Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Br J Pharmacol ; 180(11): 1460-1481, 2023 06.
Article in English | MEDLINE | ID: covidwho-2308487

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overstimulation plays a crucial role in tissue damage during severe infections. Because pathogen-derived neuraminidase (NEU) stimulates neutrophils, we investigated whether host NEU can be targeted to regulate the neutrophil dysregulation observed in severe infections. EXPERIMENTAL APPROACH: The effects of NEU inhibitors on lipopolysaccharide (LPS)-stimulated neutrophils from healthy donors or COVID-19 patients were determined by evaluating the shedding of surface sialic acids, cell activation, and reactive oxygen species (ROS) production. Re-analysis of single-cell RNA sequencing of respiratory tract samples from COVID-19 patients also was carried out. The effects of oseltamivir on sepsis and betacoronavirus-induced acute lung injury were evaluated in murine models. KEY RESULTS: Oseltamivir and zanamivir constrained host NEU activity, surface sialic acid release, cell activation, and ROS production by LPS-activated human neutrophils. Mechanistically, LPS increased the interaction of NEU1 with matrix metalloproteinase 9 (MMP-9). Inhibition of MMP-9 prevented LPS-induced NEU activity and neutrophil response. In vivo, treatment with oseltamivir fine-tuned neutrophil migration and improved infection control as well as host survival in peritonitis and pneumonia sepsis. NEU1 also is highly expressed in neutrophils from COVID-19 patients, and treatment of whole-blood samples from these patients with either oseltamivir or zanamivir reduced neutrophil overactivation. Oseltamivir treatment of intranasally infected mice with the mouse hepatitis coronavirus 3 (MHV-3) decreased lung neutrophil infiltration, viral load, and tissue damage. CONCLUSION AND IMPLICATIONS: These findings suggest that interplay of NEU1-MMP-9 induces neutrophil overactivation. In vivo, NEU may serve as a host-directed target to dampen neutrophil dysfunction during severe infections.


Subject(s)
COVID-19 , Sepsis , Humans , Mice , Animals , Oseltamivir/adverse effects , Zanamivir/adverse effects , Neuraminidase/metabolism , Neuraminidase/pharmacology , Neutrophils , Matrix Metalloproteinase 9/metabolism , Reactive Oxygen Species , Lipopolysaccharides/pharmacology , Sepsis/chemically induced
2.
Virus Res ; 329: 199091, 2023 05.
Article in English | MEDLINE | ID: covidwho-2278899

ABSTRACT

AIM: This study investigated the prophylactic and therapeutic role of ultradiluted preparation of the Delta variant of SARS-CoV-2 recombinant spike (S) protein during S antigen-induced inflammatory process of disease progression along with the probable mechanism of action. MAIN METHODS: Ultradiluted S protein (UDSP) was prepared and administered orally to adult BALB/c mice before and after administration of S antigen intranasally. After an observation period of 72 h, animals were sacrificed and expression level of ferritin was assayed through ELISA. The genetic expressions of cytokines, IL-6, IL-10, IL-1ß, TNFα, IL-17, MMP-9, TIMP-1, ferritin light and heavy chains, and mitochondrial ferritin from lung tissues were investigated through RT-PCR. Formalin-fixed lung tissue sections were stained with hematoxylin and eosin to observe the degree of pathological changes. The activity of MMP-9 in lung tissues was investigated through gelatin zymography and immunofluorescence of MMP-9 in lung tissue sections was performed to revalidate the finding from gelatin zymography. Systems biology approach was used to elucidate a probable pathway where UDSP attenuated the inflammation through the regulation of pro- and anti-inflammatory cytokines. KEY FINDINGS: UDSP attenuated the S antigen-induced hyperinflammation in the lung by regulating pro- and anti-inflammatory cytokines, calming cytokine storm, reducing ferritin level both in transcriptional and translational levels, and restoring critical ratio of MMP-9: TIMP-1. SIGNIFICANCE: Our findings suggest a probable pathway by which UDSP might have attenuated inflammation through the regulation of cytokines, receptors, and other molecules. This proclaims UDSP as a promising antiviral agent in the treatment of COVID-19-induced immunopathogenesis.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Mice , Animals , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/analysis , Matrix Metalloproteinase 9/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Ferritins/genetics , Mice, Inbred BALB C , Gelatin/metabolism , SARS-CoV-2/metabolism , Lung/metabolism , Cytokines/metabolism , Inflammation
3.
Int J Mol Sci ; 24(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2245895

ABSTRACT

Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1ß, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.


Subject(s)
COVID-19 , Muscular Dystrophy, Duchenne , Animals , Humans , Mice , Matrix Metalloproteinase 9/metabolism , Mice, Inbred mdx , Tumor Necrosis Factor-alpha/metabolism , Post-Acute COVID-19 Syndrome , Neopterin/metabolism , COVID-19/pathology , SARS-CoV-2 , Muscular Dystrophy, Duchenne/genetics , Fibrosis , Muscle, Skeletal/metabolism , Disease Models, Animal
4.
Int J Mol Sci ; 24(3)2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2216342

ABSTRACT

Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.


Subject(s)
COVID-19 , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Signal Transduction , Intercellular Signaling Peptides and Proteins , Mitochondria/metabolism
5.
Front Immunol ; 13: 931388, 2022.
Article in English | MEDLINE | ID: covidwho-2141951

ABSTRACT

Intracranial inoculation of the neuroadapted JHM strain of mouse hepatitis virus (JHMV) into susceptible strains of mice results in acute encephalomyelitis followed by a cimmune-mediated demyelination similar to the human demyelinating disease multiple sclerosis (MS). JHMV infection of transgenic mice in which expression of the neutrophil chemoattractant chemokine CXCL1 is under the control of a tetracycline-inducible promoter active within GFAP-positive cells results in sustained neutrophil infiltration in the central nervous system (CNS) that correlates with an increase in spinal cord demyelination. We used single cell RNA sequencing (scRNAseq) and flow cytometry to characterize molecular and cellular changes within the CNS associated with increased demyelination in transgenic mice compared to control animals. These approaches revealed the presence of activated neutrophils as determined by expression of mRNA transcripts associated with neutrophil effector functions, including CD63, MMP9, S100a8, S100a9, and ASPRV1, as well as altered neutrophil morphology and protein expression. Collectively, these findings reveal insight into changes in the profile of neutrophils associated with increased white matter damage in mice persistently infected with a neurotropic coronavirus.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Murine hepatitis virus , White Matter , Animals , Central Nervous System , Chemokine CXCL1/metabolism , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Multiple Sclerosis/metabolism , Neutrophils/metabolism , RNA, Messenger , Tetracyclines , White Matter/metabolism
6.
Int J Med Sci ; 19(13): 1903-1911, 2022.
Article in English | MEDLINE | ID: covidwho-2100319

ABSTRACT

COVID-19 clinically manifests from asymptomatic to the critical range. Immune response provokes the pro-inflammatory interactions, which lead to the cytokines, reactive oxygen/nitrogen species, peptidases, and arachidonic acid metabolites enlargement and activation of coagulation components. Matrix metalloproteinases (MMPs) contribute to tissue destruction in the development of COVID-19. Due to the endothelial, systemic course of the disease, VEGF A participates actively in COVID-19 development, while neurotrophic and metabolic effects of BDNF recommends for the prediction of complications in COVID-19 patients. Searching for a marker that would improve and simplify the ranking in COVID-19, the study intended to evaluate the relationship of MMP-9 with VEGF A, BDNF, and MMP-8 with the COVID-19 severity. Upon admission to the hospital and before the therapy administration, 77 patients were classified into a mild, moderate, severe, or critical group. Due to the inflammatory stage in COVID-19, a comparison between groups showed related differences in leukocytes, neutrophils, lymphocytes, and platelets counts as anticipated. Only in seriously ill patients, there is a significant increase in the serum concentration of MMP-9, MMP-8, and VEGF A, while BDNF values did not show significant variations between groups. However, all those parameters positively correlated with each other. The ratio of MMP-9/BDNF markedly decreased in the severe and critically patients compared to the mild group. Testing the capability of this ratio to predict the COVID-19 stage by ROC curves, we found the MMP-9/BDNF could be a suitable marker for differentiating stages I/II (AUC 0.7597), stage I/III (AUC 0.9011), and stage I/IV (AUC 0.7727). Presented data describe for the first time the high-level systemic MMP-9/BDNF ratio in patients with COVID-19. This parameter could contribute to a more precise determination of the phase of the disease.


Subject(s)
COVID-19 , Matrix Metalloproteinase 9 , Humans , Matrix Metalloproteinase 9/metabolism , Brain-Derived Neurotrophic Factor , Vascular Endothelial Growth Factor A , Matrix Metalloproteinase 8 , Biomarkers
7.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
8.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1662689

ABSTRACT

Breast cancer continues to be one of the main causes of morbidity and mortality globally and was the leading cause of cancer death in women in Spain in 2020. Early diagnosis is one of the most effective methods to lower the incidence and mortality rates of breast cancer. The human metalloproteinases (MMP) mainly function as proteolytic enzymes degrading the extracellular matrix and plays important roles in most steps of breast tumorigenesis. This retrospective cohort study shows the immunohistochemical expression levels of MMP-1, MMP-2, MMP-3, and MMP-9 in 154 women with breast cancer and 42 women without tumor disease. The samples of breast tissue are assessed using several tissue matrices (TMA). The percentages of staining (≤50%->50%) and intensity levels of staining (weak, moderate, or intense) are considered. The immunohistochemical expression of the MMP-1-intensity (p = 0.043) and MMP-3 percentage (p = 0.018) and intensity, (p = 0.025) present statistically significant associations with the variable group (control-case); therefore, expression in the tumor tissue samples of these MMPs may be related to the development of breast cancer. The relationships between these MMPs and some clinicopathological factors in breast cancer are also evaluated but no correlation is found. These results suggest the use of MMP-1 and MMP-3 as potential biomarkers of breast cancer diagnosis.


Subject(s)
Breast Neoplasms/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 3/metabolism , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Case-Control Studies , Cohort Studies , Disease Progression , Female , Humans , Immunohistochemistry/methods , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Metalloproteases/metabolism , Middle Aged , Retrospective Studies , Spain , Tissue Inhibitor of Metalloproteinases/metabolism
9.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1580700

ABSTRACT

Acute respiratory distress syndrome (ARDS) followed by repair with lung remodeling is observed in COVID-19. These findings can lead to pulmonary terminal fibrosis, a form of irreversible sequelae. There is evidence that TGF-ß is intimately involved in the fibrogenic process. When activated, TGF-ß promotes the differentiation of fibroblasts into myofibroblasts and regulates the remodeling of the extracellular matrix (ECM). In this sense, the present study evaluated the histopathological features and immunohistochemical biomarkers (ACE-2, AKT-1, Caveolin-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 tissue expression) involved in the TGF-ß1 signaling pathways and pulmonary fibrosis. The study consisted of 24 paraffin lung samples from patients who died of COVID-19 (COVID-19 group), compared to 10 lung samples from patients who died of H1N1pdm09 (H1N1 group) and 11 lung samples from patients who died of different causes, with no lung injury (CONTROL group). In addition to the presence of alveolar septal fibrosis, diffuse alveolar damage (DAD) was found to be significantly increased in the COVID-19 group, associated with a higher density of Collagen I (mature) and III (immature). There was also a significant increase observed in the immunoexpression of tissue biomarkers ACE-2, AKT-1, CD44v6, IL-4, MMP-9, α-SMA, Sphingosine-1, and TGF-ß1 in the COVID-19 group. A significantly lower expression of Caveolin-1 was also found in this group. The results suggest the participation of TGF-ß pathways in the development process of pulmonary fibrosis. Thus, it would be plausible to consider therapy with TGF-ß inhibitors in those patients recovered from COVID-19 to mitigate a possible development of pulmonary fibrosis and its consequences for post-COVID-19 life quality.


Subject(s)
COVID-19/metabolism , Pulmonary Fibrosis/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/metabolism , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/pathology , Caveolin 1/metabolism , Collagen Type I/metabolism , Collagen Type III/metabolism , Female , Humans , Hyaluronan Receptors/metabolism , Immunohistochemistry , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/pathology , Interleukin-4/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Retrospective Studies , Transforming Growth Factor beta1/metabolism , COVID-19 Drug Treatment
10.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: covidwho-1580691

ABSTRACT

Although blood-heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.


Subject(s)
COVID-19/complications , Heart Failure/metabolism , Heart/virology , Animals , Blood/virology , Blood Physiological Phenomena/immunology , COVID-19/physiopathology , Cardiomegaly/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Physiological Phenomena/immunology , Disease Models, Animal , Endothelium/metabolism , Heart/physiopathology , Heart Failure/virology , Hydroxychloroquine/pharmacology , Male , Matrix Metalloproteinase 9/drug effects , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Myocardium/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Ventricular Remodeling/physiology
11.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545647

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
12.
Front Immunol ; 12: 748417, 2021.
Article in English | MEDLINE | ID: covidwho-1528820

ABSTRACT

Rationale: Myocardial injury associates significantly and independently with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide. Objective: This histological and immunohistochemical study sought to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results: Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control group (n=11). Histological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1, IL-1ß, IL-4, IL-6, CD163, TNF-α, TGF-ß, MMP-9, type 1 and type 3 collagen. The samples were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe pericardiocyte interstitial edema and higher mast cells counts per high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-1ß, IL-6, MMP-9, TNF-α, and other markers in the hearts of COVID-19 patients. Expression of caspase-9 did not differ from the controls, while gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19 samples supporting endothelial apoptosis. Conclusions: The pathogenesis of COVID-19 myocardial injury does not seem to relate to primary myocardiocyte involvement but to local inflammation with associated interstitial edema. We found heightened TGF-ß and interstitial collagen expression in COVID-affected hearts, a potential harbinger of chronic myocardial fibrosis. These results suggest a need for continued clinical surveillance of patients for myocardial dysfunction and arrythmias after recovery from the acute phase of COVID-19.


Subject(s)
COVID-19/metabolism , Heart Injuries/metabolism , SARS-CoV-2 , Aged , Apoptosis , Biopsy , COVID-19/pathology , Caspase 1/metabolism , Collagen/metabolism , Cytokines/metabolism , Female , Heart Injuries/pathology , Humans , Immunohistochemistry , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Myocardium/metabolism , Myocardium/pathology
13.
Med Sci Monit ; 27: e934365, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1527017

ABSTRACT

BACKGROUND Autologous blood-derived products can target specific inflammatory molecular pathways and have potentially beneficial therapeutic effects on inflammatory pathologies. The purpose of this study was to assess in vitro the anti-inflammatory and anti-catabolic potential of an autologous blood product as a possible treatment for COVID-19-induced cytokine storm. MATERIAL AND METHODS Blood samples from healthy donors and donors who had recovered from COVID-19 were incubated using different techniques and analyzed for the presence of anti-inflammatory, anti-catabolic, regenerative, pro-inflammatory, and procatabolic molecules. RESULTS The highest concentrations of therapeutic molecules for targeting inflammatory pathways were found in the blood that had been incubated for 24 h at 37°C, whereas a significant increase was observed after 6 h of incubation in blood from COVID-19-recovered donors. Beneficially, the 6-h incubation process did not downregulate anti-COVID-19 immunoglobulin G concentrations. Unfortunately, increases in matrix metalloproteinase 9, tumor necrosis factor alpha, and interleukin-1 were detected in the product after incubation; however, these increases could be blocked by adding citric acid, with no effect on the concentration of the target therapeutic molecules. Our data allow for safer and more effective future treatments. CONCLUSIONS An autologous blood-derived product containing anti-inflammatory and anti-catabolic molecules, which we term Cytorich, has a promising therapeutic role in the treatment of a virus-induced cytokine storm, including that associated with COVID-19.


Subject(s)
Anabolic Agents/blood , Anti-Inflammatory Agents/blood , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Adult , Anabolic Agents/isolation & purification , Anabolic Agents/therapeutic use , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/therapeutic use , COVID-19/blood , Cytokine Release Syndrome/etiology , Female , Humans , Interleukin-1beta/antagonists & inhibitors , Male , Matrix Metalloproteinase 9/metabolism , Metabolism/drug effects , Middle Aged , Young Adult , COVID-19 Drug Treatment
14.
Signal Transduct Target Ther ; 6(1): 337, 2021 09 06.
Article in English | MEDLINE | ID: covidwho-1402050

ABSTRACT

SARS-CoV-2 has been reported to show a capacity for invading the brains of humans and model animals. However, it remains unclear whether and how SARS-CoV-2 crosses the blood-brain barrier (BBB). Herein, SARS-CoV-2 RNA was occasionally detected in the vascular wall and perivascular space, as well as in brain microvascular endothelial cells (BMECs) in the infected K18-hACE2 transgenic mice. Moreover, the permeability of the infected vessel was increased. Furthermore, disintegrity of BBB was discovered in the infected hamsters by administration of Evans blue. Interestingly, the expression of claudin5, ZO-1, occludin and the ultrastructure of tight junctions (TJs) showed unchanged, whereas, the basement membrane was disrupted in the infected animals. Using an in vitro BBB model that comprises primary BMECs with astrocytes, SARS-CoV-2 was found to infect and cross through the BMECs. Consistent with in vivo experiments, the expression of MMP9 was increased and collagen IV was decreased while the markers for TJs were not altered in the SARS-CoV-2-infected BMECs. Besides, inflammatory responses including vasculitis, glial activation, and upregulated inflammatory factors occurred after SARS-CoV-2 infection. Overall, our results provide evidence supporting that SARS-CoV-2 can cross the BBB in a transcellular pathway accompanied with basement membrane disrupted without obvious alteration of TJs.


Subject(s)
Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Tight Junctions/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Basement Membrane/pathology , Basement Membrane/virology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/virology , COVID-19/genetics , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Tight Junctions/genetics , Tight Junctions/pathology , Tight Junctions/virology , Vero Cells
15.
Sci Rep ; 11(1): 13376, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286473

ABSTRACT

MMP-9 plays a number of important physiological functions but is also responsible for many pathological processes, including cancer invasion, metastasis, and angiogenesis. It is, therefore, crucial to understand its enzymatic activity, including activation and inhibition mechanisms. This enzyme may also be partially involved in the "cytokine storm" that is characteristic of COVID-19 disease (SARS-CoV-2), as well as in the molecular mechanisms responsible for lung fibrosis. Due to the variety of processing pathways involving MMP-9 in biological systems and its uniqueness due to the O-glycosylated domain (OGD) and fibronectin-like (FBN) domain, specific interactions with its natural TIMP-1 inhibitor should be carefully studied, because they differ significantly from other homologous systems. In particular, earlier experimental studies have indicated that the newly characterised circular form of a proMMP-9 homotrimer exhibits stronger binding properties to TIMP-1 compared to its monomeric form. However, molecular structures of the complexes and the binding mechanisms remain unknown. The purpose of this study is to fill in the gaps in knowledge. Molecular modelling methods are applied to build the inhibitory and non-inhibitory MMP-9-TIMP-1 complexes, which allows for a detailed description of these structures and should allow for a better understanding of the regulatory processes in which MMP-9 is involved.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Molecular Dynamics Simulation , Tissue Inhibitor of Metalloproteinase-1/metabolism , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinase 9/chemistry , Protein Binding , Protein Domains , Protein Multimerization , Static Electricity , Tissue Inhibitor of Metalloproteinase-1/antagonists & inhibitors
16.
Life Sci ; 257: 118096, 2020 Sep 15.
Article in English | MEDLINE | ID: covidwho-653065

ABSTRACT

AIMS: The molecular pathogenesis of COVID-19 is similar to other coronavirus (CoV) infections viz. severe acute respiratory syndrome (SARS) in human. Due to scarcity of the suitable treatment strategy, the present study was undertaken to explore host protein(s) targeted by potent repurposed drug(s) in COVID-19. MATERIALS AND METHODS: The differentially expressed genes (DEGs) were identified from microarray data repository of SARS-CoV patient blood. The repurposed drugs for COVID-19 were selected from available literature. Using DEGs and drugs, the protein-protein interaction (PPI) and chemo-protein interaction (CPI) networks were constructed and combined to develop an interactome model of PPI-CPI network. The top-ranked sub-network with its hub-bottleneck nodes were evaluated with their functional annotations. KEY FINDINGS: A total of 120 DEGs and 65 drugs were identified. The PPI-CPI network (118 nodes and 293 edges) exhibited a top-ranked sub-network (35 nodes and 174 connectivities) with 12 hub-bottleneck nodes having two drugs chloroquine and melatonin in association with 10 proteins corresponding to six upregulated and four downregulated genes. Two drugs interacted directly with the hub-bottleneck node i.e. matrix metallopeptidase 9 (MMP9), a host protein corresponding to its upregulated gene. MMP9 showed functional annotations associated with neutrophil mediated immunoinflammation. Moreover, literature survey revealed that angiotensin converting enzyme 2, a membrane receptor of SARS-CoV-2 virus, might have functional cooperativity with MMP9 and a possible interaction with both drugs. SIGNIFICANCE: The present study reveals that between chloroquine and melatonin, melatonin appears to be more promising repurposed drug against MMP9 for better immunocompromisation in COVID-19.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/metabolism , Pneumonia, Viral/metabolism , Protein Interaction Maps/drug effects , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Betacoronavirus/metabolism , Betacoronavirus/pathogenicity , COVID-19 , Chloroquine/pharmacology , Computational Biology/methods , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Humans , Matrix Metalloproteinase 9/metabolism , Melatonin/pharmacology , Metalloproteases/metabolism , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/physiopathology , Protein Transport , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL