask alone. And compared with N95, the surgical mask with the retainer significant improved comfort. The surgical mask with the retainer can provide an alternative of personal protective equipment for healthcare workers.


Subject(s)
Respiratory Protective Devices , Humans , Masks , N95 Respirators , Health Personnel , Materials Testing
4.
J Occup Environ Hyg ; 19(10-11): 615-628, 2022.
Article in English | MEDLINE | ID: covidwho-1991950

ABSTRACT

The use of filtering facepiece respirators (FFRs) of various types increased dramatically by both workers and the public during the ongoing COVID-19 pandemic. This increased use has, likewise, instigated a proliferation of research on the qualities of FFRs. An aspect of FFR development and optimization involves the use of mathematical models that predict filter efficiency based on various filter characteristics while also considering a number of particle capture forces. An evaluation of current literature failed to identify a publication that provides a comprehensive assessment of the models developed to predict filter efficiency. The purpose of this review was, therefore, to describe models developed to include the forces associated with diffusion, interception, impaction, and electrostatic attraction as they contribute to the efficiency of an entire filter. The literature review was augmented with figures created with the use of many of the models discussed to compare different models of the same force as well as to illustrate the influence of electrostatic forces on overall filter efficiency.


Subject(s)
Air Pollutants, Occupational , COVID-19 , Respiratory Protective Devices , United States , Humans , Air Pollutants, Occupational/analysis , National Institute for Occupational Safety and Health, U.S. , Particle Size , Pandemics/prevention & control , Filtration , Materials Testing/methods , COVID-19/prevention & control , Respiratory Aerosols and Droplets , Ventilators, Mechanical
5.
PLoS One ; 17(6): e0268542, 2022.
Article in English | MEDLINE | ID: covidwho-1987130

ABSTRACT

Proper respiratory tract protection is the key factor to limiting the rate of COVID-19 spread and providing a safe environment for health care workers. Traditional N95 (FFP2) respirators are not easy to regenerate and thus create certain financial and ecological burdens; moreover, their quality may vary significantly. A solution that would overcome these disadvantages is desirable. In this study a commercially available knit polyester fleece fabric was selected as the filter material, and a total of 25 filters of different areas and thicknesses were prepared. Then, the size-resolved filtration efficiency (40-400 nm) and pressure drop were evaluated at a volumetric flow rate of 95 L/min. We showed the excellent synergistic effect of expanding the filtration area and increasing the number of filtering layers on the filtration efficiency; a filter cartridge with 8 layers of knit polyester fabric with a surface area of 900 cm2 and sized 25 × 14 × 8 cm achieved filtration efficiencies of 98% at 95 L/min and 99.5% at 30 L/min. The assembled filter kit consists of a filter cartridge (14 Pa) carried in a small backpack connected to a half mask with a total pressure drop of 84 Pa at 95 L/min. In addition, it is reusable, and the filter material can be regenerated at least ten times by simple methods, such as boiling. We have demonstrated a novel approach for creating high-quality and easy-to-breathe-through respiratory protective equipment that reduces operating costs and is a green solution because it is easy to regenerate.


Subject(s)
COVID-19 , Respiratory Protective Devices , Aerosols , COVID-19/prevention & control , Equipment Design , Filtration/methods , Humans , Masks , Materials Testing/methods , Polyesters
7.
Biomed Res Int ; 2022: 3824796, 2022.
Article in English | MEDLINE | ID: covidwho-1822104

ABSTRACT

Objectives: Given the high prevalence of the coronavirus and the high risk of virus transfer to dentists, the use of mouthwashes, which can potentially eliminate this virus, is suggested before dental procedures. Since these mouthwashes may affect the bond strength of composite resin restorations to teeth, this study was conducted to investigate the effect of recommended mouthwashes on the shear bond strength of composite resin restorations to dentin and enamel in selective etch and rinse and two-step self-etch bonding systems. Methods: Five groups of posterior teeth (n = 15) were selected for five groups of cetylpyridinium chloride 0.07%, povidone-iodine 1%, hydrogen peroxide 1%, and chlorhexidine 0.2% as mouthwash and distilled water as the control group. The buccal enamel and lingual dentin of each tooth were rinsed after immersion in a mouthwash. After 20 seconds of enamel acid-etching and 15 seconds of dentin priming, they were impregnated with an adhesive, and composite cylinders were placed on the dentin and enamel surfaces of the tooth. The shear bond strength test was performed after 24 hours, and results were analyzed by ANOVA and paired t-test (α = 0.05). Results: The mean shear bond strength of enamel to composite was significantly (p < 0.05) higher than that of dentin to composite in each study group, but no significant difference was found between the mean shear bond strength of composite to enamel (p = 0.199) and to dentin (p = 0.335) after the use of mouthwashes and that of the control group. Conclusion: The use of mouthwashes used in this study did not have negative effects on the shear bond strength of composite to enamel and dentin.


Subject(s)
COVID-19 , Dental Bonding , Composite Resins/chemistry , Dental Enamel , Dentin , Dentin-Bonding Agents/chemistry , Humans , Materials Testing , Mouthwashes/pharmacology , Resin Cements/chemistry , Shear Strength
8.
J Mater Sci Mater Med ; 33(1): 8, 2022 Jan 04.
Article in English | MEDLINE | ID: covidwho-1602899

ABSTRACT

The collection capacity of common nasopharyngeal swabs and irregularities of medical personnel limit the accuracy of PCR testing. This study describes a newly designed 3D-printed swab that is combined with a 3D-printed cover to prevent the extraction of undesired nasal secretions. This swab improved the accuracy of PCR test results. The results of a series of experiments showed that, because of the mucus extraction effect, 3D-printed swabs can replace ordinary cotton swabs. The crisis of the worldwide medical supply shortage can be ameliorated to a certain extent by applying 3D printing technology.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , Specimen Handling/instrumentation , Biocompatible Materials , Biomechanical Phenomena , COVID-19/diagnosis , COVID-19/virology , Computer Simulation , Equipment Design , Finite Element Analysis , Humans , Materials Testing , Nasopharynx/virology , Printing, Three-Dimensional , Resins, Synthetic , Safety , Tensile Strength , Textiles
9.
PLoS One ; 16(3): e0247575, 2021.
Article in English | MEDLINE | ID: covidwho-1573727

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to widespread shortages of N95 respirators and other personal protective equipment (PPE). An effective, reusable, locally-manufactured respirator can mitigate this problem. We describe the development, manufacture, and preliminary testing of an open-hardware-licensed device, the "simple silicone mask" (SSM). METHODS: A multidisciplinary team developed a reusable silicone half facepiece respirator over 9 prototype iterations. The manufacturing process consisted of 3D printing and silicone casting. Prototypes were assessed for comfort and breathability. Filtration was assessed by user seal checks and quantitative fit-testing according to CSA Z94.4-18. RESULTS: The respirator originally included a cartridge for holding filter material; this was modified to connect to standard heat-moisture exchange (HME) filters (N95 or greater) after the cartridge showed poor filtration performance due to flow acceleration around the filter edges, which was exacerbated by high filter resistance. All 8 HME-based iterations provided an adequate seal by user seal checks and achieved a pass rate of 87.5% (N = 8) on quantitative testing, with all failures occurring in the first iteration. The overall median fit-factor was 1662 (100 = pass). Estimated unit cost for a production run of 1000 using distributed manufacturing techniques is CAD $15 in materials and 20 minutes of labor. CONCLUSION: Small-scale manufacturing of an effective, reusable N95 respirator during a pandemic is feasible and cost-effective. Required quantities of reusables are more predictable and less vulnerable to supply chain disruption than disposables. With further evaluation, such devices may be an alternative to disposable respirators during public health emergencies. The respirator described above is an investigational device and requires further evaluation and regulatory requirements before clinical deployment. The authors and affiliates do not endorse the use of this device at present.


Subject(s)
COVID-19/prevention & control , Equipment Design/instrumentation , Filtration/instrumentation , Pandemics/prevention & control , Personal Protective Equipment , Respiratory Protective Devices , Ventilators, Mechanical , Equipment Reuse , Face , Humans , Materials Testing/instrumentation , N95 Respirators , Occupational Exposure/prevention & control , Printing, Three-Dimensional/instrumentation , SARS-CoV-2/pathogenicity
10.
Microsc Res Tech ; 85(3): 1199-1208, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1575218

ABSTRACT

This study compares the effect of different mouthwashes that have been recommended during the Coronavirus disease 2019 (COVID-19) pandemic on shear bond strength (SBS) of universal adhesive to enamel in regards to self-etch (SE) and etch-and-rinse (ER) modes. Flat enamel surfaces were obtained from 100 sound human maxillary central incisors. They were randomly allocated to five groups according to the different mouthwashes (no mouthwash/control [Ctrl], 0.2% chlorhexidine 1.5% hydrogen peroxide [H2 O2 ], 0.2% povidone-iodine [PVP-I], Listerine [L]), and adhesive application modes (ER and SE) (n = 10). After the application of a universal adhesive (single bond universal), composite resin (Filtek Z250) was bonded by a cylinder-shaped mold (height: 2 mm, diameter: 2.4 mm). They were subjected to SBS test using a universal testing machine (AGS-X, Shimadzu Corp.) (crosshead speed: 1 mm/min). The resin-enamel interfaces were observed with a scanning electron microscope (SEM). The semiquantitative chemical microanalyses were performed with energy-dispersive spectroscopy (EDS). The data were statistically analyzed by two-way analysis of variance and Bonferroni test (p < .05). In SE mode, Group Ctrl revealed significantly higher SBS than all mouthwash groups (p < .05). In ER mode, Group Ctrl showed significantly higher SBS than H2 O2 and PVP-I groups (p < .05). ER mode caused significantly higher SBS than SE mode in all mouthwash groups (p < .05). The SEM observations highlighted that Group Ctrl had a regular and intact hybrid layer with resin tag formation while the H2 O2 and PVP-I groups exhibited a thin hybrid layer in both modes. EDS analysis indicated that in SE mode, all mouthwash groups presented increased O content compared to Group Ctrl. H2 O2 and PVP-I that were suggested for preprocedural use during the COVID-19 pandemic, reduced the enamel bond strength of the universal adhesive in ER mode.


Subject(s)
Anti-Infective Agents, Local , COVID-19 , Dental Bonding , Adhesives , Dentin , Dentin-Bonding Agents/chemistry , Humans , Materials Testing , Mouthwashes , Pandemics , Resin Cements , SARS-CoV-2
11.
Int Wound J ; 19(5): 1188-1196, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1501429

ABSTRACT

A universal community testing programme (UCTP) was initiated by the government of the Hong Kong Special Administrative Region of the People's Republic of China, as part of a territory-wide initiative to enhance the control of the coronavirus disease (COVID-19) pandemic, to facilitate the early identification of asymptomatic patients in the community-transmission chain. The authors (who were also engaged in this programme) observed that, at the end of their 6-hour shift, most of the HCPs sustained medical device-related pressure injuries (MDRPI), frequently on their faces, over the bridge of their nose, the upper cheeks, above the ears, lower jaws, and chin that caused pain and erythema. In this study, our team examined whether two different types of dressing (light silicone foam dressing and soft silicone perforated tape dressing) applied on the anatomical locations (including the bridge of the nose, upper cheek, above the ears, and lower jaw) would enable the wearer to pass the quantitative respirator fit testing that was conducted using a PortaCount Pro+ Respirator Fit Tester 8038. We also investigated if any skin reactions occurred after the participants worn the respirator with our applied dressing materials for 240 minutes in a safe laboratory setting. Lastly, we collected the qualitative feedback concerning how the participants felt about the performance of our dressing materials in preventing MDRPI associated with the prolonged use of tight-fitting FFRs. A small convenience sample of HCPs (n = 24) who participated in the UCTP was recruited. We randomly selected 12 participants for one type of dressing, and the rest for the second type of dressing. Quantitative fit testing showed an adequate seal of the respirators with the use of both types of thin dressings that were available in the clinical settings. All of the participants except one tolerated the dressings for prolonged use without any report of adverse skin reactions. Our findings may move a step forward in assisting the process of developing feasible pre-emptive skincare practice guidelines to reduce MDRPI during the prolonged use of nanofiber bacterial surgical respirators.


Subject(s)
COVID-19 , Occupational Exposure , Respiratory Protective Devices , Bandages , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Materials Testing , Occupational Exposure/prevention & control , Silicones , Ventilators, Mechanical
12.
Sci Rep ; 11(1): 20877, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1479811

ABSTRACT

Adenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.


Subject(s)
Adenoviridae/genetics , Adenovirus Vaccines/chemistry , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Vaccine Potency , Adenoviruses, Simian , Biocompatible Materials , Calorimetry, Differential Scanning , Glass , HEK293 Cells , Humans , Light , Magnetic Resonance Spectroscopy , Materials Testing , Microscopy, Confocal , Microscopy, Electron, Scanning , Polyvinyl Alcohol , Rabies Vaccines , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Sugars/chemistry , Temperature , Thermogravimetry , Trehalose/chemistry
13.
Int Orthod ; 19(4): 685-688, 2021 12.
Article in English | MEDLINE | ID: covidwho-1472124

ABSTRACT

OBJECTIVE: In orthodontic patients using any chemical substances in oral environment could change the elastomeric properties of their appliances. Since the beginning of the SARS-CoV-2 pandemic, efforts have been devoted to explore methods of prevention including the use of antiviral mouthwashes. This study aimed to investigate the effects of Povidone Iodine (PVP-I) and two other disinfecting solutions on the mechanical properties of orthodontic elastomeric ligatures. MATERIALS AND METHODS: In this study, 130 elastomeric ligatures in five groups (three test groups and two control groups) were examined in laboratory conditions for a period of 28 days. In the control group, specimens were kept dry in a dark environment while all other ligatures were stored in artificial saliva. Elastomeric ligatures were immersed into PVP-I solution (1%) Chlorhexidine (0.02%), and hydrogen peroxide (5%) for one minute each day in three time intervals of one day, 7 days and 28 days. Next, the maximum tensile strength of elastomeric ligatures was tested by a universal testing machine (CN 1174, Germany). RESULTS: The results showed that the tensile strength of elastomeric ligatures was significantly decreased in all three test groups after 28 days (p-value<0.05). However, the difference between groups was not statistically significant. Between-subject ANOVA test showed that there were significant correlations between the time of exposure and type of disinfecting solutions. CONCLUSIONS: PVP-I has comparable effects on elastomeric ligatures as artificial saliva, chlorhexidine, and hydrogen peroxide.


Subject(s)
Chlorhexidine/pharmacology , Hydrogen Peroxide/pharmacology , Orthodontic Appliances , Povidone-Iodine/pharmacology , Tensile Strength/drug effects , COVID-19 , Elastomers , Humans , Materials Testing , SARS-CoV-2 , Saliva, Artificial
14.
ACS Appl Mater Interfaces ; 13(40): 47996-48008, 2021 Oct 13.
Article in English | MEDLINE | ID: covidwho-1440455

ABSTRACT

Use of masks is a primary tool to prevent the spread of the novel COVID-19 virus resulting from unintentional close contact with infected individuals. However, detailed characterization of the chemical properties and physical structure of common mask materials is lacking in the current literature. In this study, a series of commercial masks and potential mask materials, including 3M Particulate Respirator 8210 N95, a material provided by Oak Ridge National Laboratory Carbon Fiber Technology Facility (ORNL/CFTF), and a Filti Face Mask Material, were characterized by a suite of techniques, including scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Wetting properties of the mask materials were quantified by measurements of contact angle with a saliva substitute. Mask pass-through experiments were performed using a dispersed metal oxide nanoparticle suspension to model the SARS-CoV-2 virus, with quantification via spatially resolved X-ray fluorescence mapping. Notably, all mask materials tested provided a strong barrier against respiratory droplet breakthrough. The comparisons and characterizations provided in this study provide useful information when evaluating mask materials for respiratory protection.


Subject(s)
Filtration , Masks , Materials Testing/methods , N95 Respirators , COVID-19/prevention & control , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Polyesters/chemistry , Polypropylenes/chemistry , Porosity , SARS-CoV-2 , Spectrum Analysis, Raman , Wettability , X-Ray Diffraction
15.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
16.
PLoS One ; 15(10): e0240499, 2020.
Article in English | MEDLINE | ID: covidwho-1388890

ABSTRACT

During the current SARS-CoV-2 pandemic there is unprecedented demand for personal protective equipment (PPE), especially N95 respirators and surgical masks. The ability of SARS-CoV-2 to be transmitted via respiratory droplets from asymptomatic individuals has necessitated increased usage of both N95 respirators in the healthcare setting and masks (both surgical and homemade) in public spaces. These precautions rely on two fundamental principles of transmission prevention: particle filtration and droplet containment. The former is the focus of NIOSH N95 testing guidelines, and the latter is an FDA guideline for respirators and surgical masks. While studies have investigated droplet containment to provide guidance for homemade mask production, limited work has been done to characterize the filtration efficiency (FE) of materials used in home mask making. In this work, we demonstrate the low-cost (<$300) conversion of standard equipment used to fit-test respirators in hospital and industrial settings into a setup that measures quantitative FEs of materials based on NIOSH N95 guidelines, and subsequently measure FEs of materials found in healthcare and consumer spaces. These materials demonstrate significant variability in filtration characteristics, even for visually similar materials. We demonstrate a FE of 96.49% and pressure drop of 25.4 mmH20 for a double-layer of sterilization wrap used in surgical suites and a FE of 90.37% for a combination of consumer-grade materials. The excellent filtration characteristics of the former demonstrate potential utility for emergent situations when N95 respirators are not available, while those of the latter demonstrate that a high FE can be achieved using publicly available materials.


Subject(s)
Air Filters/standards , Betacoronavirus , Coronavirus Infections/prevention & control , Equipment Safety/methods , Masks/standards , Materials Testing/methods , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Aerosols , COVID-19 , Coronavirus Infections/virology , Equipment Safety/instrumentation , Health Personnel , Humans , Materials Testing/instrumentation , Occupational Exposure/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2
17.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-1388494

ABSTRACT

INTRODUCTION: During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. METHOD: Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm2 after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. RESULTS: No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm2 (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. CONCLUSION: This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles.


Subject(s)
Decontamination/methods , Equipment Contamination/prevention & control , Equipment Reuse , Respiratory Protective Devices , Ultraviolet Rays , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Equipment Failure Analysis , Humans , Infection Control/methods , Materials Testing , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
18.
Ultrasonics ; 117: 106556, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1364504

ABSTRACT

As a consequence of the large demand of face masks due to the COVID19 pandemic, cheap, fast and non-destructive tests that can verify in-line the variability of the filtration capacities, prove the potential disinfection and/or evaluate the performance of new filtering materials are needed. Using two different approaches based on air-coupled ultrasounds (0.15-1.6 MHz) with equivalent results, this work shows that each face mask presents a distinctive ultrasonic signature that enables the classification and the evaluation of their performance. Moreover, it is shown that the ultrasonic propagation through the face masks and the main filter layers takes place through the pore space and that low frequency response of the attenuation and the velocity is highly dispersive and is dominated by the interaction between the air in the pores and the fibers in the filters. Hence, the parameters that describe ultrasonic velocity, attenuation and dispersion can be related with their filtration efficiency and breathability. These techniques are fully contactless, non-invasive and fast.


Subject(s)
COVID-19 , Masks , Ultrasonics/methods , Equipment Design , Humans , Materials Testing , SARS-CoV-2 , Textiles
19.
Adv Mater ; 33(37): e2103221, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1321675

ABSTRACT

Liquid-phase electron microscopy (LP-EM) is an exciting new area in the materials imaging field, providing unprecedented views of molecular processes. Time-resolved insights from LP-EM studies are a strong complement to the remarkable results achievable with other high-resolution techniques. Here, the opportunities to expand LP-EM technology beyond 2D temporal assessments and into the 3D regime are described. The results show new structures and dynamic insights of human viruses contained in minute volumes of liquid while acquired in a rapid timeframe. To develop this strategy, adeno-associated virus (AAV) is used as a model system. AAV is a well-known gene therapy vehicle with current applications involving drug delivery and vaccine development for COVID-19. Improving the understanding of the physical properties of biological entities in a liquid state, as maintained in the human body, has broad societal implications for human health and disease.


Subject(s)
Cryoelectron Microscopy/methods , Dependovirus , Particle Size , COVID-19 , COVID-19 Vaccines , Drug Delivery Systems , Equipment Design , Genetic Therapy , HEK293 Cells/virology , Humans , Hydrogen-Ion Concentration , Immunoglobulin G/chemistry , Materials Testing , SARS-CoV-2
20.
Can Respir J ; 2021: 6638048, 2021.
Article in English | MEDLINE | ID: covidwho-1301736

ABSTRACT

Background: High-flow nasal cannula (HFNC) oxygen therapy has been recommended for use in coronavirus disease 2019 (COVID-19) patients with acute respiratory failure and many other clinical conditions. HFNC devices produced by different manufacturers may have varied performance. Whether there is a difference in these devices and the extent of the differences in performance remain unknown. Methods: Four HFNC devices (AIRVO 2, TNI softFlow 50, HUMID-BH, and OH-70C) and a ventilator with an HFNC module (bellavista 1000) were evaluated. The flow was set at 20, 25, 30, 35, 40, 45, 50, 60, 70, and 80 L/min, and the FiO2 was set at 21%, 26%, 30%, 35%, 40%, 45%, 50%, 60%, 70%, 80%, and 90%. Then, one side of the cannulas was clipped to simulate the compression, bending, or blocking of the nasal cannulas. The flow and FiO2 of the delivered gas were recorded and compared among settings and devices. Results: The actual-flow and actual-FiO2 delivered by different settings and devices varied. AIRVO 2 had superior performance in flow and FiO2 accuracy. bellavista 1000 and OH-70C had good performance in the accuracy of actual-flows and actual-FiO2, respectively. bellavista 1000 and HUMID-BH had a larger flow range from 10 to 80 L/min, but only bellavista 1000 could provide a stable flow with an excessive resistance up to 60 L/min. TNI softFlow 50 had the best flow compensation and could provide sufficient flow with excessive resistance at 20-50 L/min. Conclusions: The variation in flow, FiO2 settings, and devices could influence the actual-flow and actual-FiO2 delivered. AIRVO 2 and OH-70C showed better FiO2 accuracy. TNI softFlow 50, bellavista 1000, and HUMID-BH could lower the risk of insufficient flow support due to accidental compression or blocking of the cannulas. In addition, ventilators with HFNC modules provided comparable flow and FiO2 and could be an alternative to standalone HFNC devices.


Subject(s)
Acute Kidney Injury/therapy , COVID-19 , Cannula , Inhalation/physiology , Oxygen Inhalation Therapy , Acute Kidney Injury/etiology , Analysis of Variance , COVID-19/complications , COVID-19/therapy , Cannula/classification , Cannula/standards , Comparative Effectiveness Research , Humans , Materials Testing/methods , Maximal Respiratory Pressures , Oxygen Inhalation Therapy/instrumentation , Oxygen Inhalation Therapy/methods , SARS-CoV-2 , Tidal Volume/physiology
SELECTION OF CITATIONS
SEARCH DETAIL