Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1662689

ABSTRACT

Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%->50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control-case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.


Subject(s)
Breast Neoplasms/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Disease Progression , Female , Humans , Immunohistochemistry/methods , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Middle Aged , Retrospective Studies , Spain , Tissue Inhibitor of Metalloproteinases/metabolism
2.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/drug therapy , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism
3.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1580692

ABSTRACT

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Subject(s)
COVID-19/complications , Heart Failure/metabolism , Heart/virology , Animals , Blood/virology , Blood Physiological Phenomena/immunology , COVID-19/physiopathology , Cardiomegaly/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Physiological Phenomena/immunology , Disease Models, Animal , Endothelium/metabolism , Heart/physiopathology , Heart Failure/virology , Hydroxychloroquine/pharmacology , Male , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Myocardium/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ventricular Remodeling/physiology
4.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545647

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
5.
Front Immunol ; 12: 748417, 2021.
Article in English | MEDLINE | ID: covidwho-1528820

ABSTRACT

Rationale: Myocardial injury associates significantly and independently with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide. Objective: This histological and immunohistochemical study sought to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results: Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control group (n=11). Histological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1, IL-1ß, IL-4, IL-6, CD163, TNF-α, TGF-ß, MMP-9, type 1 and type 3 collagen. The samples were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe pericardiocyte interstitial edema and higher mast cells counts per high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-1ß, IL-6, MMP-9, TNF-α, and other markers in the hearts of COVID-19 patients. Expression of caspase-9 did not differ from the controls, while gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19 samples supporting endothelial apoptosis. Conclusions: The pathogenesis of COVID-19 myocardial injury does not seem to relate to primary myocardiocyte involvement but to local inflammation with associated interstitial edema. We found heightened TGF-ß and interstitial collagen expression in COVID-affected hearts, a potential harbinger of chronic myocardial fibrosis. These results suggest a need for continued clinical surveillance of patients for myocardial dysfunction and arrythmias after recovery from the acute phase of COVID-19.


Subject(s)
COVID-19/metabolism , Heart Injuries/metabolism , SARS-CoV-2 , Aged , Apoptosis , Biopsy , COVID-19/pathology , Caspase 1/metabolism , Collagen/metabolism , Cytokines/metabolism , Female , Heart Injuries/pathology , Humans , Immunohistochemistry , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Myocardium/metabolism , Myocardium/pathology
6.
Med Sci Monit ; 27: e934365, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1527017

ABSTRACT

BACKGROUND Autologous blood-derived products can target specific inflammatory molecular pathways and have potentially beneficial therapeutic effects on inflammatory pathologies. The purpose of this study was to assess in vitro the anti-inflammatory and anti-catabolic potential of an autologous blood product as a possible treatment for COVID-19-induced cytokine storm. MATERIAL AND METHODS Blood samples from healthy donors and donors who had recovered from COVID-19 were incubated using different techniques and analyzed for the presence of anti-inflammatory, anti-catabolic, regenerative, pro-inflammatory, and procatabolic molecules. RESULTS The highest concentrations of therapeutic molecules for targeting inflammatory pathways were found in the blood that had been incubated for 24 h at 37°C, whereas a significant increase was observed after 6 h of incubation in blood from COVID-19-recovered donors. Beneficially, the 6-h incubation process did not downregulate anti-COVID-19 immunoglobulin G concentrations. Unfortunately, increases in matrix metalloproteinase 9, tumor necrosis factor alpha, and interleukin-1 were detected in the product after incubation; however, these increases could be blocked by adding citric acid, with no effect on the concentration of the target therapeutic molecules. Our data allow for safer and more effective future treatments. CONCLUSIONS An autologous blood-derived product containing anti-inflammatory and anti-catabolic molecules, which we term Cytorich, has a promising therapeutic role in the treatment of a virus-induced cytokine storm, including that associated with COVID-19.


Subject(s)
Anabolic Agents/blood , Anti-Inflammatory Agents/blood , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Adult , Anabolic Agents/isolation & purification , Anabolic Agents/therapeutic use , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , COVID-19/drug therapy , Cytokine Release Syndrome/etiology , Female , Humans , Interleukin-1beta/antagonists & inhibitors , Male , Matrix Metalloproteinase 9/metabolism , Metabolism/drug effects , Middle Aged , Young Adult
7.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1402050

ABSTRACT

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Subject(s)
Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Tight Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basement Membrane/pathology , Basement Membrane/virology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Tight Junctions/genetics , Tight Junctions/pathology , Tight Junctions/virology , Vero Cells
8.
Sci Rep ; 11(1): 13376, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286473

ABSTRACT

MMP-9 plays a number of important physiological functions but is also responsible for many pathological processes, including cancer invasion, metastasis, and angiogenesis. It is, therefore, crucial to understand its enzymatic activity, including activation and inhibition mechanisms. This enzyme may also be partially involved in the "cytokine storm" that is characteristic of COVID-19 disease (SARS-CoV-2), as well as in the molecular mechanisms responsible for lung fibrosis. Due to the variety of processing pathways involving MMP-9 in biological systems and its uniqueness due to the O-glycosylated domain (OGD) and fibronectin-like (FBN) domain, specific interactions with its natural TIMP-1 inhibitor should be carefully studied, because they differ significantly from other homologous systems. In particular, earlier experimental studies have indicated that the newly characterised circular form of a proMMP-9 homotrimer exhibits stronger binding properties to TIMP-1 compared to its monomeric form. However, molecular structures of the complexes and the binding mechanisms remain unknown. The purpose of this study is to fill in the gaps in knowledge. Molecular modelling methods are applied to build the inhibitory and non-inhibitory MMP-9-TIMP-1 complexes, which allows for a detailed description of these structures and should allow for a better understanding of the regulatory processes in which MMP-9 is involved.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Molecular Dynamics Simulation , Tissue Inhibitor of Metalloproteinase-1/metabolism , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinase 9/chemistry , Protein Binding , Protein Domains , Protein Multimerization , Static Electricity , Tissue Inhibitor of Metalloproteinase-1/antagonists & inhibitors
9.
Life Sci ; 257: 118096, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-653065

ABSTRACT

AIMS: The molecular pathogenesis of COVID-19 is similar to other coronavirus (CoV) infections viz. severe acute respiratory syndrome (SARS) in human. Due to scarcity of the suitable treatment strategy, the present study was undertaken to explore host protein(s) targeted by potent repurposed drug(s) in COVID-19. MATERIALS AND METHODS: The differentially expressed genes (DEGs) were identified from microarray data repository of SARS-CoV patient blood. The repurposed drugs for COVID-19 were selected from available literature. Using DEGs and drugs, the protein-protein interaction (PPI) and chemo-protein interaction (CPI) networks were constructed and combined to develop an interactome model of PPI-CPI network. The top-ranked sub-network with its hub-bottleneck nodes were evaluated with their functional annotations. KEY FINDINGS: A total of 120 DEGs and 65 drugs were identified. The PPI-CPI network (118 nodes and 293 edges) exhibited a top-ranked sub-network (35 nodes and 174 connectivities) with 12 hub-bottleneck nodes having two drugs chloroquine and melatonin in association with 10 proteins corresponding to six upregulated and four downregulated genes. Two drugs interacted directly with the hub-bottleneck node i.e. matrix metallopeptidase 9 (MMP9), a host protein corresponding to its upregulated gene. MMP9 showed functional annotations associated with neutrophil mediated immunoinflammation. Moreover, literature survey revealed that angiotensin converting enzyme 2, a membrane receptor of SARS-CoV-2 virus, might have functional cooperativity with MMP9 and a possible interaction with both drugs. SIGNIFICANCE: The present study reveals that between chloroquine and melatonin, melatonin appears to be more promising repurposed drug against MMP9 for better immunocompromisation in COVID-19.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/metabolism , Pneumonia, Viral/metabolism , Protein Interaction Maps/drug effects , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Chloroquine/pharmacology , Computational Biology/methods , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Humans , Matrix Metalloproteinase 9/metabolism , Melatonin/pharmacology , Metalloproteases/metabolism , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/physiopathology , Protein Transport , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL