Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
AIDS Res Hum Retroviruses ; 36(7): 545-549, 2020 07.
Article in English | MEDLINE | ID: covidwho-1556715

ABSTRACT

One cannot spend >5 min on social media at the moment without finding a link to some conspiracy theory or other regarding the origin of SARS-CoV2, the coronavirus responsible for the COVID-19 pandemic. From the virus being deliberately released as a bioweapon to pharmaceutical companies blocking the trials of natural remedies to boost their dangerous drugs and vaccines, the Internet is rife with far-fetched rumors. And predictably, now that the first immunization trials have started, the antivaccine lobby has latched on to most of them. In the last week, the trailer for a new "bombshell documentary" Plandemic has been doing the rounds, gaining notoriety for being repeatedly removed from YouTube and Facebook. We usually would not pay much heed to such things, but for retrovirologists like us, the name associated with these claims is unfortunately too familiar: Dr. Judy Mikovits.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Fatigue Syndrome, Chronic/virology , Fraud , Medical Laboratory Personnel/psychology , Pneumonia, Viral/epidemiology , Prostatic Neoplasms/virology , Research Personnel/psychology , Retroviridae Infections/complications , Retroviridae/physiology , Animals , COVID-19 , Coronavirus Infections/virology , Deception , Humans , Male , Mice , Pandemics , Pneumonia, Viral/virology , Retroviridae Infections/virology , SARS-CoV-2 , Social Media
5.
PLoS One ; 16(7): e0253664, 2021.
Article in English | MEDLINE | ID: covidwho-1311283

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had a profound worldwide impact. Vietnam, a lower middle-income country with limited resources, has successfully slowed this pandemic. The objectives of this report are to explore the impact of the COVID-19 pandemic on the research activities of an ongoing hypertension trial using a storytelling intervention in Vietnam. METHODS: Data were collected in a mixed-methods study among 86 patients and 10 health care workers participating in a clinical trial designed to improve hypertension control. Several questions related to the impact of COVID-19 on patient's daily activities and adherence to the study interventions were included in the follow-up visits. A focus group discussion was conducted among health care workers to discuss the impact of COVID-19 on research related activities. RESULTS: Fewer patients in the intervention group reported that they faced difficulties in adhering to prescribed study interventions, wanted to receive a call from a dedicated hotline, or have a visit from a community health worker as compared with those in the comparison group. Most study patients are willing to participate in future health research studies. When asked about the potential use of mobile phones in health research studies, fewer patients in the intervention group felt comfortable using a mobile phone for the delivery of intervention and interviews compared with those in the comparison condition. Community health workers shared that they visited patient's homes more often than previously due to the pandemic and health care workers had to perform more virus containment activities without a corresponding increase in ancillary staff. CONCLUSIONS: Both patients and health care workers in Vietnam faced difficulties in adhering to recommended trial interventions and procedures. Multiple approaches for intervention delivery and data collection are needed to overcome these difficulties during future health crises and enhance the implementation of future research studies. TRIAL REGISTRATION: ClinicalTrials.gov. Registration number: https://clinicaltrials.gov/ct2/show/NCT03590691 (registration date July 17, 2018).


Subject(s)
COVID-19/epidemiology , Clinical Laboratory Services/standards , Clinical Trials as Topic , Medical Laboratory Personnel/psychology , Patients/psychology , Adult , Aged , Aged, 80 and over , Clinical Laboratory Services/statistics & numerical data , Female , Humans , Hypertension/epidemiology , Male , Middle Aged , Patient Compliance , Vietnam
6.
J Occup Environ Med ; 63(5): 374-380, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1301396

ABSTRACT

OBJECTIVE: Determine the industries with the highest proportion of accepted COVID-19 related workers' compensation (WC) claims. METHODS: Study included 21,336 WC claims (1898 COVID-19 and 19,438 other claims) that were filed between January 1, 2020 and August 31, 2020 from 11 states in the Midwest United States. RESULT: The overwhelming proportion of all COVID-19 related WC claims submitted and accepted were from healthcare workers (83.77%). Healthcare was the only industrial classification that was at significantly higher COVID-19 WC claim submission risk (odds ratio [OR]: 4.00; 95% confidence intervals [CI]: 2.77 to 5.79) controlling for type of employment, sex, age, and presumption of COVID-19 work-relatedness. Within healthcare employment, WC claims submitted by workers in medical laboratories had the highest risk (crude rate ratio of 8.78). CONCLUSION: Healthcare employment is associated with an increased risk of developing COVID-19 infections and submitting a workers' compensation claim.


Subject(s)
COVID-19/economics , Health Personnel/classification , Industry/classification , Occupational Diseases/economics , Workers' Compensation/statistics & numerical data , Adult , Aged , Female , Health Personnel/statistics & numerical data , Humans , Industry/statistics & numerical data , Male , Medical Laboratory Personnel/statistics & numerical data , Middle Aged , Midwestern United States/epidemiology , Odds Ratio , SARS-CoV-2
7.
Ann Glob Health ; 87(1): 56, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1296122

ABSTRACT

Background: The adherence of medical laboratory technicians (MLT) to infection control guidelines is essential for reducing the risk of exposure to infectious agents. This study explored the adherence of MLT towards infection control practices during the COVID-19 pandemic. Method: The study population consisted of MLT (n = 444) who worked in private and government health sectors in Jordan. A self-reported survey was used to collect data from participants. Findings: More than 87% of the participants reported adherence to hand-washing guidelines and using personal protective equipment (PPE) when interacting with patients (74.5%), and handling clinical samples (70.0%). Besides, 88.1%, 48.2%, and 7.7% reported wearing of lab coats, face masks, and goggles, at all times, respectively. The majority reported increased adherence to infection control practices during the COVID-19 pandemic. This includes increased PPE use at the workplace (94.2%), increased frequency of disinfection of laboratory surfaces (92.4%) and laboratory equipment (86.7%), and increased frequency of handwashing/use of antiseptics (94.6%). Having a graduate degree was significantly associated with increased adherence of participants to the daily use of goggles/eye protection (p = 0.002), and the use of PPE while handling clinical samples (p = 0.011). Having work experience of >10 years was associated with increased adherence to the use of PPE while handling clinical samples (p = 0.001). Conclusion: MLT reported very good adherence with most assessed infection control practices. In addition, they reported increased conformity with infection control guidelines during the COVID-19 pandemic.


Subject(s)
COVID-19 , Guideline Adherence , Infection Control , Laboratories , Medical Laboratory Personnel , Personal Protective Equipment , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Female , Guideline Adherence/standards , Guideline Adherence/statistics & numerical data , Hand Disinfection/methods , Hand Disinfection/standards , Health Care Surveys , Humans , Infection Control/instrumentation , Infection Control/methods , Infection Control/standards , Jordan/epidemiology , Laboratories/organization & administration , Laboratories/standards , Male , Medical Laboratory Personnel/standards , Medical Laboratory Personnel/statistics & numerical data , Personal Protective Equipment/statistics & numerical data , Personal Protective Equipment/supply & distribution , Practice Guidelines as Topic , SARS-CoV-2 , Self Report
8.
J Cancer Res Ther ; 17(2): 551-555, 2021.
Article in English | MEDLINE | ID: covidwho-1268377

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID 19) is a zoonotic viral infection that originated in Wuhan, China, in December 2019. It was declared a pandemic by the World Health Organization shortly thereafter. This pandemic is going to have a lasting impact on the functioning of pathology laboratories due to the frequent handling of potentially infectious samples by the laboratory personnel. To deal with this unprecedented situation, various national and international guidelines have been put forward outlining the precautions to be taken during sample processing from a potentially infectious patient. PURPOSE: Most of these guidelines are centered around laboratories that are a part of designated COVID 19 hospitals. However, proper protocols need to be in place in all laboratories, irrespective of whether they are a part of COVID 19 hospital or not as this would greatly reduce the risk of exposure of laboratory/hospital personnel. As part of a laboratory associated with a rural cancer hospital which is not a dedicated COVID 19 hospital, we aim to present our institute's experience in handling pathology specimens during the COVID 19 era. CONCLUSION: We hope this will address the concerns of small to medium sized laboratories and help them build an effective strategy required for protecting the laboratory personnel from risk of exposure and also ensure smooth and optimum functioning of the laboratory services.


Subject(s)
COVID-19/diagnosis , Clinical Laboratory Services/organization & administration , Infection Control/organization & administration , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Tertiary Care Centers/organization & administration , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Cancer Care Facilities/organization & administration , Cancer Care Facilities/standards , Clinical Laboratory Services/standards , Decontamination/methods , Decontamination/standards , Developing Countries , Disinfection/methods , Disinfection/organization & administration , Disinfection/standards , Hospitals, Rural/organization & administration , Hospitals, Rural/standards , Humans , India/epidemiology , Infection Control/standards , Medical Laboratory Personnel/organization & administration , Medical Laboratory Personnel/standards , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Specimen Handling/standards , Tertiary Care Centers/standards , Workforce/organization & administration , Workforce/standards
9.
Diagn Microbiol Infect Dis ; 101(2): 115426, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1230428

ABSTRACT

OBJECTIVES: To quantify the workload and cost overload that the COVID-19 pandemic has meant for a Clinical Microbiology laboratory in a real-life scenario. METHODS: We compared the number of samples received, their distribution, the human resources, and the budget of a Microbiology laboratory in the COVID pandemic (March-December 2020) with the same months of the previous year. RESULTS: the total number of samples processed in the Clinical Microbiology laboratory in March to December 2020 increased 96.70% with respect to 2019 (from 246,060 to 483,993 samples), reflecting an increment of 127.50% when expressed as samples/1000 admissions (from 6057 to 13,780). The increase in workload was mainly at the expense of the virology (+2058%) and serology (+86%) areas. Despite additional personnel hiring, the samples processed per technician increased 12.5%. The extra cost attributed to Microbiology amounts to 6,616,511 euros (114.8%). CONCLUSIONS: This is the first study to provide quantitative figures about workload and cost increase caused by the COVID-19 in a Microbiology laboratory.


Subject(s)
COVID-19/epidemiology , Laboratories, Hospital/statistics & numerical data , COVID-19/diagnosis , COVID-19/economics , COVID-19 Testing/economics , COVID-19 Testing/statistics & numerical data , Clinical Laboratory Services/economics , Clinical Laboratory Services/statistics & numerical data , Costs and Cost Analysis , Hospitalization/statistics & numerical data , Humans , Laboratories, Hospital/economics , Medical Laboratory Personnel/economics , Medical Laboratory Personnel/statistics & numerical data , SARS-CoV-2/isolation & purification , Spain/epidemiology , Tertiary Care Centers , Workload/statistics & numerical data
10.
Lab Med ; 52(4): e115-e124, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1214641

ABSTRACT

OBJECTIVE: To explore the experiences of medical laboratory professionals (MLPs) and their perceptions of the needs of clinical laboratories in response to COVID-19. METHODS: We surveyed laboratory professionals working in United States clinical laboratories during the initial months of the pandemic. RESULTS: Overall clinical laboratory testing and overtime work for laboratorians decreased during the first months of the pandemic. Laboratory professionals reported better or unchanged job satisfaction, feelings toward their work, and morale in their workplace, which were related to healthcare facility and laboratory leadership response. They reported receiving in-kind gifts, but no hazard pay, for their essential work. Important supply needs included reagents and personal protective equipment (PPE). CONCLUSION: The response by healthcare facilities and laboratory leadership can influence MLPs job satisfaction, feelings toward their work, and laboratory morale during a pandemic. Current COVID-19 laboratory testing management, in the absence of sufficient reagents and supplies, cannot fully address the needs of clinical laboratories.


Subject(s)
COVID-19 , Laboratories , Medical Laboratory Personnel/statistics & numerical data , Occupational Health , Adult , Aged , Cross-Sectional Studies , Female , Humans , Job Satisfaction , Laboratories/organization & administration , Laboratories/statistics & numerical data , Laboratories/supply & distribution , Male , Middle Aged , Personal Protective Equipment/supply & distribution , SARS-CoV-2 , Surveys and Questionnaires , United States , Workload/statistics & numerical data , Young Adult
11.
Transfusion ; 61(6): 1955-1965, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142977

ABSTRACT

BACKGROUND: Avoidable human error is a significant cause of transfusion adverse events. Adequately trained, laboratory staff in blood establishments and blood banks, collectively blood facilities, are key in ensuring high-quality transfusion medicine (TM) services. Gaps in TM education and training of laboratory staff exist in most African countries. We assessed the status of the training and education of laboratory staff working in blood facilities in Africa. STUDY DESIGN AND METHODS: A cross-sectional study using a self-administered pilot-tested questionnaire was performed. The questionnaire comprised 26 questions targeting six themes. Blood facilities from 16 countries were invited to participate. Individually completed questionnaires were grouped by country and descriptive analysis performed. RESULTS: Ten blood establishments and two blood banks from eight African countries confirmed the availability of a host of training programs for laboratory staff; the majority of which were syllabus or curriculum-guided and focused on both theoretical and practical laboratory skills development. Training was usually preplanned, dependent on student and trainer availability and delivered through lecture-based classroom training as well as formal and informal on the job training. There were minimal online didactic and self-directed learning. Teaching of humanistic values appeared to be lacking. CONCLUSION: We confirmed the availability of diverse training programs across a variety of African countries. Incorporation of virtual learning platforms, rather than complete reliance on didactic, in-person training programs may improve the education reach of the existing programs. Digitalization driven by the coronavirus disease 2019 pandemic may provide an opportunity to narrow the knowledge gap in low- and middle-income countries (LMICs).


Subject(s)
Blood Banks , Health Knowledge, Attitudes, Practice , Medical Laboratory Personnel/education , Transfusion Medicine/education , Adult , Africa/epidemiology , Blood Banks/methods , Blood Banks/standards , Blood Specimen Collection/methods , Blood Specimen Collection/standards , COVID-19/blood , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Surveys and Questionnaires , Transfusion Medicine/standards
13.
Am J Clin Pathol ; 153(6): 715-718, 2020 05 05.
Article in English | MEDLINE | ID: covidwho-1109161

ABSTRACT

OBJECTIVES: To establish the optimal parameters for group testing of pooled specimens for the detection of SARS-CoV-2. METHODS: The most efficient pool size was determined to be five specimens using a web-based application. From this analysis, 25 experimental pools were created using 50 µL from one SARS-CoV-2 positive nasopharyngeal specimen mixed with 4 negative patient specimens (50 µL each) for a total volume of 250 µL. Viral RNA was subsequently extracted from each pool and tested using the CDC SARS-CoV-2 RT-PCR assay. Positive pools were consequently split into individual specimens and tested by extraction and PCR. This method was also tested on an unselected group of 60 nasopharyngeal specimens grouped into 12 pools. RESULTS: All 25 pools were positive with cycle threshold (Ct) values within 0 and 5.03 Ct of the original individual specimens. The analysis of 60 specimens determined that 2 pools were positive followed by identification of 2 individual specimens among the 60 tested. This testing was accomplished while using 22 extractions/PCR tests, a savings of 38 reactions. CONCLUSIONS: When the incidence rate of SARS-CoV-2 infection is 10% or less, group testing will result in the saving of reagents and personnel time with an overall increase in testing capability of at least 69%.


Subject(s)
Clinical Laboratory Techniques/economics , Clinical Laboratory Techniques/methods , Medical Laboratory Personnel/economics , Specimen Handling/economics , Specimen Handling/methods , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 Testing , Clinical Laboratory Techniques/instrumentation , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Coronavirus Infections/economics , Humans , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction/economics , SARS-CoV-2 , Specimen Handling/standards
14.
Diagn Microbiol Infect Dis ; 100(1): 115309, 2021 May.
Article in English | MEDLINE | ID: covidwho-1032803

ABSTRACT

Diagnostic microbiology services form a critical component of the response to infectious disease outbreaks. Like previous respiratory virus pandemics, the COVID-19 pandemic has placed significant strains on the standing capacity of laboratories around the world. In this case study, we describe the surge response required by our laboratory to meet the fluctuating demand for SARS-CoV-2 in our regional pathology service in Western Sydney, Australia between March and May 2020. While the overall number of SARS-CoV-2 PCR positive cases was relatively low compared to other Australian local health districts, testing numbers were highly unpredictable and changed on a weekly basis as local outbreaks were detected. As with other laboratories, numerous other challenges were also faced during this period, including the requirement to introduce a new and unaccredited diagnostic PCR assay for SARS-CoV-2, local and global shortages of reagents for sampling and sample processing, and a significant institutional SARS-CoV-2 outbreak in our laboratory catchment area. A successful service delivery during this period could only be maintained by a dynamic whole-of-laboratory and organizational response including (1) operational changes to the hours of service and the expansion of diagnostic testing at our laboratory site and other sites within our organization (2) careful management of specialist staff and re-training and recruitment of additional staff (3) changes to laboratory workflows to improve SARS-CoV-2 PCR test turnaround time and to accommodate limits to precious laboratory reagents; (4) clear communication within our laboratory and the NSW Health Pathology organization; and (5) collaborative co-ordination and support by NSW Health Pathology.


Subject(s)
COVID-19 Testing , COVID-19 , Laboratories/organization & administration , Microbiology , Australia , Clinical Laboratory Services/organization & administration , Clinical Laboratory Services/statistics & numerical data , Humans , Laboratories/supply & distribution , Medical Laboratory Personnel/education , Polymerase Chain Reaction , Time Factors
16.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: covidwho-889842

ABSTRACT

The coronavirus disease (COVID-19) pandemic has placed the clinical laboratory and testing for SARS-CoV-2 front and center in the worldwide discussion of how to end the outbreak. Clinical laboratories have responded by developing, validating, and implementing a variety of molecular and serologic assays to test for SARS-CoV-2 infection. This has played an essential role in identifying cases, informing isolation decisions, and helping to curb the spread of disease. However, as the demand for COVID-19 testing has increased, laboratory professionals have faced a growing list of challenges, uncertainties, and, in some situations, controversy, as they have attempted to balance the need for increasing test capacity with maintaining a high-quality laboratory operation. The emergence of this new viral pathogen has raised unique diagnostic questions for which there have not always been straightforward answers. In this commentary, the author addresses several areas of current debate, including (i) the role of molecular assays in defining the duration of isolation/quarantine, (ii) whether the PCR cycle threshold value should be included on patient reports, (iii) if specimen pooling and testing by research staff represent acceptable solutions to expand screening, and (iv) whether testing a large percentage of the population is feasible and represents a viable strategy to end the pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Clinical Laboratory Services/standards , Coronavirus Infections/prevention & control , Humans , Mass Screening , Medical Laboratory Personnel/standards , Molecular Diagnostic Techniques/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Polymerase Chain Reaction/standards , Quarantine/standards , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling
17.
Ann Biol Clin (Paris) ; 78(5): 499-518, 2020 10 01.
Article in French | MEDLINE | ID: covidwho-836031

ABSTRACT

The French society of clinical biology "Biochemical markers of COVID-19" has set up a working group with the primary aim of reviewing, analyzing and monitoring the evolution of biological prescriptions according to the patient's care path and to look for markers of progression and severity of the disease. This study covers all public and private sectors of medical biology located in metropolitan and overseas France and also extends to the French-speaking world. This article presents the testimonies and data obtained for the "Overseas and French-speaking countries" sub-working group made up of 45 volunteer correspondents, located in 20 regions of the world. In view of the delayed spread of the SARS-CoV-2 virus, the overseas regions and the French-speaking regions have benefited from feedback from the first territories confronted with COVID-19. Thus, the entry of the virus or its spread in epidemic form could be avoided, thanks to the rapid closure of borders. The overseas territories depend very strongly on air and/or sea links with the metropolis or with the neighboring continent. The isolation of these countries is responsible for reagent supply difficulties and has necessitated emergency orders and the establishment of stocks lasting several months, in order to avoid shortages and maintain adequate patient care. In addition, in countries located in tropical or intertropical zones, the diagnosis of COVID-19 is complicated by the presence of various zoonoses (dengue, Zika, malaria, leptospirosis, etc.).


Subject(s)
Clinical Laboratory Services , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Global Health/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Travel Medicine/organization & administration , Adult , Africa/epidemiology , Aged , Aged, 80 and over , Belgium/epidemiology , Betacoronavirus/physiology , Biomarkers/analysis , Biomarkers/blood , COVID-19 , Cambodia/epidemiology , Child , Clinical Laboratory Services/organization & administration , Clinical Laboratory Services/statistics & numerical data , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Coronavirus Infections/transmission , Diagnosis, Differential , Female , France/epidemiology , Hospitalization/statistics & numerical data , Humans , Infant, Newborn , Islands/epidemiology , Language , Laos/epidemiology , Louisiana/epidemiology , Male , Medical Laboratory Personnel/organization & administration , Medical Laboratory Personnel/statistics & numerical data , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Retrospective Studies , SARS-CoV-2 , Surveys and Questionnaires , Survival Analysis , Travel Medicine/methods , Travel Medicine/statistics & numerical data , Travel-Related Illness , Tropical Climate , Tropical Medicine/methods , Tropical Medicine/organization & administration , Tropical Medicine/statistics & numerical data , Vietnam/epidemiology
18.
PLoS One ; 15(10): e0239524, 2020.
Article in English | MEDLINE | ID: covidwho-835946

ABSTRACT

Experts are typically advised to avoid jargon when communicating with the general public, but previous research has not established whether avoiding jargon is necessary in a crisis. Using the ongoing COVID-19 pandemic as a backdrop, this online survey experiment (N = 393) examined the effect of jargon use across three different topics that varied in situational urgency: COVID-19 (high urgency), flood risk (low urgency), and federal emergency policy (control). Results revealed that although the use of jargon led to more difficult processing and reduced persuasion for the two less-urgent topics (flood risk, emergency policy), there was no effect of jargon in the COVID-19 condition. Theoretically, these findings suggest that the motivation to process information is an important moderator for crisis communication in particular and science communication in general. Practically, these findings suggest that science communicators, during times of crisis, do not need to "dumb down" their language in the same way they should during non-crises.


Subject(s)
Betacoronavirus , Communication , Coronavirus Infections/epidemiology , Coronavirus Infections/psychology , Information Dissemination , Language , Pneumonia, Viral/epidemiology , Pneumonia, Viral/psychology , Vocabulary , Adult , COVID-19 , Coronavirus Infections/virology , Emergencies , Female , Floods , Humans , Male , Medical Laboratory Personnel/psychology , Middle Aged , Motivation , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Surveys and Questionnaires , United States/epidemiology , Young Adult
19.
Br J Cancer ; 123(5): 698-699, 2020 09.
Article in English | MEDLINE | ID: covidwho-676750

ABSTRACT

The COVID-19 pandemic resulted in the cancellation or postponement of traditional face-to-face scientific conferences, necessitating a rapid change in the way new discoveries in cancer were shared with the cancer research community. Here I present personal reflections on the upsurge of virtual cancer conferences, discussing their pros and cons in the context of traditional face-to-face deliveries.


Subject(s)
Betacoronavirus , Biomedical Research/trends , Congresses as Topic/organization & administration , Congresses as Topic/trends , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Drug Discovery , Humans , Medical Laboratory Personnel/psychology , Neoplasms/therapy , Oncologists/psychology , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Quarantine/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL