Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Mol Biol Rep ; 49(5): 4061-4068, 2022 May.
Article in English | MEDLINE | ID: covidwho-1877913

ABSTRACT

The omicron variant (B.529) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged in late 2021, caused panic worldwide due to its contagiousness and multiple mutations in the spike protein compared to the Delta variant (B.617.2). There is currently no specific antiviral available to treat Coronavirus disease 2019 (COVID-19). However, studies on neutralizing monoclonal antibodies (mAb) developed to fight COVID-19 are growing and gaining traction. REGN-COV2 (Regeneron or imdevimab-casirivimab combination), which has been shown in recent studies to be less affected by Omicron's RBD (receptor binding domain) mutations among other mAb cocktails, plays an important role in adjuvant therapy against COVID-19. On the other hand, it is known that melatonin, which has antioxidant and immunomodulatory effects, can prevent a possible cytokine storm, and other severe symptoms that may develop in the event of viral invasion. Along with all these findings, we believe it is crucial to evaluate the use of melatonin with REGN-COV2, a cocktail of mAbs, as an adjuvant in the treatment and prevention of COVID-19, particularly in immunocompromised and elderly patients.


Subject(s)
Antineoplastic Agents, Immunological , COVID-19 , Melatonin , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/drug therapy , Drug Combinations , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , SARS-CoV-2
3.
Med Sci (Paris) ; 38(1): 89-95, 2022 Jan.
Article in French | MEDLINE | ID: covidwho-1642032

ABSTRACT

Melatonin is a naturally occurring molecule derived from tryptophan. Melatonin is a key player in relaying the circadian rhythm between our environment and our body. It has also a key role in rhythming the seasons (more production during long nights and less during short ones) as well as in the reproduction cycles of the mammals. Melatonin is often and surprisingly presented as a molecule with multiple therapeutic properties that can fix (or help to fix) many health issues, such as diseases (cancer, ageing, virus-induced affections including COVID-19, etc…) or toxicological situations (metals, venoms, chemical such as adriamycin [doxorubicin], methotrexate or paclitaxel). The mechanistics behind those wonders is still missing and this is puzzling. In the present commentary, the main well-established biological properties are presented and briefly discussed with the aim of delineating the borders between facts and wishful thinking.


TITLE: Mélatonine - Petit précis à l'usage des trop enthousiastes. ABSTRACT: La mélatonine est une molécule naturelle dérivée du tryptophane. Son rôle est de servir de relai entre la rythmicité jour/nuit et notre corps. Elle sert donc de marqueur circadien : concentration haute pendant la nuit et basse pendant la journée. Elle sert aussi de marque saisonnière : plus les nuits sont longues et plus longuement elle est produite (et vice-versa), ce qui a un rôle primordial dans les cycles reproductifs des animaux. Mais elle est aussi affublée de multiples propriétés thérapeutiques concernant la plupart des maladies humaines, du cancer à la COVID-19 en passant par l'infection par le virus Ebola, ainsi que de capacités thérapeutiques vis-à-vis de multiples toxicités (métaux, venins, produits chimiques comme l'adriamycine [doxorubicine], le méthotrexate ou le paclitaxel). Alors que l'enthousiasme à propos de cette molécule est troublant, l'assise scientifique de ces descriptions est dans le meilleur des cas faible et dans la plupart des cas, inexistante. Dans ce commentaire, les données scientifiques bien établies liées à la mélatonine sont résumées et brièvement discutées, en tâchant de redessiner les limites entre ce qui est connu et bien établi et ce qui reste du domaine du fantasme.


Subject(s)
Circadian Rhythm/drug effects , Communication , Melatonin/pharmacology , Melatonin/physiology , Animals , COVID-19/drug therapy , Humans , Melatonin/therapeutic use , Reproducibility of Results , Seasons
4.
Mol Cell Biochem ; 477(3): 711-726, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1616202

ABSTRACT

The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.


Subject(s)
Antiviral Agents/immunology , COVID-19/drug therapy , /pharmacology , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antiviral Agents/pharmacology , Azetidines/immunology , Azetidines/pharmacology , COVID-19/etiology , Dexamethasone/immunology , Dexamethasone/pharmacology , Famotidine/immunology , Famotidine/pharmacology , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Infliximab/immunology , Infliximab/pharmacology , Interleukin 1 Receptor Antagonist Protein/immunology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Melatonin/immunology , Melatonin/pharmacology , Purines/immunology , Purines/pharmacology , Pyrazoles/immunology , Pyrazoles/pharmacology , Sulfonamides/immunology , Sulfonamides/pharmacology
5.
J Pineal Res ; 72(2): e12782, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1597864

ABSTRACT

Melatonin is commonly used for sleep and jetlag at low doses. However, there is less documentation on the safety of higher doses, which are being increasingly used for a wide variety of conditions, including more recently COVID-19 prevention and treatment. The aim of this review was to investigate the safety of higher doses of melatonin in adults. Medline, Scopus, Embase and PsycINFO databases from inception until December 2019 with convenience searches until October 2020. Randomised controlled trials investigating high-dose melatonin (≥10 mg) in human adults over 30 years of age were included. Two investigators independently abstracted articles using PRISMA guidelines. Risk of bias was assessed by a committee of three investigators. 79 studies were identified with a total of 3861 participants. Studies included a large range of medical conditions. The meta-analysis was pooled data using a random effects model. The outcomes examined were the number of adverse events (AEs), serious adverse events (SAEs) and withdrawals due to AEs. A total of 29 studies (37%) made no mention of the presence or absence of AEs. Overall, only four studies met the pre-specified low risk of bias criteria for meta-analysis. In that small subset, melatonin did not cause a detectable increase in SAEs (Rate Ratio = 0.88 [0.52, 1.50], p = .64) or withdrawals due to AEs (0.93 [0.24, 3.56], p = .92), but did appear to increase the risk of AEs such as drowsiness, headache and dizziness (1.40 [1.15, 1.69], p < .001). Overall, there has been limited AE reporting from high-dose melatonin studies. Based on this limited evidence, melatonin appears to have a good safety profile. Better safety reporting in future long-term trials is needed to confirm this as our confidence limits were very wide due to the paucity of suitable data.


Subject(s)
COVID-19 , Melatonin , Adult , Humans , Melatonin/pharmacology , SARS-CoV-2 , Sleep
6.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1495800

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
7.
Theriogenology ; 177: 1-10, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1458733

ABSTRACT

Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 µM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 µM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.


Subject(s)
COVID-19 , Melatonin , Swine Diseases , Animals , Apoptosis , Autophagy , COVID-19/drug therapy , COVID-19/veterinary , Chloroquine/pharmacology , Male , Melatonin/pharmacology , Phosphatidylinositol 3-Kinases , SARS-CoV-2 , Sertoli Cells , Swine
8.
J Pineal Res ; 72(1): e12772, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1443311

ABSTRACT

As the COVID-19 pandemic grows, several therapeutic candidates are being tested or undergoing clinical trials. Although prophylactic vaccination against SARS-CoV-2 infection has been shown to be effective, no definitive treatment exists to date in the event of infection. The rapid spread of infection by SARS-CoV-2 and its variants fully warrants the continued evaluation of drug treatments for COVID-19, especially in the context of repurposing of already available and safe drugs. Here, we explored the therapeutic potential of melatonin and melatonergic compounds in attenuating COVID-19 pathogenesis in mice expressing human ACE2 receptor (K18-hACE2), strongly susceptible to SARS-CoV-2 infection. Daily administration of melatonin, agomelatine, or ramelteon delays the occurrence of severe clinical outcome with improvement of survival, especially with high melatonin dose. Although no changes in most lung inflammatory cytokines are observed, treatment with melatonergic compounds limits the exacerbated local lung production of type I and type III interferons, which is likely associated with the observed improved symptoms in treated mice. The promising results from this preclinical study should encourage studies examining the benefits of repurposing melatonergic drugs to treat COVID-19 and related diseases in humans.


Subject(s)
Acetamides/pharmacology , COVID-19 , Indenes/pharmacology , Melatonin/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/drug therapy , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Viral Load/drug effects
9.
Microbes Infect ; 24(1): 104886, 2022 02.
Article in English | MEDLINE | ID: covidwho-1428263

ABSTRACT

Phytomelatonin is a pleiotropic molecule that originated in higher plants with many diverse actions and is primarily an antioxidant. The recent identification and advancement of phytomelatonin unraveled the potential of this modulatory molecule being considered a new plant hormone, suggesting its relevance in treating respiratory infections, including COVID-19. Besides, this molecule is also involved in multiple hormonal, physiological, and biological processes at different levels of cell organization and has been marked for its ability to cross the blood-brain barrier and prominent antioxidant effects, reducing mitochondrial electron leakage, up-regulating antioxidant enzymes, acting as a free radical scavenger, and interfering with pro-inflammatory signaling pathways as seen in mood swings, body temperature, sleep, cancer, cardiac rhythms, and immunological regulation modulators. However, due to its diversity, availability, affordability, convenience, and high safety profile, phytomelatonin has also been suggested as a natural adjuvant. This review discussed the origin, content in various plant species, processes of extraction, and detection and therapeutic potentials of phytomelatonin in treating COVID-19-exposed individuals.


Subject(s)
COVID-19 , Melatonin , Antioxidants , Humans , Melatonin/pharmacology , Plant Growth Regulators , SARS-CoV-2
10.
Front Immunol ; 12: 683879, 2021.
Article in English | MEDLINE | ID: covidwho-1369666

ABSTRACT

Diseases caused by pathogenic bacteria in animals (e.g., bacterial pneumonia, meningitis and sepsis) and plants (e.g., bacterial wilt, angular spot and canker) lead to high prevalence and mortality, and decomposition of plant leaves, respectively. Melatonin, an endogenous molecule, is highly pleiotropic, and accumulating evidence supports the notion that melatonin's actions in bacterial infection deserve particular attention. Here, we summarize the antibacterial effects of melatonin in vitro, in animals as well as plants, and discuss the potential mechanisms. Melatonin exerts antibacterial activities not only on classic gram-negative and -positive bacteria, but also on members of other bacterial groups, such as Mycobacterium tuberculosis. Protective actions against bacterial infections can occur at different levels. Direct actions of melatonin may occur only at very high concentrations, which is at the borderline of practical applicability. However, various indirect functions comprise activation of hosts' defense mechanisms or, in sepsis, attenuation of bacterially induced inflammation. In plants, its antibacterial functions involve the mitogen-activated protein kinase (MAPK) pathway; in animals, protection by melatonin against bacterially induced damage is associated with inhibition or activation of various signaling pathways, including key regulators such as NF-κB, STAT-1, Nrf2, NLRP3 inflammasome, MAPK and TLR-2/4. Moreover, melatonin can reduce formation of reactive oxygen and nitrogen species (ROS, RNS), promote detoxification and protect mitochondrial damage. Altogether, we propose that melatonin could be an effective approach against various pathogenic bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Inflammasomes/metabolism , Melatonin/pharmacology , Sepsis/metabolism , Signal Transduction/drug effects , Animals , Humans , Inflammasomes/drug effects , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Plant Leaves , Reactive Oxygen Species , Sepsis/genetics , Sepsis/immunology
11.
J Evid Based Integr Med ; 26: 2515690X211036875, 2021.
Article in English | MEDLINE | ID: covidwho-1356989

ABSTRACT

Worldwide, the turmoil of the SARS-CoV-2 (COVID-19) pandemic has generated a burst of research efforts in search of effective prevention and treatment modalities. Current recommendations on natural supplements arise from mostly anecdotal evidence in other viral infections and expert opinion, and many clinical trials are ongoing. Here the authors review the evidence and rationale for the use of natural supplements for prevention and treatment of COVID-19, including those with potential benefit and those with potential harms. Specifically, the authors review probiotics, dietary patterns, micronutrients, antioxidants, polyphenols, melatonin, and cannabinoids. Authors critically evaluated and summarized the biomedical literature published in peer-reviewed journals, preprint servers, and current guidelines recommended by expert scientific governing bodies. Ongoing and future trials registered on clinicaltrials.gov were also recorded, appraised, and considered in conjunction with the literature findings. In light of the controversial issues surrounding the manufacturing and marketing of natural supplements and limited scientific evidence available, the authors assessed the available data and present this review to equip clinicians with the necessary information regarding the evidence for and potential harms of usage to promote open discussions with patients who are considering dietary supplements to prevent and treat COVID-19.


Subject(s)
Antioxidants/therapeutic use , COVID-19/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Humans , Melatonin/pharmacology , Melatonin/therapeutic use , Micronutrients/pharmacology , Niacinamide/pharmacology , Niacinamide/therapeutic use , Plant Extracts/pharmacology , Polyphenols/pharmacology , Polyphenols/therapeutic use , Probiotics/therapeutic use , SARS-CoV-2
12.
Int J Mol Sci ; 22(16)2021 Aug 11.
Article in English | MEDLINE | ID: covidwho-1354985

ABSTRACT

Melatonin is registered to treat circadian rhythm sleep-wake disorders and insomnia in patients aged 55 years and over. The essential role of the circadian sleep rhythm in the deterioration of sleep quality during COVID-19 confinement and the lack of an adverse effect of melatonin on respiratory drive indicate that melatonin has the potential to be a recommended treatment for sleep disturbances related to COVID-19. This review article describes the effects of melatonin additional to its sleep-related effects, which make this drug an attractive therapeutic option for treating patients with COVID-19. The preclinical data suggest that melatonin may inhibit COVID-19 progression. It may lower the risk of the entrance of the SARS-CoV-2 virus into cells, reduce uncontrolled hyper-inflammation and the activation of immune cells, limit the damage of tissues and multiorgan failure due to the action of free radicals, and reduce ventilator-induced lung injury and the risk of disability resulting from fibrotic changes within the lungs. Melatonin may also increase the efficacy of COVID-19 vaccination. The high safety profile of melatonin and its potential anti-SARS-CoV-2 effects make this molecule a preferable drug for treating sleep disturbances in COVID-19 patients. However, randomized clinical trials are needed to verify the clinical usefulness of melatonin in the treatment of COVID-19.


Subject(s)
COVID-19/drug therapy , Melatonin/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , COVID-19 Vaccines/pharmacology , Cytokines/metabolism , Free Radical Scavengers/metabolism , Humans , Melatonin/therapeutic use , Renin-Angiotensin System , Sleep Wake Disorders/drug therapy
13.
Z Naturforsch C J Biosci ; 77(1-2): 37-42, 2022 Jan 27.
Article in English | MEDLINE | ID: covidwho-1346341

ABSTRACT

The inflammasome as a multiprotein complex has a role in activating ASC and caspase-1 resulting in activating IL-1ß in various infections and diseases like corona virus infection in various tissues. It was shown that these tissues are affected by COVID-19 patients. According to the current evidence, melatonin is not veridical while possessing a high safety profile, however, it possesses indirect anti-viral actions owing to its anti-oxidation, anti-inflammation, and immune improving properties. This study aims to assess the impacts of melatonin as the complementary treatments on oxidative stress agents and inflammasome activation in patients with COVID-19. Melatonin supplement (9 mg daily, orally) was provided for the patients hospitalized with a COVID-19 analysis for 14 days. For measuring IL-10, IL-1ß, and TNF-α cytokines and malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) level and the expression of CASP1 and ASC genes, blood samples were gathered from the individuals at the start and termination of the therapy. Our findings indicated that melatonin is used as a complementary treatment to reduce the levels of TNF-α and IL-1ß cytokines, MDA, and NO levels in COVID-19 patients and significantly increase SOD level, however, the levels of IL-10 cytokine possesses no considerable changes. The findings revealed that genes of CASP1 and ASC were dysregulated by melatonin regulating the inflammasome complex. Based on the findings of the current study, it is found that melatonin can be effective as a medicinal supplement in decreasing the inflammasome multiprotein complex and oxidative stress along with beneficial impacts on lung cytokine storm of COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Melatonin , Oxidative Stress , Cytokines , Humans , Inflammasomes/metabolism , Melatonin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
14.
J Inorg Biochem ; 223: 111546, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1313251

ABSTRACT

Recent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19. Conversely, melatonin, a potent MPO inhibitor, has been noted for its anti-inflammatory, anti-oxidative, anti-apoptotic, and neuroprotective actions. Melatonin has been proposed as a safe therapeutic agent for COVID-19 recently, having been given with a US Food and Drug Administration emergency authorized cocktail, REGEN-COV2, for management of COVID-19 progression. This review distinctly highlights both how the destructive interactions of HOCl with tetrapyrrole rings may contribute to oxygen deficiency and hypoxia, vitamin B12 deficiency, NO deficiency, increased oxidative stress, and sleep disturbance, as well as how melatonin acts to prevent these events, thereby improving COVID-19 prognosis.


Subject(s)
Antioxidants/pharmacology , COVID-19/drug therapy , Melatonin/pharmacology , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , COVID-19/immunology , COVID-19/metabolism , Cytokine Release Syndrome/immunology , Cytokines/metabolism , Hemeproteins/metabolism , Humans , Hypochlorous Acid/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Peroxidase/metabolism , SARS-CoV-2 , Sleep/drug effects , Vitamin B Deficiency/metabolism
15.
J Pineal Res ; 71(2): e12754, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1276748

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlights major gaps in our knowledge on the prevention control and cross-species transmission mechanisms of animal coronaviruses. Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), and porcine delta coronavirus (PDCoV) are three common swine coronaviruses and have similar clinical features. In the absence of effective treatments, they have led to significant economic losses in the swine industry worldwide. We reported that indoles exerted potent activity against swine coronaviruses, the molecules used included melatonin, indole, tryptamine, and L-tryptophan. Herein, we did further systematic studies with melatonin, a ubiquitous and versatile molecule, and found it inhibited TGEV, PEDV, and PDCoV infection in PK-15, Vero, or LLC-PK1 cells by reducing viral entry and replication, respectively. Collectively, we provide the molecular basis for the development of new treatments based on the ability of indoles to control TGEV, PEDV, and PDCoV infection and spread.


Subject(s)
COVID-19 , Melatonin , Swine Diseases , Animals , Antiviral Agents/pharmacology , Humans , Melatonin/pharmacology , SARS-CoV-2 , Swine
16.
Pharmacol Ther ; 224: 107825, 2021 08.
Article in English | MEDLINE | ID: covidwho-1117458

ABSTRACT

Coronaviruses (CoVs) are a group of single stranded RNA viruses, of which some of them such as SARS-CoV, MERS-CoV, and SARS-CoV-2 are associated with deadly worldwide human diseases. Coronavirus disease-2019 (COVID-19), a condition caused by SARS-CoV-2, results in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) associated with high mortality in the elderly and in people with underlying comorbidities. Results from several studies suggest that CoVs localize in mitochondria and interact with mitochondrial protein translocation machinery to target their encoded products to mitochondria. Coronaviruses encode a number of proteins; this process is essential for viral replication through inhibiting degradation of viral proteins and host misfolded proteins including those in mitochondria. These viruses seem to maintain their replication by altering mitochondrial dynamics and targeting mitochondrial-associated antiviral signaling (MAVS), allowing them to evade host innate immunity. Coronaviruses infections such as COVID-19 are more severe in aging patients. Since endogenous melatonin levels are often dramatically reduced in the aged and because it is a potent anti-inflammatory agent, melatonin has been proposed to be useful in CoVs infections by altering proteasomal and mitochondrial activities. Melatonin inhibits mitochondrial fission due to its antioxidant and inhibitory effects on cytosolic calcium overload. The collective data suggests that melatonin may mediate mitochondrial adaptations through regulating both mitochondrial dynamics and biogenesis. We propose that melatonin may inhibit SARS-CoV-2-induced cell damage by regulating mitochondrial physiology.


Subject(s)
COVID-19/drug therapy , Melatonin/pharmacology , Mitochondria/pathology , Aged , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , COVID-19/complications , COVID-19/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Female , Humans , Melatonin/administration & dosage , Mitochondria/drug effects , Mitochondria/virology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/virology , Virus Replication
17.
Int J Mol Sci ; 22(4)2021 Feb 16.
Article in English | MEDLINE | ID: covidwho-1085070

ABSTRACT

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19), is a worldwide pandemic, as declared by the World Health Organization (WHO). It is a respiratory virus that infects people of all ages. Although it may present with mild to no symptoms in most patients, those who are older, immunocompromised, or with multiple comorbidities may present with severe and life-threatening infections. Throughout history, nutraceuticals, such as a variety of phytochemicals from medicinal plants and dietary supplements, have been used as adjunct therapies for many disease conditions, including viral infections. Appropriate use of these adjunct therapies with antiviral proprieties may be beneficial in the treatment and/or prophylaxis of COVID-19. In this review, we provide a comprehensive summary of nutraceuticals, such as vitamins C, D, E, zinc, melatonin, and other phytochemicals and function foods. These nutraceuticals may have potential therapeutic efficacies in fighting the threat of the SARS-CoV-2/COVID-19 pandemic.


Subject(s)
COVID-19/drug therapy , Dietary Supplements , Melatonin/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Dietary Supplements/analysis , Functional Food/analysis , Humans , Melatonin/pharmacology , SARS-CoV-2/drug effects , Vitamin D/pharmacology , Vitamin D/therapeutic use , Vitamin E/pharmacology , Vitamin E/therapeutic use , Vitamins/pharmacology , Zinc/pharmacology
18.
Vitam Horm ; 115: 67-88, 2021.
Article in English | MEDLINE | ID: covidwho-1077729

ABSTRACT

Preservation of a robust circadian rhythmicity (particulsarly of the sleep/wake cycle), a proper nutrition and adequate physical exercise are key elements for healthy aging. Aging comes along with circadian alteration, e.g. a disrupted sleep and inflammation, that leads to metabolic disorders. In turn, sleep cycle disturbances cause numerous pathophysiological changes that accelerates the aging process. In the central nervous system, sleep disruption impairs several functions, among them, the clearance of waste molecules. The decrease of plasma melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, plays a particular role as far as the endocrine sequels of aging. Every day, the late afternoon/nocturnal increase of melatonin synchronizes both the central circadian pacemaker located in the hypothalamic suprachiasmatic nuclei as well as myriads of peripheral cellular circadian clocks. This is called the "chronobiotic effect" of melatonin, the methoxyindole being the prototype of the endogenous family of chronobiotic agents. In addition, melatonin exerts a significant cytoprotective action by buffering free radicals and reversing inflammation via down regulation of proinflammatory cytokines, suppression of low degree inflammation and prevention of insulin resistance. Because of these properties melatonin has been advocated to be a potential therapeutic tool in COVID 19 pandemic. Melatonin administration to aged animals counteracts a significant number of senescence-related changes. In humans, melatonin is effective both as a chronobiotic and a cytoprotective agent to maintain a healthy aging. Circulating melatonin levels are consistently reduced in the metabolic syndrome, ischemic and non-ischemic cardiovascular diseases and neurodegenerative disorders like the Alzheimer's and Parkinson's diseases. The potential therapeutic value of melatonin has been suggested by a limited number of clinical trials generally employing melatonin in the 2-10mg/day range. However, from animal studies the cytoprotective effects of melatonin need higher doses to become apparent (i.e. in the 100mg/day range). Hence, controlled studies employing melatonin doses in this range are urgently needed.


Subject(s)
Antioxidants/pharmacology , Circadian Rhythm/drug effects , Healthy Aging/drug effects , Melatonin/pharmacology , Animals , Antioxidants/therapeutic use , Humans , Melatonin/therapeutic use
19.
Actas Dermosifiliogr (Engl Ed) ; 112(2): 118-126, 2021 Feb.
Article in English, Spanish | MEDLINE | ID: covidwho-1064694

ABSTRACT

Researchers the world over are working to find the treatments needed to reduce the negative effects of coronavirus disease 2019 (COVID-19) and improve the current prognosis of patients. Several drugs that are often used in dermatology are among the potentially useful treatments: ivermectin, antiandrogenic agents, melatonin, and the antimalarial drugs chloroquine and hydroxychloroquine. These and other agents, some of which have proven controversial, are being scrutinized by the scientific community. We briefly review the aforementioned dermatologic drugs and describe the most recent findings relevant to their use against COVID-19.


Subject(s)
COVID-19/drug therapy , SARS-CoV-2 , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , COVID-19/mortality , Chloroquine/pharmacology , Chloroquine/therapeutic use , Cinchona/chemistry , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Ivermectin/pharmacology , Ivermectin/therapeutic use , Melatonin/pharmacology , Melatonin/therapeutic use , Virus Internalization/drug effects
20.
Compr Rev Food Sci Food Saf ; 19(6): 4008-4030, 2020 11.
Article in English | MEDLINE | ID: covidwho-803675

ABSTRACT

According to recent reports, the global market for melatonin is worth 700 million USD in 2018 and would reach 2,790 million USD by 2025, growing at a CAGR of 18.9% during 2019 to 2025. Having regard to the prevalence of sleep and circadian rhythm disorders and a clear tendency to increase the demand for melatonin, and the current lack of alternative green and cost-efficient technologies of its synthesis, the supply of this remedy will not be enough to guarantee melatonin supply and affordability on a global scale. The emergence of naturally occurring melatonin and its isomers in fermented foods has opened an exciting new research area; there are still, however, some obscure points in the efficient microbiological biosynthesis of melatonin. This review summarizes the research progress and recent evidence related to melatonin and its isomers in various foodstuffs. Additionally, one possible way to synthesize melatonin is also discussed. The evidence pointed out that the presence of melatonin and its isomers is not exclusive for grapes and grape-derived products, because it can be also found in sweet and sour cherries. However, different species of both Saccharomyces and non-Saccharomyces yeasts could be used to obtain melatonin and melatonin isomers in the process of alcoholic fermentation biotechnologically. The availability of L-tryptophan has been a key factor in determining the concentration of indolic compounds produced, and the utilization of probiotic lactic acid bacteria could help in the formation of melatonin isomers during malolactic fermentation. These approaches are environmentally friendly alternatives with a safer profile than conventional ones and could represent the future for sustainable industrial-scale melatonin production.


Subject(s)
/analysis , Fruit/chemistry , Melatonin/biosynthesis , Fermentation , Lactobacillales/metabolism , Melatonin/chemistry , Melatonin/pharmacology , Tryptophan , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL